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Abstract

In this research we address in detail a mode III radial matrix crack penetrating a circular inhomogeneity. One tip of the
radial crack lies in the matrix, while the other tip of the radial crack lies in the circular inhomogeneity. In addition the two
tips of the crack are mutually image points (or inverse points) with respect to the circular inhomogeneity-matrix interface.
First we conformally map the crack onto a unit circle Ca in the new f-plane. Meanwhile the inhomogeneity-matrix inter-
face is mapped onto Cb, a part of another circle in the f-plane. In addition Ca and Cb intersect at a vertex angle p/2. By
using the method of image in the f-plane, closed-form solutions in terms of elementary functions are derived for three load-
ing cases: (1) remote uniform antiplane shearing; (2) a screw dislocation located in the unbounded matrix; and (3) a radial
Zener–Stroh crack.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

When addressing matrix or fiber cracking problems in fiber-reinforced composite, it is often needed to
resort to numerical methods (for example numerically solving the resulting singular integral equations) to
arrive at those physical quantities of interest such as stress intensity factors and crack opening displacement
[1–7]. It is extremely desirable to obtain closed-form solutions in terms of elementary functions even under
some special conditions for crack problems in fiber-reinforced composite since the fact that the physical quan-
tities of interest can be extracted from the obtained solutions conveniently, and that the closed-form solutions
can be used to validate various numerical methods. The aim of this research is to pursue such a solution.
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In this study we consider a radial matrix crack penetrating a circular elastic inhomogeneity under antiplane
shear deformations. In our discussion, one tip of the radial crack lies in the matrix, while another tip is lodged
in the inhomogeneity. We confine our attention to the special situation in which the two tips of the crack are
mutually image points (or inverse points) with respect to the circular interface between the inhomogeneity and
the surrounding matrix. First the conformal mapping method is applied to map the crack onto a unit circle in
the new f-plane. It is proved that under such a conformal mapping, the inhomogeneity-matrix interface can be
mapping onto a portion of another circle. In addition the intersection angle of the two circles in the f-plane is
p/2. Here it is stressed that the resulting boundary value problem in the new f-plane is similar to the electro-
static problem of a circular conductor partially merged in a dielectric cylinder with a dielectric constant dif-
ferent from that of the surrounding host medium, which was recently discussed by Palaniappan [8]. By using
Kelvin’s inverse (or method of image) [9–12] together with shift and reflection properties of harmonic func-
tions, he analytically solved the exterior boundary value problem. Here we can conveniently adapt Palaniap-
pan’s result to our investigation. Closed-form solutions are derived for three cases: (1) the two-phase
composite is subjected to remote uniform shearing; (2) a screw dislocation is located in the matrix; (3) the
radial crack is a Zener–Stroh crack.

2. The elastostatic problem and conformal mapping

As shown in Fig. 1, a circular inhomogeneity with shear modulus l1 is embedded in an unbounded matrix
with another shear modulus l2. The inhomogeneity and the surrounding matrix form a perfect interface L

across which tractions and displacements are continuous. A radial matrix crack enters the inhomogeneity.
Traction-free conditions are satisfied on the crack surface. The origin of the Cartesian coordinate system
(x,y) is chosen at the centre of the crack, with the crack lying on the x-axis. The half-length of the crack is
unit 1. In this investigation we consider a special situation in which the circular interface L intersects the real
x-axis at the two points (1/c, 0) and (c, 0), (c > 1). In this situation the left and right tips of the crack are just
mutually image points with respect to the circle L. It is apparent that the radius of the circle L is 1

2
ðc� 1

cÞ, and
the center of the circle L is at ð1

2
ðcþ 1

cÞ; 0Þ. Three loading cases will be discussed: (1) the two-phase composite is
subjected to remote uniform antiplane shearing r1zy ; (2) a screw dislocation with Burgers vector bz is located at
z = z0 (z = x + iy) in the matrix; (3) the radial crack is a Zener–Stroh crack with a total Burgers vector bz. The
antiplane displacement w and the two stress components rzy and rzx can be expressed in terms of a single ana-
lytic function f(z) as [13]

w ¼ Imff ðzÞg;
rzy þ irzx ¼ lf 0ðzÞ:

ð1Þ

Circular inhomogeneity (μ1)

Matrix (μ2)

x

y

c
1/c 1−1

L

Crack

Fig. 1. A mode-III radial matrix crack penetrates a circular inhomogeneity.
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We first introduce the following conformal mapping function:

z ¼ mðfÞ ¼ 1

2
fþ 1

f

� �
; ð2Þ

which maps the exterior of the crack onto the exterior of a unit circle Ca in the f-plane (f = n + ig), as shown
in Fig. 2. Meanwhile it is proved in the Appendix that the interface L is mapped onto Cb, which is part of
another circle of radius

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

in the f-plane. The two circles Ca and Cb overlap at a contact angle p/2
due to the property of conformal mapping and the fact that in the physical z-plane the crack and the circular
interface L intersect at an angle p/2. The mapping point of the centre of the circle L is still the centre of Cb. The
distance between the centres of Ca and Cb is c. Our task below is to determine the analytic function f1(f) de-
fined in the inhomogeneity and f2(f) defined in the matrix. Here for convenience we write fi(z) = fi(m(f)) = fi(f),
i = 1,2. We find that the resulting boundary value problem in the new f-plane is very similar to the electro-
static problem recently discussed by Palaniappan [8] of a 2D snowman type of an object with a conducting
cylinder partially protruded into a dielectric cylinder with a dielectric constant different from that of the sur-
rounding host medium. It shall be mentioned that the traction-free boundary condition on the crack surface
discussed here is of Neumann-type; while the zero-potential on the conductor surface discussed by Palaniap-
pan [8] is of Dirichlet-type. In the next section we will derive closed form solutions in the f-plane by using the
method of image (or continuously using analytic continuation on Ca and Cb).

3. General solutions

3.1. Remote uniform shearing

When the two-phase composite is only subjected to remote uniform shearing r1zy , by using the method of
image [8] and also noticing the conformal mapping Eq. (2), the two analytic functions f1(f) defined in the inho-
mogeneity and f2(f) defined in the unbounded matrix can be expressed in closed-form as

f1ðfÞ ¼
r1zy C

2l2

f� 1

f

� �
;

f2ðfÞ ¼
r1zy

2l2

ðf2 � 1Þ 1

f
þ ðc

2 � 1Þð1� CÞ
ðf� cÞðcf� 1Þ

� �
;

ð3Þ

where C ¼ 2l2

l1þl2
, and f ¼ m�1ðzÞ ¼ zþ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1
p

with a branch cut on the crack surface. Consequently the full
field expressions of the antiplane displacement is given by

ξ

η

2 1c −

1−1

C

Cb

a

o o' 2 1c c+ −

Fig. 2. The mapped geometry in the f-plane.
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w ¼
r1zy C

2l2

Im f� 1

f

� �
ð4Þ

inside the circular inhomogeneity, and

w ¼
r1zy

2l2

Im ðf2 � 1Þ 1

f
þ ðc

2 � 1Þð1� CÞ
ðf� cÞðcf� 1Þ

� �� �
; ð5Þ

within the unbounded matrix. Fig. 3 shows the contour plots of out-of plane displacement with c = 5 and l1/
l2 = 2 (the inhomogeneity is stiffer than the matrix). We observe that the displacement is continuous across
the perfect interface L, while the displacement undergoes a jump across the radial crack.

It follows from Eq. (1) 2 that the stress field is obtained by differentiating Eq. (3) as

rzy þ irzx ¼ r1zy ð2� CÞ f
2 þ 1

f2 � 1
ð6Þ

inside the circular inhomogeneity, and

rzy þ irzx ¼
r1zy

f2 � 1
f2 þ 1þ ðC� 1Þðc2 � 1Þ f2

ðf� cÞ2
þ f2

ðcf� 1Þ2

 !" #
; ð7Þ

within the matrix. Apparently due to the interference of the crack, the stress field inside the inhomogeneity is
no longer uniform. We can use the average stresses in the inhomogeneity, which are just the stresses at the
centre of the circular inhomogeneity in view of the fact that the average value of a harmonic function within
any circular inhomogeneity is exactly equal to its value at the centre of the circular inhomogeneity [14], to
measure the overall stress level within the inhomogeneity. It follows from Eq. (6) that the average stresses
within the inhomogeneity, which are also the stresses at the centre of the circular inhomogeneity, can be eval-
uated to be

Fig. 3. Contours of normalized out-of plane displacement ~w ¼ l2

r1zy
w with c = 5 and l1/l2 = 2 when the matrix is subjected to remote

uniform stress r1zy .
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�rzy ¼ r1zy ð2� CÞ c
2 þ 1

c2 � 1
; �rzx ¼ 0; ð8Þ

where over bar means the average. Remember that in the absence of the radial crack, the average stresses with-
in the inhomogeneity under the same loading are [15]

�rzy ¼ r1zy ð2� CÞ; �rzx ¼ 0: ð9Þ

Comparing Eq. (8) with Eq. (9), we observe that the average stress within a cracked inhomogeneity is higher

than that within the same circular inhomogeneity with no crack.
Fig. 4 shows the contours of the stress component rzy in the two-phase composite with c = 5 and l1/l2 = 2.

From this figure we can clearly see how the existence of the crack disturbs the stress field inside the inhomo-
geneity. On the other hand the stress component rzy is in general discontinuous across the interface L due to
the mismatch in stiffness between the inhomogeneity and matrix.

From the expressions of the stress field, we can arrive at the stress intensity factors (SIFs) on the two tips of
the crack as [16,17]

KL
III ¼ lim

z!�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjzþ 1j

p
rzy ¼

ffiffiffi
p
p

r1zy 1þ ðC� 1Þ c� 1

cþ 1

� �
;

KR
III ¼ lim

z!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjz� 1j

p
rzy ¼

ffiffiffi
p
p
ð2� CÞr1zy ;

ð10Þ

where the superscript ‘L’ indicates the SIF on the left crack tip, while the superscript ‘R’ indicates the SIF on
the right crack tip.

When the inhomogeneity is stiffer than the matrix, i.e., C < 1, then we have KR
III >

ffiffiffi
p
p

r1zy > KL
III; when the

inhomogeneity is softer than the matrix, i.e., C > 1, then we have KR
III <

ffiffiffi
p
p

r1zy < KL
III. Here

ffiffiffi
p
p

r1zy is the SIF
for a Griffith crack of half-length 1 in a homogeneous material. The crack face displacement jump
Dw = w(x, 0+) � w(x, 0�) is given by

Fig. 4. Contours of the normalized stress component ~rzy ¼ rzy

r1zy
with c = 5 and l1/l2 = 2 when the matrix is subjected to remote uniform

stress r1zy .
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D~w ¼ l2

r1zy

Dw ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

1þ ðc2�1Þð1�CÞ
2cx�1�c2

h i
; �1 6 x 6 1

c ;

2C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

; 1
c 6 x 6 1:

8<
: ð11Þ

We demonstrate in Fig. 5 the normalized crack face displacement jump D~w for different values of l1/l2 with
c = 5. In this figure the red dashed line is the trace of the calculated maximum value of D~w. It is observed that
the maximum value of D~w always occurs in the matrix part of the crack no matter whether the inhomogeneity
is stiffer or softer than the matrix, and the location of the maximum value of D~w moves toward the interface L

as the ratio l1/l2 decreases.

3.2. A screw dislocation in the matrix

In this subsection we consider the situation in which a screw dislocation with Burgers vector bz is located at
z0 = x0 + iy0 in the matrix. By using the method of image [8], the two analytic functions f1(f) defined in the
inhomogeneity and f2(f) defined in the unbounded matrix can be expressed in closed-form as

f1ðfÞ ¼ C
bz

2p
lnðf� eÞ � ln f� 1

�e

� �
þ ln f

� �
;

f2ðfÞ ¼
bz

2p
lnðf� eÞ � ln f� 1

�e

� �
þ ln f

� �

þ ð1� CÞ bz

2p
ln f� �ec� 1

�e� c

� �
� lnðf� e� c

ec� 1
Þ þ ln f� 1

c

� �
� lnðf� cÞ

� �
;

ð12Þ

where e ¼ m�1ðz0Þ ¼ z0 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2

0 � 1
p

.
By differentiating Eq. (12), we can obtain the stress field induced by the screw dislocation located in the

matrix as

rzy þ irzx ¼
l1Cbz

pðf2 � 1Þ
f2

f� e
� f

�ef� 1

� �
ð13Þ

Fig. 5. The normalized crack face displacement jump D~w ¼ l2

r1zy
Dw for different values of l1/l2with c = 5 when the matrix is subjected to

remote uniform stress r1zy . The dashed line is the trace of the maximum value of Dw.
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inside the inhomogeneity, and

rzy þ irzx ¼
l2bz

pðf2 � 1Þ
f2

f� e
� f

�ef� 1

� �

þ l2ð1� CÞðc2 � 1Þbzf
2

pðf2 � 1Þ
jej2 � 1

½ð�e� cÞf� ð�ec� 1Þ�½ðec� 1Þf� ðe� cÞ� �
1

ðf� cÞðcf� 1Þ

" #
ð14Þ

in the matrix. Fig. 6 demonstrates the contour plots of the stress component rzx induced by a screw dislocation
at (�1.1,0) on the negative x-axis in the matrix with c = 5 and l1/l2 = 2. Once again we observe that due to
the mismatch in shear modulus between the inhomogeneity and matrix, rzx is not continuous across the inter-
face L.

The SIFs on the two cracks tips due to the screw dislocation are

KL
III ¼ lim

z!�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjzþ 1j

p
rzy ¼ �

l2bzffiffiffi
p
p Re

1

1þ e

� �
þ l2ðC� 1Þðc� 1Þbz

2
ffiffiffi
p
p
ðcþ 1Þ 1þ 1� jej2

ð�e� 1Þðe� 1Þ

" #
;

KR
III ¼ lim

z!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjz� 1j

p
rzy ¼

l1Cbzffiffiffi
p
p Re

1

1� e

� �
:

ð15Þ

Here it is of interest to investigate KL
III in more detail. The results show that there exists a curve for the position

(x0,y0) of the screw dislocation on which KL
III ¼ 0. On the left hand side of the curve, the screw dislocation has

an antishielding effect on the left crack tip ðKL
III > 0Þ; while on the right hand side of the curve the screw dis-

location has a shielding effect on the left crack tip ðKL
III < 0Þ. We demonstrate in Fig. 7 the variations of the

curve for different values of the ratio l1/l2 with c = 5. When the inhomogeneity becomes stiffer (i.e., l1/l2

increases), the antishielding region shrinks while the shielding region enlarges.
By substituting the stress field acting on the screw dislocation (Eq. (14) subtracting the stress due to the

dislocation itself) into the Peach–Koehler formula [17–19], the image force on the screw dislocation due to
its interaction with the crack and the inhomogeneity is

Fig. 6. Contours of the normalized stress component ~rzx ¼ przx
l2bz

induced by a screw dislocation located at (�1.1, 0) on the negative x-axis in
the matrix with c = 5 and l1/l2 = 2.
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F x � iF y ¼
l2b2

z e
pð1� e2Þ

1

e2 � 1
þ 1

jej2 � 1

 !

þ l2ð1� CÞðc2 � 1Þb2
z e2

pðe2 � 1Þ
jej2 � 1

½jej2 � ðeþ �eÞcþ 1�½ðe2 þ 1Þc� 2e�
� 1

ðe� cÞðec� 1Þ

" #
; ð16Þ

where Fx and Fy are respectively the components of the image force along the x and y directions. Our calcu-
lations also show that under some conditions there exist stable or unstable equilibrium positions for the screw
dislocation.

3.3. A radial Zener–Stroh crack

In the previous two subsections the radial crack studied is in fact the well-known Griffith crack. In this sub-
section we consider the case in which the radial crack [�1 1] is a Zener–Stroh crack [20–25], which is a coun-
terpart of the Griffith crack. Here we mention that the Griffith crack is an externally loaded crack while the
Zener–Stroh crack is a net dislocation-loaded crack which is formed by a dislocation pileup. Interested readers
may refer to more recent works [22–25] to find more detailed contents on Zener–Stroh crack. The sum of Bur-
gers vectors of the dislocations insider the Zener–Stroh crack [�1 1] is non-zero, more specificallyZ 1

�1

½w;xðx; 0�Þ � w;xðx; 0þÞ�dx ¼ bz: ð17Þ

In addition, no external mechanical loading is applied on the two-phase composite. The two analytic functions
f1(f) defined in the inhomogeneity and f2(f) defined in the unbounded matrix can be expressed in closed-form
as

f1ðfÞ ¼
bz

2p
C ln f;

f2ðfÞ ¼
bz

2p
ln fþ bz

2p
ð1� CÞ ln f� 1

c

� �
� lnðf� cÞ

� �
:

ð18Þ

Fig. 7. The variations of the curve on which KL
III ¼ 0 for different values of the ratio l1/l2 with c = 5.
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It is of interest to point out that the above two analytic functions for a Zener–Stroh crack can also be obtained
from the previous solutions in Eq. (12) for a screw dislocation located in the matrix by letting the screw dis-
location approach the crack face, i.e., e ¼ 1=�e.

The stress field due to the Zener–Stroh crack is given by differentiating Eq. (18) as

rzy þ irzx ¼
l1Cbzf

pðf2 � 1Þ
ð19Þ

inside the inhomogeneity, and

rzy þ irzx ¼
l2bzf

pðf2 � 1Þ
þ l2ðc2 � 1ÞðC� 1Þbzf

2

pðf2 � 1Þðcf� 1Þðf� cÞ
ð20Þ

in the matrix. From the above expressions of stress field, we can arrive at the SIFs on the two tips of the crack
as

KL
III ¼ �

l2bz

2
ffiffiffi
p
p 1þ ð1� CÞ c� 1

cþ 1

� �
;

KR
III ¼

l2ð2� CÞbz

2
ffiffiffi
p
p ;

ð21Þ

when l1 = l2, or C = 1, the above reduces to the results for a Zener–Stroh crack in a homogeneous material
[24]. It is found from Eq. (21) that the SIF at the left tip is always negative, while the SIF at the right tip is
always positive. In addition when the inhomogeneity is stiffer than the matrix, i.e., C < 1, then we have
jKR

IIIj > jKL
IIIj >

l2bz

2
ffiffi
p
p ; when the inhomogeneity is softer than the matrix, i.e., C > 1, then we have

jKR
IIIj < jKL

IIIj <
l2bz

2
ffiffi
p
p . Here l2bz

2
ffiffi
p
p is the SIF for a Zener–Stroh crack of half-length 1 in a homogeneous elastic

material with shear modulus l2. Fig. 8 illustrates the contour plots of the stress component rzy in the matrix
with c = 5 and l1/l2 = 2. It is observed that the traction-free boundary condition on the crack surface is sat-
isfied. We also notice that there exists a curve on which rzy = 0 besides the crack surface. rzy is negative on the
left hand side of the curve, and it is positive on the right hand side of the curve. This curve is not the y-axis due
to the existence of the inhomogeneity.

Fig. 8. Contours of the normalized stress component ~rzy ¼ przy

l2bz
with c = 5 and l1/l2 = 2. The crack [�1 1] is a Zener–Stroh crack.
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4. Conclusions

By means of conformal mapping (see Eq. (2)) and the method of image [8], closed-form solutions are
derived for the elastostatic problem of a mode-III radial matrix crack penetrating a circular elastic inhomo-
geneity. Detailed results are given for three cases: (1) the two-phase composite is subjected to remote uniform
antiplane shearing; (2) a screw dislocation is located in the matrix; (3) the radial crack is a Zener–Stroh crack.
The case in which a screw dislocation lies within the inhomogeneity can be identically discussed. This inves-
tigation can also be considered as an extension of the results of Palaniappan [8] to the non-circular hybrid
geometry case (here the slit crack is an extreme case of ellipse). While the present closed-form solutions can
be utilized as a benchmark for future numerical study and meanwhile can be employed to investigate a cracked
polycrystalline solid [6,7], we further expect that the present results can be extended to an arc shaped crack
penetrating a circular inhomogeneity and can also be easily extended to a radial matrix crack penetrating a
piezoelectric circular inhomogeneity.
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Appendix

Let f 2 Cb, so we can write f ¼ cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

eih. The inverse mapping of f in the original physical z-plane is

z ¼ 1

2
ðfþ 1

f
Þ ¼ 1

2
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

eih þ 1

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

eih

� �
: ðA:1Þ

Then the following equality establishes

z� 1

2
cþ 1

c

� �
¼ 1

2
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

eih þ 1

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

eih

� �
� 1

2
cþ 1

c

� �
¼ 1

2
c� 1

c

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

þ ceihffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1
p

þ ce�ih
: ðA:2Þ

As a result

z� 1

2
cþ 1

c

� �				
				 ¼ 1

2
c� 1

c

� �
; ðA:3Þ

which means that z 2 L.
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