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The Green’s function method is employed to derive closed-form solutions for displacement, strains, and stresses due to
a rectangular inclusion with uniform antiplane eigenstrains in an orthotropic quarter plane and in a bimaterial composed
of two orthotropic quarter planes bonded together. It is observed that both the strains and stresses exhibit logarithmic
singularity near the four vertices of the rectangular inclusion. Numerical results are also presented to show the distribution
of the eigenstrain-induced displacement and stress fields in the quarter planes.
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1 Introduction

Polygonal or facetted Eshelby’s inclusions with uniform eigenstrains will induce singular stresses and strains near some
sharp corners and edges of these inclusions [1–4]. Here the inclusion and the surrounding matrix possess the same elastic
constants. The solutions of facetted inclusions in an infinite medium have been extended to the case of these kinds of
inclusions in a half-space. Chiu [5] first discussed a parallelepipedic inclusion in a half-space. The elastic fields were
obtained in terms of Legendre polynomials [5]. Hu [6] obtained an analytical solution in terms of elementary functions
for the stress fields outside a thermal parallelepipedic inclusion embedded in a half-space. Glas [7] derived closed-form
expressions in terms of elementary functions for the displacements, strains, stresses, and strain energy induced by a thermal
parallelepipedic inclusion in a half-space. Hu [6] and Glas [7] also obtained the elastic field due to a rectangular inclusion
of infinite length oriented parallel to the free surface. Recently the anisotropic and piezoelectric properties of the facetted
inclusions and the surrounding matrix were also taken into consideration to simulate and predict the behavior of strained
quantum wire semiconductor structures [4, 8, 9]. We remark that all the listed results are constrained to the case where
the parallelepipedic inclusion interacts with only one boundary or interface. The polygonal inclusion problem in a domain
bounded by more than one boundary has not been solved so far.

By virtue of the image method, Ting [10] recently derived the Green’s functions due to an antiplane force and a screw
dislocation in a quarter plane and a bimaterial consisting of two quarter planes that are bonded together. His result shows
that the number of images is finite for an orthotropic quarter plane and for two bonded orthotropic quarter planes under
antiplane deformations. This property of the Green’s functions for a quarter plane makes it possible to investigate the elastic
field induced by a rectangular inclusion of uniform antiplane eigenstrains which is embedded in an orthotropic quarter plane
and in two bonded orthotropic quarter planes.

In this paper, Ting’s Green’s function solutions [10] for an orthotropic quarter plane and a bimaterial consisting of two
orthotropic quarter planes are utilized to derive the elastic fields (i.e., the displacement, strains, and stresses) induced by a
rectangular inclusion with uniform antiplane eigenstrains embedded in an orthotropic quarter plane and in a bimaterial com-
posed of two orthotropic quarter planes bonded together. Since the expressions for the displacement, strains, and stresses
involve only elementary functions, the main features of the induced elastic fields, such as the singularity, discontinuity, etc,
are clearly shown from these expressions, as further demonstrated also by typical numerical examples.
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2 Basic formulations

In a fixed Cartesian coordinate system, the stress-strain relation for an antiplane deformation of an orthotropic material with
eigenstrains is

σ31 = C55(u,1 − 2ε∗31), σ32 = C44(u,2 − 2ε∗32), (1)

where the subscript “, i” denotes the derivative with respect to the i-th coordinate xi (i = 1, 2), u = u3 the total out-of-
plane displacement, σ32 and σ31 the stress components, C44 and C55 the elastic constants, and ε∗31 and ε∗32 are the uniform
antiplane eigenstrains within the rectangular inclusion Ω. These eigenstrains are zero outside the inclusion domain. The
equation of equilibrium is

σ31,1 + σ32,2 = 0 (2)

or equivalently

C55u,11 + C44u,22 = 2C55ε
∗
31,1 + 2C44ε

∗
32,2. (3)

According to Mura [2], the displacement field can be expressed in terms of integration along the boundary of the
inclusion, as

u = 2C55ε
∗
31

∫
∂Ω

G(x,x′)n1dl + 2C44ε
∗
32

∫
∂Ω

G(x,x′)n2dl, (4)

where ∂Ω is the boundary of the inclusion Ω, and the integration is with respect to the source point x′ of the Green’s
function G(x,x′). The above expression indicates that once the Green’s function is known, the induced displacement can
be found by simply carrying out the line integral in Eq. (4). Making use of Ting’s recent results [10], we present the exact
closed-form solution due to a rectangular inclusion for the displacement, and strain and stress fields in the next sections.

3 A rectangular inclusion in a quarter plane

Let the material occupy the quarter plane x1 ≥ 0 and x2 ≥ 0, as shown in Fig. 1. In addition the rectangular inclusion
occupies the region Ω : a1 ≤ x1 ≤ a2 and b1 ≤ x2 ≤ b2 (a1, a2 ≥ 0, b1, b2 ≥ 0). Recently Ting [10] has obtained
explicit expressions of the Green’s function for an orthotropic quarter plane. In his solutions, four boundary conditions on
the surfaces x1 = 0 and x2 = 0 are considered: 1) Free-free (x1 = 0 and x2 = 0 are traction free); 2) Fixed-fixed (x1 = 0
and x2 = 0 are fixed); 3) Free-fixed (x1 = 0 is traction free and x2 = 0 is fixed); 4) Fixed-free (x1 = 0 is fixed and x2 = 0
is traction free). It is found that the line integrals in Eq. (4) can be explicitly performed by employing the Green’s functions
for a quarter plane [10]. In the following we present the total displacement, total strains, and elastic stresses for the four
boundary conditions.

x1

x2

Rectangular Inclusion 

),( *
32

*
31

Orthotropic Quarter Plane 
(C44, C55)

a1 a2

b1

b2

Fig. 1 A rectangular inclusion with uniform antiplane eigenstrains ε∗31 and
ε∗32 embedded in an orthotropic quarter plane.
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3.1 Free-free quarter plane

The explicit expression of the total displacement is given by

u =
ε∗31
π

[f(a1, a2, b1, b2) − f(a1, a2,−b1,−b2) − f(−a1,−a2,−b1,−b2) + f(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g(a1, a2, b1, b2) + g(a1, a2,−b1,−b2) − g(−a1,−a2,−b1,−b2) − g(−a1,−a2, b1, b2)] ,
(5)

where γ =
√

C55/C44 and

f(a1, a2, b1, b2) =
∑

i

∑
j

(−1)i+j

(
ȳj ln

√
x̄2

i + ȳ2
j + x̄i tan−1 ȳj

x̄i

)
,

g(a1, a2, b1, b2) =
∑

i

∑
j

(−1)i+j

(
x̄i ln

√
x̄2

i + ȳ2
j + ȳj tan−1 x̄i

ȳj

)
,

(6)

with i, j = 1, 2, and

x̄1 = x1 − a1, x̄2 = x1 − a2, ȳ1 = γ(x2 − b1), ȳ2 = γ(x2 − b2). (7)

If we define the following four rectangular regions A, B, C, D as

A : a1 ≤ x1 ≤ a2, b1 ≤ x2 ≤ b2

B : a1 ≤ x1 ≤ a2, − b2 ≤ x2 ≤ −b1,

C : − a2 ≤ x1 ≤ −a1, − b2 ≤ x2 ≤ −b1,

D : − a2 ≤ x1 ≤ −a1, b1 ≤ x2 ≤ b2,

(8)

then Eq. (5) indicates that the induced total displacement can be considered as the superposition of four rectangular in-
clusions (region A with eigenstrains ε∗31 and ε∗32, image region B with eigenstrains ε∗31 and −ε∗32, image region C with
eigenstrains −ε∗31 and −ε∗32, and image region D with eigenstrains −ε∗31 and ε∗32) in an infinite orthotropic plane.

The explicit expressions of the total strains are obtained by taking the derivative of the induced displacement, which are
given by

γ31 =
ε∗31
π

[f1(a1, a2, b1, b2) − f1(a1, a2,−b1,−b2) − f1(−a1,−a2,−b1,−b2) + f1(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g1(a1, a2, b1, b2) + g1(a1, a2,−b1,−b2) − g1(−a1,−a2,−b1,−b2) − g1(−a1,−a2, b1, b2)] ,

(9)

γ32 =
ε∗31
π

[f2(a1, a2, b1, b2) − f2(a1, a2,−b1,−b2) − f2(−a1,−a2,−b1,−b2) + f2(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g2(a1, a2, b1, b2) + g2(a1, a2,−b1,−b2) − g2(−a1,−a2,−b1,−b2) − g2(−a1,−a2, b1, b2)] ,

(10)

where γ31 = u,1, γ32 = u,2 and

f1(a1, a2, b1, b2) =
∑

i

∑
j

(−1)i+j tan−1 ȳj

x̄i
, f2(a1, a2, b1, b2) = γ

∑
i

∑
j

(−1)i+j ln
√

x̄2
i + ȳ2

j ,

g1(a1, a2, b1, b2) =
∑

i

∑
j

(−1)i+j ln
√

x̄2
i + ȳ2

j , g2(a1, a2, b1, b2) = γ
∑

i

∑
j

(−1)i+j tan−1 x̄i

ȳj
.

(11)

Consequently, the stress components can be obtained from Eq. (1) with the strains given in Eqs. (9) and (10). Based on
the solutions of the strain and stress, one can immediately observe the following interesting features: 1) on the interfaces
x1 = a1 and x1 = a2, the strain and stress components γ32 and σ31 are continuous, whilst the other strain and stress
components γ31 and σ32 are discontinuous; additionally γ inclusion

31 −γmatrix
31 = 2ε∗31 and σinclusion

32 −σmatrix
32 = −2C44ε

∗
32; 2) on
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the interfaces x2 = b1 and x2 = b2, the strain and stress components γ31 and σ32 are continuous, whilst the other strain and
stress components γ32 and σ31 are discontinuous; additionally γ inclusion

32 −γmatrix
32 = 2ε∗32 and σinclusion

31 −σmatrix
31 = −2C55ε

∗
31;

3) γ31 and σ31 exhibit logarithmic singularities near the four corners of the rectangular inclusion when ε∗32 �= 0, whilst γ32

and σ32 exhibit logarithmic singularities near the four corners of the rectangular inclusion when ε∗31 �= 0; 4) the second-
order antiplane Eshelby’s tensor S, which is defined as γ3i = 2Sijε

∗
3j , is non-uniform inside the rectangular inclusion. It

shall be mentioned that these properties along the inclusion-matrix interfaces and at the corners are independent of the type
of the boundary conditions along the two boundaries of the quarter plane.

3.2 Fixed-fixed quarter plane

The explicit expression of the total displacement is given by

u =
ε∗31
π

[f(a1, a2, b1, b2) + f(a1, a2,−b1,−b2) − f(−a1,−a2,−b1,−b2) − f(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g(a1, a2, b1, b2) − g(a1, a2,−b1,−b2) − g(−a1,−a2,−b1,−b2) + g(−a1,−a2, b1, b2)] .
(12)

The above expression indicates that the induced total displacement can be considered as the superposition of four rect-
angular inclusions (region A with eigenstrains ε∗31 and ε∗32, image region B with eigenstrains −ε∗31 and ε∗32, image region
C with eigenstrains −ε∗31 and −ε∗32, and image region D with eigenstrains ε∗31 and −ε∗32) in an infinite plane.

Similarly, the explicit expressions of the total strains are given by

γ31 =
ε∗31
π

[f1(a1, a2, b1, b2) + f1(a1, a2,−b1,−b2) − f1(−a1,−a2,−b1,−b2) − f1(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g1(a1, a2, b1, b2) − g1(a1, a2,−b1,−b2) − g1(−a1,−a2,−b1,−b2) + g1(−a1,−a2, b1, b2)] ,

(13)

γ32 =
ε∗31
π

[f2(a1, a2, b1, b2) + f2(a1, a2,−b1,−b2) − f2(−a1,−a2,−b1,−b2) − f2(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g2(a1, a2, b1, b2) − g2(a1, a2,−b1,−b2) − g2(−a1,−a2,−b1,−b2) + g2(−a1,−a2, b1, b2)] .

(14)

3.3 Free-fixed quarter plane

The explicit expression of the total displacement is given by

u =
ε∗31
π

[f(a1, a2, b1, b2) + f(a1, a2,−b1,−b2) + f(−a1,−a2,−b1,−b2) + f(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g(a1, a2, b1, b2) − g(a1, a2,−b1,−b2) + g(−a1,−a2,−b1,−b2) − g(−a1,−a2, b1, b2)] .
(15)

The above expression indicates that the induced total displacement can be considered as the superposition of four rect-
angular inclusions (region A with eigenstrains ε∗31 and ε∗32, image region B with eigenstrains −ε∗31 and ε∗32, image region
C with eigenstrains ε∗31 and ε∗32, and image region D with eigenstrains −ε∗31 and ε∗32) in an infinite plane.

The explicit expressions of the total strains are given by

γ31 =
ε∗31
π

[f1(a1, a2, b1, b2) + f1(a1, a2,−b1,−b2) + f1(−a1,−a2,−b1,−b2) + f1(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g1(a1, a2, b1, b2) − g1(a1, a2,−b1,−b2) + g1(−a1,−a2,−b1,−b2) − g1(−a1,−a2, b1, b2)] ,

(16)

γ32 =
ε∗31
π

[f2(a1, a2, b1, b2) + f2(a1, a2,−b1,−b2) + f2(−a1,−a2,−b1,−b2) + f2(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g2(a1, a2, b1, b2) − g2(a1, a2,−b1,−b2) + g2(−a1,−a2,−b1,−b2) − g2(−a1,−a2, b1, b2)] .

(17)

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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3.4 Fixed-free quarter plane

The explicit expression of the total displacement is given by

u =
ε∗31
π

[f(a1, a2, b1, b2) − f(a1, a2,−b1,−b2) + f(−a1,−a2,−b1,−b2) − f(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g(a1, a2, b1, b2) + g(a1, a2,−b1,−b2) + g(−a1,−a2,−b1,−b2) + g(−a1,−a2, b1, b2)] .
(18)

The above expression indicates that the induced total displacement can be considered as the superposition of four rect-
angular inclusions (region A with eigenstrains ε∗31 and ε∗32, region B with eigenstrains ε∗31 and −ε∗32, region C with eigen-
strains ε∗31 and ε∗32, and region D with eigenstrains ε∗31 and −ε∗32) in an infinite plane.

The explicit expressions of the total strains are given by

γ31 =
ε∗31
π

[f1(a1, a2, b1, b2) − f1(a1, a2,−b1,−b2) + f1(−a1,−a2,−b1,−b2) − f1(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g1(a1, a2, b1, b2) + g1(a1, a2,−b1,−b2) + g1(−a1,−a2,−b1,−b2) + g1(−a1,−a2, b1, b2)] ,

(19)

γ32 =
ε∗31
π

[f2(a1, a2, b1, b2) − f2(a1, a2,−b1,−b2) + f2(−a1,−a2,−b1,−b2) − f2(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g2(a1, a2, b1, b2) + g2(a1, a2,−b1,−b2) + g2(−a1,−a2,−b1,−b2) + g2(−a1,−a2, b1, b2)] .

(20)

4 A rectangular inclusion in a bimaterial

In this section we add a second orthotropic material in the quarter plane x1 ≥ 0 and x2 ≤ 0, as shown in Fig. 2. In addition,
we assume that the upper quarter plane and the lower quarter plane are well bonded along the interface x2 = 0, x1 ≥ 0
(displacement and traction are continuous). Ting [10] has also presented explicit expressions of the Green’s function for this
bimaterial composed of two orthotropic quarter planes. Employing his Green’s functions for the bimaterial, we can arrive
at the solutions for two cases: 1) the boundary x1 = 0 is traction free; 2) the boundary x1 = 0 is fixed. In what follows we
add a prime ’ to the quantities associated with the lower quarter plane.

When the boundary x1 = 0 is traction free, the total displacement in the upper quarter plane can be expressed as

u =
ε∗31
π

[f(a1, a2, b1, b2) − ξf(a1, a2,−b1,−b2) − ξf(−a1,−a2,−b1,−b2) + f(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g(a1, a2, b1, b2) + ξg(a1, a2,−b1,−b2) − ξg(−a1,−a2,−b1,−b2) − g(−a1,−a2, b1, b2)] ,

(21)

and the total displacement in the lower quarter plane is

u′ =
η1ε

∗
31

π
[f(a1, a2, b1, b2) + f(−a1,−a2, b1, b2)] +

η2ε
∗
32

πγ′ [g(a1, a2, b1, b2) − g(−a1,−a2, b1, b2)] , (22)

where ξ = μ−μ′

μ+μ′ , η1 = 2γμ
γ′(μ+μ′) , η2 = 2γ′μ

γ(μ+μ′) , μ =
√

C44C55, μ′ =
√

C′
44C

′
55. Here it shall be stressed that when

calculating the displacement field in the lower quarter plane, one should use γ′

γ x2 as a new variable to replace the variable

x2 in Eq. (7), where γ′ =
√

C′
55/C′

44.
Equation (21) implies that the induced total displacement in the upper quarter plane of the bimaterial can be considered

as the superposition of four rectangular inclusions (region A with eigenstrains ε∗31 and ε∗32, image region B with eigenstrains
ξε∗31 and −ξε∗32, image region C with eigenstrains −ξε∗31 and −ξε∗32, and image region D with eigenstrains −ε∗31 and ε∗32)
in an infinite orthotropic plane with elastic properties of the upper quarter plane. On the other hand, Eq. (22) implies that
the induced total displacement in the lower quarter plane of the bimaterial can be considered as the superposition of two
rectangular inclusions (image region A′ (A′ : a1 ≤ x1 ≤ a2,

γ
γ′ b1 ≤ x2 ≤ γ

γ′ b2) with eigenstrains η1ε
∗
31 and η2ε

∗
32,

image region D′ (D′ : − a2 ≤ x1 ≤ −a1,
γ
γ′ b1 ≤ x2 ≤ γ

γ′ b2) with eigenstrains −η1ε
∗
31 and η2ε

∗
32) in an infinite

orthotropic plane with elastic properties of the lower quarter plane.
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x1

x2

Rectangular Inclusion 

),( *
32

*
31

Orthotropic Quarter Plane 1 
C44, C55

a1 a2

b1

b2

Orthotropic Quarter Plane 2 

5544 , CC

Fig. 2 A rectangular inclusion with uniform antiplane eigenstrains ε∗31 and
ε∗32 embedded in one of the two bonded orthotropic quarter planes.

When the boundary x1 = 0 is fixed, then the total displacement in the upper quarter plane can be expressed as

u =
ε∗31
π

[f(a1, a2, b1, b2) − ξf(a1, a2,−b1,−b2) + ξf(−a1,−a2,−b1,−b2) − f(−a1,−a2, b1, b2)]

+
ε∗32
πγ

[g(a1, a2, b1, b2) + ξg(a1, a2,−b1,−b2) + ξg(−a1,−a2,−b1,−b2) + g(−a1,−a2, b1, b2)] ,

(23)

and the total displacement in the lower quarter plane is

u′ =
η1ε

∗
31

π
[f(a1, a2, b1, b2) − f(−a1,−a2, b1, b2)] +

η2ε
∗
32

πγ′ [g(a1, a2, b1, b2) + g(−a1,−a2, b1, b2)] . (24)

Eq. (23) implies that the induced total displacement in the upper quarter plane of the bimaterial can be considered as
the superposition of four rectangular inclusions (region A with eigenstrains ε∗31 and ε∗32, image region B with eigenstrains
ξε∗31 and −ξε∗32, image region C with eigenstrains ξε∗31 and ξε∗32, and image region D with eigenstrains ε∗31 and −ε∗32)
in an infinite orthotropic plane with elastic properties of the upper quarter plane. On the other hand, Eq. (24) implies that
the induced total displacement in the lower quarter plane of the bimaterial can be considered as the superposition of two
rectangular inclusions (image region A′ with eigenstrains η1ε

∗
31 and η2ε

∗
32, image region D′ with eigenstrains η1ε

∗
31 and

−η2ε
∗
32) in an infinite orthotropic plane with elastic properties of the lower quarter plane.

With the induced displacement field, the strains can be obtained by taking the derivative of the displacement with respect
to the coordinates, and the stresses by making use of the constitutive relation (1). We also remark that the displacement
solutions in the upper quarter plane of the bimaterial can be reduced to those in the quarter plane presented in Sect. 4. More
specifically, if the lower quarter plane is much soft compared to the upper quarter plane (i.e., μ′/μ = 0), we then have
ξ = 1. Consequently, the bimaterial displacement, Eq. (21), in the upper quarter plane with traction free on x1 = 0, is
reduced to the displacement, Eq. (5), for the free-free quarter plane. Similarly, the bimaterial displacement, Eq. (23), in the
upper quarter plane with fixed boundary condition on x1 = 0, is reduced to the displacement, Eq. (18), for the fixed-free
quarter plane.

5 Numerical examples

We first consider a rectangular inclusion with the dimension a2 = 3a1, b2 = 2b1 = 2a1 in an orthotropic quarter plane
with γ =

√
C55/C44 = 1.5, and we further assume that ε∗31 �= 0, ε∗32 = 0. Fig. 3 demonstrates the continuous distribution

c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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Fig. 3 (online colour at: www.zamm-journal.org) Contour of the normalized displacement for a fixed-fixed quarter plane
with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the eigenstrain ε∗31 imposed on the rectangular inclusion.

Fig. 4 (online colour at: www.zamm-journal.org) Distribution
of the normalized displacement along line segment 0 ≤ x1 ≤
5a1 and x2 = b1 for the four sets of boundary conditions with
a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the eigenstrain
ε∗31 imposed on the rectangular inclusion.

Fig. 5 (online colour at: www.zamm-journal.org) Distribution
of the normalized displacement along line segment 0 ≤ x1 ≤ 5a1

and x2 = (b1 + b2)/2 for the four sets of boundary conditions
with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the eigen-
strain ε∗31 imposed on the rectangular inclusion.

of the displacement for a fixed-fixed quarter plane. It is apparent that the fixed boundary condition along the two boundaries
of the quarter plane is exactly satisfied. The normalized displacement u/a1ε

∗
31 reaches its maximum value of 1.0003 at the

location x1 = 3a1, x2 = 1.53a1, and its minimum value of −0.6867 at x1 = a1, x2 = 1.49a1. To show more clearly
the influence of the boundary conditions on the distribution of the displacement, we present in Figs. 4 to 6 the variations
of the displacement along the three parallel line segments 0 ≤ x1 ≤ 5a1 and x2 = b1, (b1 + b2)/2, b2 for the four sets of
boundary conditions discussed in Sect. 3. It is found from Figs. 4 to 6 that the displacement along a certain line segment
corresponding to the fixed-free boundary condition is the largest, that to the free-free boundary conditions is the smallest,
and those to the fixed-fixed and free-fixed lie in between.

We show in Figs. 7 to 12 the distributions of the two stress components σ31 and σ32 along the three parallel line
segments 0 ≤ x1 ≤ 5a1 and x2 = b1, (b1 + b2)/2, b2 for the four sets of boundary conditions. Due to the fact that
ε∗32 = 0, the two stress components σ31 and σ32 are continuous along the three line segments. In addition it is observed
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Fig. 6 (online colour at: www.zamm-journal.org) Distribution
of the normalized displacement along line segment 0 ≤ x1 ≤
5a1 and x2 = b2 for the four sets of boundary conditions with
a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the eigenstrain
ε∗31 imposed on the rectangular inclusion.

Fig. 7 (online colour at: www.zamm-journal.org) Distribution
of the normalized stress component σ31 along line segment 0 ≤
x1 ≤ 5a1 and x2 = b1 for the four sets of boundary conditions
with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the eigen-
strain ε∗31 imposed on the rectangular inclusion.

Fig. 8 (online colour at: www.zamm-journal.org) Distribution
of the normalized stress component σ31 along line segment 0 ≤
x1 ≤ 5a1 and x2 = (b1 + b2)/2 for the four sets of boundary
conditions with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to
the eigenstrain ε∗31 imposed on the rectangular inclusion.

Fig. 9 (online colour at: www.zamm-journal.org) Distribution
of the normalized stress component σ31 along line segment 0 ≤
x1 ≤ 5a1 and x2 = b2 for the four sets of boundary conditions
with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the eigen-
strain ε∗31 imposed on the rectangular inclusion.

from Figs. 7 and 9 that the value of the stress component σ31 undergoes a significant change when crossing the corners of
the rectangular inclusion. It is further observed from Figs. 10 and 12 that the stress component σ32 is singular at the corners
of the rectangular inclusion, which is in agreement with our previous theoretical analysis in Sect. 3. The requirements that
σ31 = 0 at x1 = 0 for the free-free and free-fixed boundary conditions and σ32 = 0 at x1 = 0 for the fixed-fixed and
fixed-free boundary conditions are clearly satisfied in Figs. 7 to 12. It is well known that either the non-elliptical shape of
the inclusion or the existence of a nearby boundary can induce non-uniform stress distributions inside the inclusion [11].
Consequently the observed non-uniform stresses in Figs. 7 to 12 inside the rectangular inclusion in a quarter plane are due
to the non-elliptical shape of the rectangular inclusion as well as the existence of the neighboring two boundaries x1 = 0
and x2 = 0. The normalized stress component σ31/C44ε

∗
31 along a certain line segment in Figs. 7 to 9 reaches its minimum

value at the location very close to x1 = (a1 + a2)/2. The magnitude of σ32 induced by the eigenstrain ε∗31 is rather small
as compared to that of σ31 when the observation point is away from the corners (see Figs. 8 and 11).

Figures 13 to 15 illustrate the distribution of stress component σ31 along the three parallel line segments 0 ≤ x2 ≤ 3a1

and x1 = a1, (a1 + a2)/2, a2 for the four sets of boundary conditions. It is observed from Figs. 13 to 15 that σ31

is discontinuous across the interfaces x2 = b1(= a1) and x2 = b2(= 2a1), and the discontinuity is exactly(
σinclusion

31 − σmatrix
31

)/
ε∗31C44 = −2γ2 = −4.5, as predicted in Sect. 3. In addition the maximum magnitude of σ31 along
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Fig. 10 (online colour at: www.zamm-journal.org) Distribu-
tion of the normalized stress component σ32 along line segment
0 ≤ x1 ≤ 5a1 and x2 = b1 for the four sets of boundary condi-
tions with a2 = 3a1, b2 = 2b1 = 2a1 and γ = 1.5 due to the
eigenstrain ε∗31 imposed on the rectangular inclusion.

Fig. 11 (online colour at: www.zamm-journal.org) Distribution
of the normalized stress component σ32 along line segment 0 ≤
x1 ≤ 5a1 and x2 = (b1 + b2)/2 for the four sets of boundary
conditions with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to
the eigenstrain ε∗31 imposed on the rectangular inclusion.

Fig. 12 (online colour at: www.zamm-journal.org) Distribu-
tion of the normalized stress component σ32 along line segment
0 ≤ x1 ≤ 5a1 and x2 = b2 for the four sets of boundary condi-
tions with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the
eigenstrain ε∗31 imposed on the rectangular inclusion.

Fig. 13 (online colour at: www.zamm-journal.org) Distribu-
tion of the normalized stress component σ31 along line segment
0 ≤ x2 ≤ 3a1 and x1 = a1 for the four sets of boundary condi-
tions with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the
eigenstrain ε∗31 imposed on the rectangular inclusion.

a certain line segment always occurs at the inclusion side of the interface x2 = b1 where the horizontal surface x2 = 0
is fixed and at the inclusion side of the interface x2 = b2 where the horizontal surface x2 = 0 is traction free. Due to the
existence of the horizontal surface x2 = 0, the distribution of σ31 is not symmetric with respect to x2 = (b1 + b2)/2.

As for the bimaterial case, we consider the upper S-Glass Epoxy quarter plane bonded to the lower AS4/8552 quarter
plane. S-Glass Epoxy and AS4/8552 have been widely adopted in commercial aircraft structures. The material constants
of S-Glass Epoxy are C44 = 4.8 GPa and C55 = 5.5 GPa, and those of AS4/8552 are C44 = 10.5628 GPa and C55 =
7.17055 GPa [12]. Consequently, γ = 1.0704, γ′ = 0.8239, ξ = −0.2576 and η = 1.2576. Shown in Fig. 16 is the
distribution of the stress component σ32 (or traction) along the positive x1-axis (x2 = 0) when the location of the inclusion
varies vertically with different b1 (a2 = 3a1, b2 = b1 + a1), due to the eigenstrain ε∗31 imposed on the rectangular
inclusion. Traction free condition is assumed along the boundary line x1 = 0. It is observed that the interfacial traction
exhibits singular behavior at points x1 = a1 and x1 = 3a1 when the lower edge of the rectangular inclusion lies on the
x1-axis, i.e., b1 = 0 (the two points x1 = a1 and x1 = 3a1 then become also two of the corners of the rectangle). As
a result interface damage could be induced due to the stress concentration. As the inclusion moves further away from the
interface, on the other hand, the magnitude of the traction on the interface decreases. The inclusion with b1 = 5a1 induces
the minimal interface traction along the line.
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Fig. 14 (online colour at: www.zamm-journal.org) Distribution
of the normalized stress component σ31 along line segment 0 ≤
x2 ≤ 3a1 and x1 = (a1 + a2)/2 for the four sets of boundary
conditions with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to
the eigenstrain ε∗31 imposed on the rectangular inclusion.

Fig. 15 (online colour at: www.zamm-journal.org) Distribu-
tion of the normalized stress component σ31 along line segment
0 ≤ x2 ≤ 3a1 and x1 = a2 for the four sets of boundary condi-
tions with a2 = 3a1, b2 = 2b1 = 2a1, and γ = 1.5 due to the
eigenstrain ε∗31 imposed on the rectangular inclusion.

Fig. 16 (online colour at: www.zamm-journal.org) Distribution
of the normalized traction σ32 along positive x1-axis (x2 = 0)
when the location of the inclusion changes vertically with b1

(a2 = 3a1, b2 = b1 + a1) due to the eigenstrain ε∗31 imposed
on the rectangular inclusion embedded in orthotropic bimate-
rial. Traction free condition is assumed along the boundary line
x1 = 0.

6 Concluding remarks

By employing the explicit expressions of Green’s functions for an orthotropic quarter plane and a bimaterial composed
of two bonded orthotropic quarter planes recently derived by Ting [10], we derived exact closed-form solutions in terms
of elementary functions for the displacement, strains, and stresses induced by a rectangular inclusion embedded in an or-
thotropic quarter plane or in one of the two bonded orthotropic quarter planes. Numerical examples are presented to validate
the solutions and to demonstrate the influence of the boundary conditions on the induced displacements and stresses. An
extension of the present results to the in-plane deformation seems difficult due to the fact that the expressions of the Green’s
functions for a bimaterial composed of two isotropic quarter planes are too complicated to be used in the analysis of the
corresponding inclusion problem [13].
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W. Hauger, V. Mannl, W. Wall und E. Werner, Aufgaben
zu Technische Mechanik 1–3. Statik, Elastostatik, Kinetik, 6.,
korr. Auflage Springer-Verlag Berlin 2008, 420 S, Softcover,
ISBN: 978-3-540-77691-8

Das studienbegleitende Übungsbuch soll zum
eigenständigen Lösen von Aufgaben des Grundkurses Tech-
nische Mechanik beitragen. Bei einer 6. Auflage kann man
davon ausgehen, dass sich das Konzept der Autoren bewährt
hat. Im Mittelpunkt stehen eine kurze Formelsammlung
(diese ersetzt nicht die Vorlesung!), den entsprechenden
Kapiteln des Grundkurses zugeordnete Aufgaben sowie
ausführliche durchgerechnete Lösungen.

Für die nächste Auflage sollte überlegt werden, ob einige
Elemente aus dem bisherigen Konzept weggelassen wer-
den können. Hierzu gehören insbesondere die Mohrschen
Spannungskreise, die heute in der Praxis eine geringere
Rolle spielen. Gleiches gilt für die Tafel der Integrale. Eine
weitere Anregung betrifft das Layout. In den zugehörigen
Lehrbüchern wurde in den letzten Auflagen auch mehrfarbig
gedruckt. Dies sollte hier auch geschehen, da es das Lesen
und Verstehen erleichtert.

Halle (Saale) Holm Altenbach

J. N. Reddy, Theory and Analysis of Elastic Plates and
Shells, 2nd ed., CRC Press, Taylor & Francis Group, Boca
Raton, FL, 2007, 568 pp., £ 49.99,
ISBN: 978-0-8493-8415-8

This is a revised and updated version of the well-known
textbook published by J.N. Reddy several years ago. It in-
cludes basics of the plate theory, variational methods, energy
principles, classical and Finite Element based solution tech-
niques. It can be recommended as a textbook on this topic in
aerospace, civil, and mechanical engineering.

The weakest point of this book is that the author is fo-
cused mostly on his own research. During the last years there
have been many new contributions to this topic, which are
not reflected enough. The reader expects as a minimum some
information about new trends, alternative approaches, etc.
In addition, it seems that the chapter about the shear defor-
mation plate theories is incomplete. At first, there are other,
quite different contributions (e.g. Reissner’s theory) and the
criticism to the first order theories should be added by the
criticism to the third order theory.
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