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Summary. This paper investigates surface instability of a functionally graded and layered elastic film

interacting with another flat rigid body [or interacting with another functionally graded and layered elastic film

(or simply-supported elastic plate)] through surface van der Waals forces under plane strain conditions. The

shear modulus in each functionally graded layer is assumed to be exponentially varied in the thickness direction.

A homogeneous elastic layer, which is the focus of this research, can be considered as a special case of the

functionally graded layer by taking the magnitude of the gradient parameter to be very small. The solution for

any functionally graded layer is obtained in terms of the pseudo-Stroh formalism; then the solution for the

multilayered system is derived based on the transfer-matrix method. As a result the displacement and traction

vectors at the top surface of the layered film (or plate) can be expressed in terms of those at the bottom surface of

the layered film (or plate). We can thus obtain simple relationships between the surface normal traction and

surface deflection. Expressions for the interaction coefficient as a function of the wave number of the instability

mode are therefore obtained. The critical value of the interaction coefficient for surface instability and the

associated instability mode can be determined easily by identifying the minimum of the interaction coefficient.

An advantage of the present method lies in that it is very convenient to address a film (or a plate) with an

arbitrary number of layers. The correctness of the present approach is verified by comparison with known

results. The results show that it is possible to find N distinct surface instability modes for an N-layered elastic

film interacting with another flat rigid body; and that it is also possible to find that there are at most N1þN2

distinct surface instability modes for an N1-layered elastic film interacting with another N2-layered elastic film.

When a multilayered elastic film interacts with a simply-supported multilayered elastic plate, the film-plate

system will exhibit the instability mode of the film or that of the plate depending on the stability strength of the

plate versus that of the film.

1 Introduction

Surface instability of elastic thin films under an external field, such as van der Waals interactions or

an electrostatic field, has been a topic of intensive research [1]–[11]. Monch and Herminghaus [1]

and Shenoy and Sharma [2], [3] studied the surface instability of a rubber elastic layer bonded to a
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rigid substrate and attracted by a rigid contactor through van der Waals forces. It is found that the

originally flat surface of the elastic film becomes wavy when the distance between the two surfaces is

so small that the interaction exceeds a critical value. In addition, the fundamental surface instability

mode of an elastic layer on a rigid substrate, attracted by a rigid flat surface, is determined by the

thickness of the elastic layer, and is independent of the nature and magnitude of the interaction and

elastic modulus of the film. Ru [4] investigated the surface instability of two mutually attracting

films due to van der Waals forces by using an approximate method, which reduces the original two-

dimensional problem of an elastic film to a one-dimensional surface problem. It is observed that two

distinct metastable instability modes can emerge as a result of the incompatibility of the individual

fundamental modes of the two elastic films with unequal thickness. Ru [5] also addressed the surface

instability of an elastic thin film on a rigid substrate interacting with a suspended elastic plate

through van der Waals forces by employing the same approximate method. He observed [5] that (1)

when the stability strength of the plate is lower than the film, the interaction coefficient is an

increasing function of the wave number, and then the film-plate system exhibits a long-wave

instability mode of the suspended plate; (2) otherwise, the interaction coefficient admits an interval

local minimum representing the short-wave modes of the film. Then the critical value and instability

mode of the film-plate system are determined by the internal local minimum for shorter plates, or by

the long-wave mode of the plate for longer plates. Most recently, Yoon et al. [6] studied the surface

instability of a bilayer elastic film interacting with another rigid body through van der Waals forces

by means of the approximate method used in [4] and [5]. They found that a bilayer elastic film can

have two distinct surface instability modes when the top layer is more compliant and much thinner

than the bottom layer. Huang et al. [7] studied the surface instability of an elastic film interacting

with a rigid body through van der Waals forces by means of a three-dimensional approach. The

surface instability of a semi-infinite elastic body (as in contrast to a film with finite thickness) under

surface van der Waals forces has also been studied [8]–[11].

In this research, we investigate three typical cases of practical importance under plane strain

conditions: (1) surface instability of a functionally graded and layered elastic film interacting with

another flat rigid body through van der Waals forces; (2) surface instability of two mutually

attracting functionally graded and layered elastic films due to van der Waals forces; (3) surface

instability of a functionally graded and layered elastic film interacting with another simply-

supported functionally graded and layered elastic plate through van der Waals forces. The shear

modulus in each functionally graded layer is assumed to be exponentially varied in the thickness

direction. It is found that the pseudo-Stroh formalism and the transfer-matrix method, which have

been employed in the investigation of simply-supported multilayered rectangular plates made up

of functionally graded materials (FGMs) [12], can also be conveniently applied to investigate the

surface instability of FGM layered films. The solution for any FGM layer is obtained in terms of

the pseudo-Stroh formalism; then the solution for the multilayered system is derived based on the

transfer-matrix method. As a result the displacement and traction vectors at the top surface of the

layered film (or plate) can be expressed in terms of those at the bottom surface of the layered film

(or plate). Simple relationships between the surface normal traction and surface deflection can thus

be obtained. One advantage of the present approach lies in that it can be employed to address the

instability behavior of multilayered films (or plates) with arbitrary number of layers. Due to the

fact that the focus of this research is on the instability of multilayered films made of homogeneous

materials, then the magnitudes of the gradient parameters are taken to be very small during the

calculations. It shall be mentioned that the pseudo-Stroh formalism for FGM is invalid for

homogeneous material since the homogeneous material belongs to the mathematically degenerate

material in which there are multiple identical eigenvalues and only one independent eigenvector

associated with the identical eigenvalues exists. In Sect. 2, the relationships between the surface
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deflection and surface normal stress are derived for an FGM and layered elastic film and a plate.

Expressions for the interaction coefficient as a function of the wave number of the instability mode

for the three cases are obtained in Sects. 3–5. Detailed numerical results and discussions are

presented in Sect. 6.

2 Surface deflection and surface normal stress relationship for an FGM layered
film and an FGM layered plate

Let us first consider the plane strain deformation of an elastic film with thickness H fixed on a rigid

substrate, as shown in Fig. 1. A Cartesian coordinate system (x1, x2) is established in such a way that

the film-substrate interface is at x2¼ 0, while the top surface of the film is at x2¼H. The elastic film

is composed of N FGM layers, and layer k is bounded by its lower interface (or surface) at x2¼ zk

and upper interface (or surface) at x2¼ zk+1 with its thickness hk¼ zk+1 � zk. The layers are

numbered sequentially starting from the bottom layer, and apparently H ¼
PN

k¼1 hk: Perfect

bonding conditions between two adjacent elastic layers are assumed in this research. The shear

modulus within each FGM layer is exponentially varied along the x2-direction, while Poisson’s ratio

is kept constant within the layer.

In a certain FGM layer, the linear constitutive equations are given by

r11 ¼
2lðx2Þð1� mÞ

1� 2m
e11 þ

2lðx2Þm
1� 2m

e22;

r22 ¼
2lðx2Þm
1� 2m

e11 þ
2lðx2Þð1� mÞ

1� 2m
e22;

r12 ¼ lðx2Þc12;

ð1Þ

where l(x2) and m are shear modulus and Poisson’s ratio, respectively. In this investigation, the shear

modulus l(x2) obeys the following form:

lðx2Þ ¼ l0 expðbx2Þ; ð2Þ

where l0 and b are material constants.

The displacement–strain relations are given by

Fig. 1. An FGM multilayered elastic

film on a rigid substrate
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e11 ¼
ou1

ox1
; e22 ¼

ou2

ox2
; c12 ¼

ou1

ox2
þ ou2

ox1
: ð3Þ

The equilibrium equations are given by

or11

ox1
þ or12

ox2
¼ 0;

or12

ox1
þ or22

ox2
¼ 0:

ð4Þ

Here the displacement vector can take the following form:

U ¼ u1

u2

� �

¼ expðkx2Þ
a1 sinðkx1Þ
a2 cosðkx1Þ

� �

; ð5Þ

where k is the real positive wave number. Substitution of Eq. (5) into Eq. (2), and then the results

into Eq. (1) yields the traction vector as

t ¼ r12

r22

� �

¼ exp ðbþ kÞx2½ � b1 sinðkx1Þ
b2 cosðkx1Þ

� �

: ð6Þ

Now we introduce two 2� 1 vectors a and b,

a ¼ a1 a2½ �T; b ¼ b1 b2½ �T; ð7Þ

then we can find that the vector b is related to a by

b ¼ ðR0 þ kTÞa ¼ � 1

k
Qþ bR0 þ kðRþ bTÞ½ �a; ð8Þ

where R0 ¼�R
T, and the three 2� 2 real matrices T, Q, R are defined by

T ¼ TT ¼ l0

1 0
0

2ð1�mÞ
1�2m

� �

; Q ¼ QT ¼ �k2l0

2ð1�mÞ
1�2m 0

0 1

� �

; R ¼ kl0
0 � 2m

1�2m
1 0

� �

: ð9Þ

Now inserting Eq. (5) into Eq. (2), then into Eq. (1), and finally into the equilibrium equations (4),

we arrive at the following eigenrelations:

Qþ bR0 þ kðRþ R0 þ bTÞ þ k2
T

� �
a ¼ 0: ð10Þ

It can be easily verified that if k is an eigenvalue of Eq. (10), then �b�k is also an eigenvalue

of the eigenequation (10) [12]. Equation (10) can be recast into the following standard

eigenrelations:

N
a

b

� �

¼ k
a

b

� �

; ð11Þ

where

N ¼ �T�1R0 T�1

�Qþ RT�1R0 �RT�1 � bI

� �

: ð12Þ

We assume that the i-th (i¼ 1,2) and (iþ 2)-th eigenvalues of Eq. (11), denoted by ki and ki+2,

satisfy the relation kiþ ki+2¼�b. Also, we distinguish the four eigenvectors of Eq. (11) by attaching

a subscript to a and b. Then the general solution for the displacement and traction vectors (of the

x2-dependent factor) can be concisely expressed as
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U

t

� �

¼ I 0

0 ebx2I

� �
A1 A2

B1 B2

� �

hekax2i K1

K2

� �

; ð13Þ

where K1 and K2 are two 2� 1 constant vectors to be determined, and

A1 ¼ a1 a2½ �; A2 ¼ a3 a4½ �;

B1 ¼ b1 b2½ �; B2 ¼ b3 b4½ �;

hekax2i ¼ diag ek1x2 ek2x2 e�ðbþk1Þx2 e�ðbþk2Þx2

� �
:

ð14Þ

The above formulations (11)–(13) can be termed the pseudo-Stroh formalism which has been

adopted in the study of simply-supported FGM plates [12]. Here, we point out that the so-called

pseudo-Stroh formalism, which is in a sense similar to (but not the same as) the Stroh formalism

[13], [14] for two-dimensional deformations of anisotropic solids, was originally developed to

investigate the simply-supported homogeneously orthotropic plates [15], and was later extended

to address the simply-supported FGM plates [12], [16]. The validity of the simple pseudo-Stroh

formalism is that all the eigenvalues must be distinct [12], [15], [16]. Should repeated roots

occur for mathematically degenerate material such as the homogeneously isotropic material, a

small perturbation technique [17] can still be conveniently employed to make all the eigenvalues

distinct so that the simple and unified solution presented here can still be used.

The eigenvectors of Eq. (11) are actually the right ones. The left eigenvectors of Eq. (11) are

found by solving the following eigenvalue problem:

NTg ¼ sg: ð15Þ

If k and [a, b]T are the eigenvalue and eigenvector of Eq. (11), then s¼�b � k and g ¼ �b; a½ �T

are the corresponding solutions of Eq. (15). Since the left and right eigenvectors are orthogonal to

each other, we then come to the following important orthogonal relationship [12], [15], [16]:

�BT
2 A

T
2

BT
1 �AT

1

" #
A1 A2

B1 B2

" #

¼
I 0

0 I

" #

: ð16Þ

Thus the orthogonal relationship Eq. (16) provides us with a simple way of inverting the eigenvector

matrix, which is required in forming the transfer matrix.

In addition, the four eigenvalues of Eq. (11) can be explicitly given by

k1 ¼ �
b
2
þ k4 þ b2

k2ð1þ mÞ
2ð1� mÞ þ

b4

16

" #1=4

exp
ih
2

� �

; k2 ¼ �k1; k3 ¼ �b� k1; k4 ¼ �b� �k1;

ð17Þ

where

h ¼ tan�1
bk

ffiffiffiffiffiffi
m

1�m

p

k2 þ b2

4

 !

: ð18Þ

It is found that when b¼ 0 for homogeneous material, multiple identical eigenvalues

k1¼ k2¼ k, k3¼ k4¼� k will appear, but there is only one independent eigenvector associated

with k1¼ k2¼ k or k3¼ k4¼�k. Thus the pseudo-Stroh formalism is not directly suitable for

homogeneous material. When addressing homogeneous materials, we can adopt a small

perturbation technique [17] by letting the magnitude of the gradient parameter b of the FGM

film or plate to be very small with the obtained results sufficiently accurate with negligible error.

In other words we can treat the homogeneous film or plate as virtual FGM film or plate with the
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magnitude of the gradient b very small but nonzero so that the pseudo-Stroh formalism presented

here can still be utilized.

For a certain FGM elastic layer k with the lower surface at x2¼ zk (k¼ 1,2, . . ., N), it follows

from Eqs. (13) and (16) that K1 and K2 can be expressed in terms of displacement and traction

vectors at the lower surface x2¼ zk as

K1

K2

" #

¼ he�sazki
�BT

2 AT
2

BT
1 �A

T
1

" #
I 0

0 e�lzkI

" #
U

t

" #

zk

: ð19Þ

Then the displacement and traction vectors at any position within this FGM layer are related to the

displacement and traction vectors at the lower surface x2¼ zk as follows:

U

t

� �

¼ Ekðx2 � zkÞ
U

t

� �

zk

; ð20Þ

where

EkðxÞ ¼
I 0

0 ebðzkþxÞI

" #
A1 A2

B1 B2

" #

hesaxi
�BT

2 AT
2

BT
1 �A

T
1

" #
I 0

0 e�bzkI

" #

; ð21Þ

is the transfer matrix of the FGM layer.

It follows from Eq. (20) that the solution at the upper surface x2¼ zk+1 of layer k is related to that

at the lower surface x2¼ zk of layer k through the following relation:

U

t

� �

zkþ1

¼ EkðhkÞ
U

t

� �

zk

: ð22Þ

Consequently, the solution at the top surface x2¼H of the film can be expressed by that at the

bottom surface x2¼ 0 of the film as

U

t

� �

H

¼ Y
U

t

� �

0

; ð23Þ

where

Y ¼

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44

2

6
6
4

3

7
7
5 ¼ ENðhNÞ � EN�1ðhN�1Þ � . . .� E2ðh2Þ � E1ðh1Þ: ð24Þ

Due to the fact that the film is fixed on the substrate, i.e., u1 (0)¼u2 (0)¼ 0, and that r12 (H)¼ 0,

then we can arrive at the following relationship between the surface deflection u2 (H) and surface

normal stress r22 (H) for a film as

r22ðHÞ
u2ðHÞ

¼ Y33Y44 � Y34Y43

Y24Y33 � Y23Y34
: ð25Þ

The above derivations for an FGM layered elastic film can also be easily extended to the study

of a simply-supported and FGM layered elastic plate, as shown in Fig. 2. The two sides

x1¼ � L/2 are simply-supported, i.e., u2¼r11¼ 0 at x1¼ ± L/2, and the traction-free conditions

r12¼r22¼ 0 are imposed on the bottom surface x2¼ 0. The above derivations from Eqs. (1)–

(24) are still valid by letting k¼ (2n�1)p/L, n¼ 1, 2, 3, ..., so as to satisfy the simply-

supported boundary conditions. The satisfaction of traction-free boundary conditions r12

(0)¼ r22(0)¼ 0 on the bottom surface x2¼ 0 and r12(H)¼ 0 on the top surface x2¼H yields
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the following relationship between the surface deflection u2(H) and surface normal stress r22(H)

for a plate as

r22ðHÞ
u2ðHÞ

¼ Y41Y32 � Y42Y31

Y21Y32 � Y22Y31
: ð26Þ

3 A multilayered elastic film interacting with a flat rigid body

We now consider the surface instability of an N-layered elastic film with total thickness H

interacting with a flat rigid body through surface van der Waals forces, as shown in Fig. 3. When two

flat solid surfaces are brought into contact, van der Waals forces come into play if the gap between

the two surfaces is very small (say, well below 100 nm, [5]). The surface conditions for the

perturbed elastic film can be written as

r22ðHÞ ¼ Au2ðHÞ; ð27Þ

where A(>0) is the van der Waals interaction coefficient. Thus the surface interaction acts like a

linear spring with a negative spring constant [4]. In the above expression, we have ignored the effect

of the surface energy [2], [3].

Then it follows from Eqs. (25) and (27) that

A ¼ Y33Y44 � Y34Y43

Y24Y33 � Y23Y34
: ð28Þ

The critical value of the interaction coefficient A for the surface instability and the associated

surface instability mode can be determined by finding the minimum of A given by Eq. (28) with

respect to the variable k.

4 Two mutually attracting multilayered elastic films

The present formulation can also be easily applied to investigate the surface instability of two

mutually attracting elastic films due to van der Waals forces. As illustrated in Fig. 4, we investigate

an N1-layered elastic film with a total thickness H1 interacting with another N2-layered elastic film

with a total thickness H2 through van der Waals forces. It follows from Eq. (25) that the relationship

Traction-free surface
Fig. 2. A simply-supported and FGM

multilayered elastic plate
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between the (upward) surface deflection u2(H1) and surface normal stress r22(H1) for the lower

elastic film of thickness H1 can be written as

r22ðH1Þ
u2ðH1Þ

¼ Y33Y44 � Y34Y43

Y24Y33 � Y23Y34
; ð29Þ

while the relationship between the (downward) surface deflection ~u2ðH2Þ and surface normal stress

~r22ðH2Þ for the upper elastic film of thickness H2 can be written as

~r22ðH2Þ
~u2ðH2Þ

¼
~Y33

~Y44 � ~Y34
~Y43

~Y24
~Y33 � ~Y23

~Y34

; ð30Þ

where ‘�’ is added to the components to indicate that these components belong to the upper elastic

film.

Meanwhile, the surface conditions for the two perturbed elastic films are given by

r22ðH1Þ ¼ ~r22ðH2Þ ¼ A u2ðH1Þ þ ~u2ðH2Þ½ �; ð31Þ

where A(>0) is again the van der Waals interaction coefficient.

Then it follows from Eqs. (29)–(31) that

A ¼ 1

Y24Y33�Y23Y34

Y33Y44�Y34Y43
þ ~Y24

~Y33�~Y23
~Y34

~Y33
~Y44�~Y34

~Y43

: ð32Þ

The critical value of the interaction coefficient A for the surface instability and the associated surface

instability mode can be determined by finding the minimum of A given by Eq. (32) with respect to

the variable k.

5 A multilayered elastic film interacting with a multilayered elastic plate

As illustrated in Fig. 5, we investigate an N1-layered elastic film with a total thickness H1 interacting

with another simply-supported and N2-layered elastic plate with a total thickness H2 and length L

through van der Waals forces. It follows from Eq. (25) that the relationship between the (upward)

surface deflection u2(H1) and surface normal stress r22(H1) for the lower elastic film of thickness H1

can be written as

Fig. 3. Surface instability of an FGM

multilayered elastic film interacting with

a rigid body
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r22ðH1Þ
u2ðH1Þ

¼ Y33Y44 � Y34Y43

Y24Y33 � Y23Y34
; ð33Þ

while it follows from Eq. (26) that the relationship between the (downward) surface deflection

~u2ðH2Þ and surface normal stress ~r22ðH2Þ for the upper simply-supported elastic plate of thickness

H2 can be written as

~r22ðH2Þ
~u2ðH2Þ

¼
~Y41

~Y32 � ~Y42
~Y31

~Y21
~Y32 � ~Y22

~Y31

; ð34Þ

where ‘�’ is added to the components to indicate that these components belong to the upper elastic

plate.

Meanwhile, the surface conditions for the perturbed film-plate system are given by

r22ðH1Þ ¼ ~r22ðH2Þ ¼ A u2ðH1Þ þ ~u2ðH2Þ½ �; ð35Þ

where A(>0) is again the van der Waals interaction coefficient.

Then it follows from Eqs. (33)–(35) that

A ¼ 1

Y24Y33�Y23Y34

Y33Y44�Y34Y43
þ ~Y21

~Y32�~Y22
~Y31

~Y41
~Y32�~Y42

~Y31

: ð36Þ

The critical value of the interaction coefficient A for the surface instability and the associated surface

instability mode can be determined by finding the minimum of A given by Eq. (36) with respect to

the variable k under the constraint k¼ (2n � 1)p/L, n¼ 1, 2, 3, . . .. In particular, the admissible

values of k are bounded from below by the condition

k ¼ ð2n� 1Þp=L� p=L: ð37Þ

Fig. 4. Surface instability of two

mutually attracting FGM multilayered

elastic films
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6 Results and discussions

Due to the fact that the main goal of this research is not on the influence of the gradient parameter

on the surface instability of the film (or the plate), then in the following calculations we only

consider the case in which each layer of the film (or the plate) is homogeneous by letting the

magnitude of the gradient parameter b be small enough. It is observed that all the results presented

by Shenoy and Sharma [2], [3] for a single-layer elastic film interacting with a rigid body can be

exactly recovered by using the present approach. Consequently, the correctness of the present

approach is verified.

6.1 A multilayered elastic film interacting with another flat rigid body

We examine the surface instability of a multilayered elastic film interacting with another flat rigid

body through van der Waals forces. The critical value of the interaction coefficient A for the

surface instability is given by the minimum of Eq. (28). One main discovery of this investigation is

that it is possible to find N local minima of Eq. (28), modes for an N-layered elastic film

interacting with another flat rigid body. For example, for a three-layered film, if we choose

m1¼ m2¼ m3¼ 0.5, l1:l2:l3¼ 1:0.1:0.01 and h1 :h2 :h3¼ 1:0.1:0.01, then there exist three local

minima of Eq. (28) at h1 k¼ 2.03, 16.47, 173 as shown in Fig. 6. Another example is for a four-

layered film. If we choose m1¼ m2¼ m3¼ m4¼ 0.3, l1:l2:l3:l4¼ 1:0.004:0.0042:0.0043 and

h1:h2:h3:h4¼ 1:1/9:1/81:1/729, then there exist four local minima of Eq. (28) at h1k¼ 1.52,

11.32, 78.6, 489 as shown in Fig. 7. In the following, we will discuss in more detail a three-

layered film and a four-layered film interacting with a flat rigid body.

Fig. 5. Surface instability of an FGM

multilayered film interacting with an-

other simply-supported FGM layered

elastic plate
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a. A three-layered elastic film interacting with a flat rigid body

We first consider the case in which the three layers are incompressible materials (m1¼ m2¼ m3¼ 0.5).

All local minima of A as a function of h1k are determined. In Figs. 8–12, the dimensionless

wavelength 2p/[k(h1þh2þh3)] and the dimensionless interaction coefficients A(h1/l1þh2/

l2þh3/l3), Ah1/l1, Ah2/l2, Ah3/l3 at all local minima are plotted as a function of the shear

modulus ratio l2/l1¼l3/l2. It is observed that:

• When l1¼ l2¼l3, the wavelength 2p/[k(h1þh2þh3)] is 2.96 and the interaction coeffi-

cient A(h1/l1þh2/l2þh3/l3) is 6.22 no matter what the thickness ratio h2/h1¼h3/h2 is.

This result is in agreement with the fact that the elastic properties of the three layers are

identical when l1¼l2¼l3, and then they can be treated as a single layer with thickness

h¼h1þh2þh3.

• When l2/l1¼l3/l2 � 0.045 and h2/h1¼h3/h2 � 0.1, Ah3/l3 is very close to 6.22 (see

Fig. 10), the critical value of the top elastic layer when the middle layer is treated as a rigid

substrate. Meanwhile, 2p/[k(h1þh2þh3) ] is about 0.0267, 0.228, 0.9879, 2.0518, 2.6701,

for the thickness ratio h2/h1¼h3/h2¼ 0.1, 1/3, 1, 3, 10, all of which corresponding to

kh3¼ 2.12, the wave number of the top layer when the middle layer is treated as a rigid

substrate. This phenomenon is in agreement with the observation by Yoon et al. [6] for a

bilayer elastic film.

• Three distinct surface instability modes exist for the three-layered elastic film when h2/h1¼h3/

h2¼ 0.1 and 0.054 � l2/l1¼ l3/l2 � 0.15. More specifically, for h2/h1¼h3/h2¼ 0.1, the

long-wave mode exists when l2/l1¼l3/l2 � 0.054; the medium-wave mode exists when

0.045 � l2/l1¼ l3 /l2 � 0.17; the short-wave mode exists when l2/l1¼ l3/l2 � 0.15. Ru

[4] and Yoon et al. [6] have observed that double modes exist for two mutually attracting

single-layer elastic films or for a bilayer elastic film interacting with a rigid body. Thus the

present observation can be considered as an extension of the results of Ru [4] and Yoon et al.

[6] to the more general multilayer case.

Next, we present the corresponding results in Figs. 13–17 for three compressible elastic layers

with equal Poisson’s ration m1¼ m2¼ m3¼ 0.35. The following can be observed:
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• When l2/l1¼ l3/l2 � 0.0065 and h2/h1¼h3/h2 � 0.1, Ah3/l3 is very close to 3.94

(see Fig. 15), the critical value of the top elastic layer when the middle layer is treated as a rigid

substrate.

• It is found from Fig. 17 that Ah1/l1 is very close to 3.94, the critical value of the bottom elastic layer

alone in the absence of the upper two elastic layers, when 0.1 � h2/h1¼h3/h2 � 10 and the shear

modulus ratio l2/l1¼ l3/l2 is between 100 and 1,000. In other words, even though the upper two

elastic layers are much stiffer than the bottom elastic layer, they can barely increase the strength of

the bottom elastic layer against the surface instability.

• Three distinct surface instability modes exist for the three-layered elastic film when h2/h1¼h3/

h2¼ 0.1 and 0.0065 � l2/l1¼l3/l2 � 0.021. More specifically, for h2/h1¼h3/h2¼ 0.1, the

long-wave mode exists when l2/l1¼ l3/l2 � 0.0065; the medium-wave mode exists when

0.0045 � l2/l1¼ l3/l2 � 0.024; the short-wave mode exists when l2/l1¼ l3/l2 � 0.021. This

is similar to the incompressible case. In fact if h2/h1¼h3/h2¼ 0.1, l2/l1¼l3 /l2 and

m1¼ m2¼ m3¼ m, our calculations show that it is possible to find triple modes when the Poisson’s

ratio satisfies the condition 0.283 � m � 0.5.
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b. A four-layered elastic film interacting with a flat rigid body

Here, we consider the case in which the four layers are compressible with equal Poisson’s ration

m1¼ m2¼ m3¼ m4¼ 0.3. All local minima of A as a function of h1k are determined. In Figs. 18 and 19,

the dimensionless wavelength 2p/[k(h1þh2þh3þh4)] and the dimensionless interaction coeffi-

cient A(h1/l1þh2/l2þh3/l3þh4/l4) at all local minima are plotted as a function of the shear

modulus ratio l2/l1¼l3/l2¼l4/l3 for h1:h2:h3:h4¼ 1:1/9:1/81:1/729. In this situation four distinct

instability modes can exist. The long-wave mode with the dimensionless wavelength

2p/[k(h1þh2þh3þh4)] greater than 2.9169 exists when l2/l1¼ l3/l2¼l4/l3 � 0.00371;

the short-wave mode with the wavelength smaller than 0.012 exists when l2/l1¼l3/l2¼
l4/l3 � 0.00409; two different intermediate-wave modes with wavelengths between 0.3244 and

0.9098 and between 0.0346 and 0.1051 exist when 0.00319 � l2/l1¼l3/l2¼l4/l3 � 0.00781 and

0.00179 � l2/l1¼l3/l2¼ l4/l3 � 0.00678.

6.2 Two mutually attracting multilayered elastic films

Here, we examine the surface instability of two mutually attracting multilayered elastic films due to

van der Waals forces. The critical value of the interaction coefficient A for the surface instability is
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given by the minimum of Eq. (32). We first compare our results with those obtained by Ru [4]; then

we present a numerical example for a bilayer elastic film interacting with another single-layer elastic

film.

a. Comparison of our results with those of Ru [4]

Due to the fact that our analysis is based on exact elasticity theory for plane strain deformation of the

elastic film, while that of Ru [4] is based on an approximate method which reduces a two-

dimensional problem of an elastic film to a one-dimensional surface problem, then it is of interest to

compare our results with those of Ru [4]. Here we consider the surface instability of two attracting

single-layer elastic films due to van der Waals forces. The lower film of thickness h1 has elastic

constants l1 and m1, while the upper elastic film of thickness h2 has elastic constants l2 and m2. We

use the definitions a¼h2/h1 and b¼ (h2/E2)/(h1/E1), where E is the Young’s modulus, introduced

by Ru [4], Table 1 presents the local minima of Ah1/E1 given by Eq. (32) and the corresponding

wavenumbers for varying thickness ratio a (b¼ 1 and m1¼ m2¼ 0.5, and the asterisk indicates the

coexistence of two distinct metastable modes; the values in parentheses are those obtained by Ru

[4]). The relative errors between our (exact) results and Ru’s approximate results are also given. It is

found that the accuracy of Ru’s results for Ah1/E1 is satisfactory with the relative errors less than
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6%; while the relative errors for (kh1)2 are considerably large, with the largest relative error at

43.8%. Table 2 gives the local minima of Ah1/E1 from Eq. (32) when m1¼ m2¼ 0.5 (for example,

‘‘2.0733 at 4.4944’’ means that the value of Ah1/E1 is 2.0733 which is attained at (kh1)2¼ 4.4944;

the values in parentheses are those obtained by Ru [4]). One major difference between ours and those

of Ru [4] is that our result shows that only one instability mode is found when a¼ b¼ 100, while

there are two instability modes calculated by Ru [4] for a¼ b¼ 100.

b. A bilayer elastic film attracting another single-layer elastic film

Another main discovery of this investigation is that it is possible to find at most N1þN2 local minima

of metastable instability modes from Eq. (31) for an N1-layered elastic film interacting with another

N2-layered elastic film. For example, we consider here a lower bilayer elastic film in which the bottom

layer has thickness h1 and elastic constants l1, m1, and the top layer has thickness h2 and elastic

constants l2, m2 attracting another upper single-layer elastic film with the thickness h3 and elastic

constants l3, m3. If we choose m1¼ m2¼ m3¼ 0.5, l1:l2:l3¼ 1:0.1:10 and h1:h2:h3¼ 1:0.1:10, then

there exist three local minima in Eq. (32) at h1 k¼ 0.2679, 1.7074, 16.9543 as shown in Fig. 20.
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When the upper film is assumed to be a rigid body, then there exist only two instability modes at h1

k¼ 1.9953, 17.3682 as observed by Yoon et al. [6].

6.3 A multilayered elastic film interacting with simply-supported and multilayered elastic

plate

We have also recovered the results of Ru [5] for two attracting single-layer elastic films (for

example, Figs. 2, 3, 4, 5 in Ru [5]). Here we examine the surface instability of a multilayered

elastic film interacting with a simply-supported and multilayered elastic plate through van der

Waals forces. The critical value of the interaction coefficient A for the surface instability is given

by the minimum of Eq. (36). As an example, we investigate a lower bilayer elastic film in which

the bottom layer has thickness h1 and elastic constants l1, m1, and the top layer has thickness h2

and elastic constants l2, m2 interacting with another upper simply-supported and single-layer elastic

plate with thickness h3, length L and elastic constants l3, m3. We choose h2/h1¼ 0.1, m1¼ m2¼ 0.5

and l2/l1¼ 0.1 for the bilayer elastic film. Apparently, there are two instability modes when the

bilayer elastic film interacts with a rigid body through van der Waals forces. We further choose

m3¼ 0.5, and assume that the plate is stiffer than both layers of the elastic film. In addition, we

introduce the dimensionless parameters a¼h3/h1 and b¼ (h3/l3) (h1/l1). We plot in Figs. 21, 22

triple modes for

0.0065
101

100

3.94

10�1

10�2

10�3

10�3 10�2 10�1 100 101 102 103

0.021

h2/h1=h3/h2=0.1

2 
/  1 3 

/   2=

A
h 3/

3

Fig. 15. Dimensionless interaction

coefficient Ah3/l3 for a three-layered

elastic film as a function

of l2/l1¼ l3/l2 for various thickness

values h2/h1¼h3/h2 with Poisson’s

ratios m1¼ m2¼ m3¼ 0.35 (open triangles:

h2/h1¼h3/h2¼ 0.1; open squares:

h2/h1¼h3/h2¼ 1/3; asterisks:

h2/h1¼h3/h2¼ 1; open diamonds:

h2/h1¼h3/h2¼ 3; open circles:

h2/h1¼h3/h2¼ 10)

triple modes for
h2/h1=h3/h2=0.1

A
h 2/

2

0.0065
101

100

10�1

10�2

10�3

10�3 10�2 10�1 100 101 102 103

0.021

2 
/  1 3 

/   2=

Fig. 16. Dimensionless interaction coef-

ficient Ah2/l2 for a three-layered elastic

film as a function of l2/l1¼ l3/l2 for

various thickness values h2/h1¼h3/h2

with Poisson’s ratios m1¼ m2¼ m3¼ 0.35

(open triangles: h2/h1¼h3/h2¼ 0.1;

open squares: h2/h1¼h3/h2¼ 1/3;

asterisks: h2/h1¼h3/h2¼ 1; open

diamonds: h2/h1¼h3/h2¼ 3; open

circles: h2/h1¼h3/h2¼ 10)

80 X. Wang et al.



and 23 the sixth root of Eq. (36) as a function of (kh1)1/3 for three typical cases a¼ 0.05, a¼ 0.5

and a¼ 10. It is noted that a¼ 0.05 represents the case in which the plate is thinner than each

layer of the bilayer film. It is observed from Fig. 21 that, for a¼ 0.05, Eq. (36) has two internal

local minima for the smaller values b¼ 10�12, 10�10, 10�8; one internal local minimum
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corresponding to the mode of the bottom layer of the film disappears and the other one

corresponding to the mode of the top layer of the film remains for the intermediate values

b¼ 10�6, 10�4; both the two internal local minima will disappear for the larger value b¼ 10�2.

The second case a¼ 0.5 represents the one in which the plate is thinner than the bottom layer of

the film but thicker than the top layer of the film. It is observed from Fig. 22 that, for a¼ 0.5, Eq.

(36) has two internal local minima for the smaller values b¼ 10�7, 10�6, 10�5, 10�4, 10�3; while

one internal local minimum corresponding to the mode of the bottom layer of the film will

disappear and the other one corresponding to the mode of the top layer of the film still remains for

the larger values b¼ 10�2, 10�1. Finally, the third case a¼ 10 represents the one in which the

plate is thicker than the total thickness of the film. It is observed from Fig. 23 that, for a¼ 10, Eq.

(36) always has two internal local minima. In Figs. 21, 22 and 23, when there exist two internal

local minimum, the critical value and the instability mode of the film-plate are determined by the

smallest of the two internal local minima and the value of Eq. (36) at the admissible lower bound

of Eq. (37). When the length L of the plate is sufficiently short, the lower bound of Eq. (37) is so

large that the smaller value of the two internal local minima is lower than the value of Eq. (36) at

the lower bound. Thus the film-plate system exhibits the instability mode of the film (more

Table 2. The local minima of Ah1/E1 given by Eq. (32) when m1¼ m2¼ 0.5 (for example, ‘‘2.0733 at

4.4944’’ means that the value of Ah1/E1 is 2.0733 which is attained at (kh1)2¼ 4.4944)

a¼ 8 a¼ 10 a=100 a¼ 1,000

b¼ 0.01 2.0733 at 4.4902 and

167.7768 at 6.8121 · 10�4

(2.05 at 4.8 and 184 at 0.001)

2.0733 at 4.4944 and 184.35 at

4.5029 · 10�6 (2.06 at 4.8 and

206 at 0.0000048)

b¼ 0.1 2.0372 at

4.3597

(2.04 at

4.5)

2.0435 at

4.3848

(2.05 at

4.5)

2.0706 at 4.4732 and 20.3021 at

4.6225 · 10�4 (2.06 at 4.8 and

20.5 at 0.0005)

2.0733 at 4.4944 and 20.4894 at

4.4910 · 10�6 (2.06 at 4.8 and

20.6 at 0.000005)

b¼ 10 0.2055 at

0.0727

(0.20 at

0.08)

0.2056 at

0.0461

(0.205 at

0.05)

0.2074 at 4.4944 · 10�4 and

1.7922 at 3.3489 (0.206 at

0.00048 and 2.05 at 4.7)

0.2074 at 4.4893 · 10�6 and

2.0733 at 4.4944 (0.21 at

0.000005 and 2.063 at 4.8)

b=100 0.0207 at 4.4944 · 10�4

(0.0206 at 0.00048 and 1.88 at

2.8)

0.0207 at 4.4893 · 10�6 and

2.0733 at 4.4944 (0.021 at

0.000005 and 2.06 at 4.75)

The values in parentheses are those obtained by Ru [4]

h1k

h1,   1,v1

Rigid Substrate

Rigid Substrate

h 1A
/
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4
5 10 15 20 25 30

h2,   2,v2

h3,   3,v3

Fig. 20. The interaction coefficient

Ah1/l1 in solid lines for a bilayer elastic

film interacting with another single-layer

elastic film (m1¼ m2¼ m3¼ 0.5,

l1:l2:l3¼ 1:0.1:10 and

h1:h2:h3¼ 1:0.1:10) which, as a

function h1 k, has three local minima

(the dashed line is the result when the

upper single-layer elastic film is treated

as a rigid body)
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specifically, the instability mode of the bottom layer of the film). On the other hand, if the plate is

sufficiently long, the lower bound of Eq. (36) is so small that the smaller value of the two internal

local minima is still higher than the value of Eq. (36) at the lower bound. In this case the film-plate

system exhibits the instability mode of the simply-supported plate. In Figs. 21 and 22, when there

(A
h 1

/  
 1

)1/
6

(h1/k)1/3   

2

1.5

1

0.5

0
0 1 2 3 4 5 6

Fig. 21. The interaction coefficient

determined by Eq. (36) for a thin plate

with a¼ 0.05 which shows the depen-

dency on b of the existence of the

internal local minima of Eq. (36)
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)1/
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Fig. 22. The interaction coefficient

determined by Eq. (36) for a plate of

intermediate thickness with a¼ 0.5

which shows the dependency on b of the

existence of the internal local minima of

Eq. (36)
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Fig. 23. The interaction coefficient

determined by Eq. (36) for a thick plate

with a¼ 10 which indicates the existence

of two internal local minima of Eq. (36)
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exists only one internal local minimum, the critical value and the instability mode of the film-plate

are determined by the minor of the internal local minimum and the value of Eq. (36) at the

admissible lower bound of Eq. (37). When the length L of the plate is sufficiently short, the lower

bound of Eq. (37) is so large that the internal local minimum is lower than the value of Eq. (36) at

the lower bound. Thus the film-plate system exhibits the instability mode of the top layer of the

film. On the other hand, if the plate is sufficiently long, the lower bound of Eq. (37) is so small

that the internal local minimum is still higher than the value of Eq. (36) at the lower bound. In this

case the film-plate system exhibits the instability mode of the simply-supported plate. In Fig. 21,

when there is no internal local minimum, the film-plate system always exhibits the instability mode

of the thin plate, and the two instability modes of the bilayer elastic film will play no role.

7 Conclusions

The pseudo-Stroh formalism and the transfer matrix method are employed here to address three

typical kinds of surface instability problems: (1) surface instability of a functionally graded and

layered elastic film interacting with another flat rigid body through van der Waals forces; (2) surface

instability of two mutually attracting functionally graded and layered elastic films due to van der

Waals forces; (3) surface instability of a functionally graded and layered elastic film interacting with

another simply-supported functionally graded and layered elastic plate through van der Waals forces.

The main results of this research are:

1. It is possible to find N distinct surface instability modes for an N-layered elastic film interacting

with another flat rigid body.

2. It is also possible to find at most N1þN2 distinct surface instability modes for an N1-layered

elastic film interacting with another N2-layered elastic film.

3. When a multilayered elastic film interacts with a simply-supported multilayered elastic plate, the

film-plate system will exhibit the instability mode of the film or that of the plate depending on

the stability strength of the plate versus that of the film.

This research can be considered as an extension of the results in [4]–[6] to the instability of the

more general multilayered films or plates, where we adopt a different approach, which is exact

in nature, than that in [4]–[6]. Finally, the present formulations can also be easily extended to

the case in which each elastic layer is orthotropic [12], and the instability is of three-

dimensional nature [7].
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