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ABSTRACT: In this work, the displacements and stresses at any point in a
transversely isotropic layered half-space under multiple horizontal loads are studied.
The transversely isotropic plane is assumed to be parallel to the surface plane, and
uniformly distributed circular loads with different magnitudes, radii and orientations
are applied to the pavement surface. Based on the cylindrical system of vector
functions in the transformed domain, the governing equations are first decoupled into
two sets of equations related to the LM-type and N-type respectively. Solutions for
the multilayered half-space in the transformed domain are then detived by virtue of
the propagator matrix method. Solutions in the physical domain are then expressed in
terms of the Bessel function integration. The method of superposition is finally
utilized for multiple loads. We remark that while the propagator matrix method has
been frequently used to solve the vertical loading problem in layered half-spaces,
which only involve the LM-type equation, the corresponding horizontal loading
problem involving multiple circular loads in a transversely isotropic layered half-
space has not been addressed in the literature. A computer program has been coded
by the authors’ research group and numerical results obtained from this program for
the isotropic layered half-space have been verified with existing ones. Further
presented in this paper are the results for the transversely isotropic layered half-space,
with examples elucidating clearly the effect of material anisotropy on the responses,
especially on pavement failure. It is also observed that, in terms of computation, the
developed program is very accurate, efficient and flexible. For instance, our program

can easily handle more than 10,000 field points with more than 1,000 pavement
layers.
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INTRODUCTION

The Kelvin solution (e.g., Love 1927) for the concentrated load acting in an infinite
solid is well known, and many problems of science and engineering importance can
be obtained from this fundamental solution. The classical Boussinesq solution (e.g.,
Love 1927) dealing with a vertical force applied at the surface of a semi-infinite solid
has found a number of practical applications in foundation engineering, pavement
engineering, et al. While the Cerruti solution (e.g., Love 1927)) is for the problem of
a horizontal force applied at the surface of a half-space, the Mindlin solution
(Mindlin, 1936) is to solve the problem with the point load in the interior of the half-
space. The Mindlin solution can easily be deduced to the other three classical
solutions mentioned above. It should be mentioned that all these classical solutions
are for the point load and homogenous material.

By integrating solutions of the concentrated load over the loading domain, solution
for the case of a uniformly distributed load within a circle can be arrived. However,
this solution cannot be extended to the multi-layered structure. Burmister (1943,
1945) pioneered the analytical solutions using layered elastic theory, first for a two-
layered pavement and later for a three-layered pavement. It should be noticed that a
lot of research for multi-layered structures are focused on the vertical loads, an
extension of the Boussinesq problem, whilst the research for the responses of a
layered half-space structure to the horizontal load is usually omitted. For example, in
the pavement engineering, the vehicle load acting on the pavement surface is usually
modeled as a vertical load, omitting the horizontal load in practice, such as the
friction force between the tire of the vehicle and pavement surface.

Among the few studies closely related to horizontal loads, Wang (1983) proposed a
method, named recursion and back-substitution, and discussed the solution of layered
elasticity under vertical and horizontal loads. Pan (1989a) proposed the special vector
function to deal with the problem of isotropic layered half-space structure under
single load, either vertically or horizontally. Pan (1989b) then introduced two sets of
vector functions in both the cylindrical and Cartesian coordinates and derived the
general formalism for the transversely isotropic layered half-space under general
loads. It should be mentioned that for the layered structure problem, the solutions are
extremely complicated as compared to the classical Boussinesq and Cerruti solutions.
Thus only single vertical and horizontal load was considered. Later on, Pan (1997)
proposed the static Green’s functions in the multilayered transversely isotropic half-
space, and displacement and stress fields under vertical and horizontal point load
were presented and compared. An independent work was presented by Yue and Yin
(1998) dealing with similar problems. Matsui et al. (2002) used Hankle transform and
biharmonic function to deal with the problem of layered isotropic half-space structure
under multiple horizontal loads, and developed a program named Analysis of Multi-
layered Elastic Structure (AMES) based on their method.

The goal of this research is, therefore, to discuss in detail the problem of horizontal
loading on a multi-layered pavement surface based on the vector functions introduced
by Pan (1989b), and to develop a computer program for analyzing the responses of a
multilayered pavement system by the horizontal load. By expressing the governing
equations in the cylindrical system of vector functions, the original coupling
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equations can be decoupled into two types of equations in terms of the vector
%Eomobww and solutions can be obtained in the form of integration of Bessel function,
E&s&bm first kind of zero and first orders. In addition, the propagator matrix method
is utilized to deal with the layered half-space structure. The principle of superposition
Fﬁmm@ﬂ is adopted for multiple loads, and thus the final solutions for transversely
isotropic layered half-space structure to multiple loads are established.

A computer program, which is the extension of MultiSmart3D coded by the
wc\&oaw research group (Pan et al. 2007), was generated and numerical results for the
isotropic layered half-space were compared with existing ones to demonstrate the
accuracy of this method. Also presented are the numerical results for a transversely
Go.ﬁoao layered half-space with examples elucidating clearly the effect of material
anisotropy on the pavement response.

GENERAL SOLUTIONS

Hc.m ﬁ.amcm,\oww&% isotropic layered half-space is first modeled as in Fig. 1, where the
z-axis is positive downward, and the isotropic plane is chosen to be parallel to the
horizontal plane. In this model, there are p layers lying on the homogeneous half-
space with 7; (i=1, 2... p) being the layer thickness, and H the total thickness above
the half-space. The uniform horizontal load acting on the surface z=0. The load
oou.mmﬁmnou is presented in Fig. 2, where X-Y is the global coordinate and Py is the
horizontal projection of the field point zx The local coordinate x-y is also chosen with

x m._oupm the loading direction, and a., B the orientations of the horizontal load and field
point to x-axis, respectively.

Surface 0
* x
Layer 1 by
Laver k hy
Layer p hy
Half-Space z
¥

FIG. 1. Geometry of a transversely isotropic multilayered half-space.
By .Eﬁomc&um the vector functions in the cylindrical coordinates as in Pan (1989b),
the displacement and traction vectors can be expressed as:
u(r,0,z)=u,r+u,0+u_z

=Y (W (DLE.0)+ Uy ()M (r,60) + Uy ()N (r,0)id A @
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t(r,0,z)=0,r+0,0+0.2 o
= Mt”.:ﬁ (2)L(r,0)+T,,(z2)M(r,0) + Ty (2)N(r,0)Rd A

where 7,0, z are unit vectors along the r-,8-, z- directions, and
L(r,0;A,m)=2S(r,0; A, m)

M(r,0;A,m)=grad(S)=roS/or+ 66S /(r08)

N(r,0;4,m) = curl(zS) = r&S | or — 60S /(rd6) .

are vector functions with S(r,0;4,m) = J,, (Ar)exp(imd) /(27)"* . Ju(Ar) is the Bessel
function of order m.

»x

<
g

FIG. 2. Geometry of surface loading.

Tt is noted that for any integrable vector F in the physical QoB&bw its mxwwbmwwb
coefficients in the vector function system can be found from the following relations:

27

@@kvuw. [ [FoLrrdo

m 00
2 Firemr ®
F, (A,2)= e % 0?.2 rdrd6
N 27 © .
Fy(Az)= e o_ o?.2 rdrd®
where:
s 2 m=0
" 11 m=12,3,.

and the vectors N*E*QZ*&@ the complex oob_.:mmﬁow of LLM,N. . .
Thus, using the vector functions a relationship cogmo.b the physical aoB.mE

F(,0,2) and transformed domain Fr(A.z)(T" =L,M,N) is amﬁmw:mgm“ Then .Em H.E%m_oa

domain problem can be first solved in the transformed domain, which is more

convenient as will be shown below.
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After certain manipulation, the solutions in any layer in terms of the vector
functions can be obtained

[E i @) =12 e (z NoalK e lia

Twz @ =12 ~ (2)LalK " b @
where

[EM(]=[U, AU, T,/ T,T

[E"@]=1wW, T,T

and the two column matrices [K] are A-dependent. The expressions for [Z] are listed
in Pan (1989b). As can be seen from (4) that, using the vector functions, the coupled
6x6 equations in the physical domain are decoupled into two sets of equations, called
LM-type and N-type equations. It should be addressed here that these two sets of
equations are independent of each other with a dimension of 4x4 and 2x2,
respectively, and thus are computational convenient and efficient.

To solve the multilayered pavement, the propagator matrix method is employed.
The propagating relations in the k-th layer with the interfaces z;.; and z can be
expressed as
B (ze D)1= LE™ (2,)]
£ (z)1=[a NE" (2,)] &)
where [a4] is the propagator matrix and its elements are listed in Pan (1989b).
Assuming that the displacement and traction vectors across the layer interface are
continuous, solutions for an arbitrary field point can then be expressed as
[E m (@) = HQE (2)],.q[K m

p+1 44x1

[EY (2)q =[G" (2]l K} 1o (©)
where [G(2)]=[anl[ax+1]...[ap1][ap][Zx(H)] with [as] being the propagator matrix
from field point z; to the layer interface z; and [Kp+1] being the unknown column
matrix in the homogeneous half-space.

In the cylindrical coordinate (Fig. 2), the boundary conditions in the physical
domain are
Kr,0,0)=0,(r,6,0r +0,(r,0,000+0,_(r,06,0)z @)
where for 0< 0< 27,

0,(r,0,0)=gcosd 0<r<R
0,,(r,0,0)=—qsind 0<r<R ®)
0,.(r,0,0)=0 0<r<ow

By virtue of (3), the corresponding boundary conditions in the transformed domain
are
T,(4,0)=0
R
14,0 =\27 L3, (RA) ©
s qR
Ty (4, 8 =—i\27 ﬂ.\k%\d

Using the boundary condition on the surface, the solutions in the transformed
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domain can be obtained, and then the solutions in EQ&S.__ domain can be arrived.
The final solutions are the real part of the following expressions:
u,(r,0,z) = ’[UT(D)-UT(2)+iUTN ()]
u,(r,0,z) = ’[iUT(2)—~UIN(2) +UIN (1)]
u,(r,0,2)=e"[UT(3)]
0,(r,0,z)= ?[UT(4)-UT(5)+iUIN(3)]
0,,(r,0,2)= °[iUT(5)-UTN(4)+UIN(3)]
o, (r,0,2)=e[UT(6)]
0,,(r,0,2) = €° A {UTN(5)+ 2{UTN (2)-2UTN(D)/ 7 + 26[UT()-2UT(2)}/ r}
o, (r.0,z)= €’{4,0,, | 4y +i( 4, — 4,)IUTN(2)~ 2UTN()1/r
(4 — A, A3y UT(T) ] Agy = (A~ A)IUT()-2UT())/ 7}
0 p(r,0,2) = " {450, | Ayy —i( A, — A,)IUTN(2)-2UTN(D)/ 7
H(A — Ay A YUT(T) ] Ay, + (4~ A)IUT() - 20T )/ 7}
where, UT(i)(i=1,2,...7) and UTN(i)(i=1,2,...5) are listed in Appendix L. It should be
stressed that the UTs are related to LM-type whilst UTNs to N-type. .
Based on the above solutions for single loads, coordinate transform is first applied

to convert the solutions from local coordinates to global ooo.a&bm.ﬂom“ and the
superposition principle is then employed to derive the final solutions in the global
Cartesian coordinates, which are expressed as

w(P)| u,(P)

(P =[5 1u,(P)

wey T (@)
for displacements and

(10)

11)

Oy Oy, T‘@ (12)

for stresses with ,
sin(5) j
cos() O

cos(f)
[s]=
1

—sin(f)
In (11) and (12), the mccoamo.a? i means the contribution of the i-th load.

NUMERICAL SOLUTIONS

The solutions in the physical domain using vector functions are in the wmx,E .om
Bessel function integration which requires numerical ooEwEmﬁ.oP The infinite
integration can be approximated as the summation of partial integration as

+00 N ma AHMV
??&?Q:i =Y [ r@.07,0nda.
0 n=1 2,
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The accuracy of the partial integration can be controlled by the pre-chosen error
tolerance and satisfactory result can usually be achieved by balancing the time cost
and accuracy. In this paper, the error tolerance is fixed at 10~ for the relative error
and 10~ for the absolute error. To deal with the possible overflow problem caused by
multiplication of propagator matrices, the forward and backward propagating

approaches proposed by Pan (1997) and later by Yue and Yin (1998) are also adopted
here.

Verification of Results

An example dealing with a three-layered half-space pavement presented in Matsui

et al. (2002) is given first to verify the present formulation. The pavement parameters
are:

E=2500MPa, 11=0.35, 5;=0.1m
E;=280MPa, 1,=0.35, 5,=0.35m

(14)
E;=50MPa, 15=0.4

In this example, two horizontal loading cases are considered. The first one is a
single circular uniform load with Q=49kN and R=0.15m; the second one is double
circular uniform loads with ©;=0,=49kN, R;=R,=0.15m, 0,(0,~0.15,0)m,
05(0,0.15,0)m, o.;=—n/6, a,=n/6, where Q, R, O, o are load magnitude, load radius,
load center and load direction, respectively.

Numerical results of displacements and stresses using present formulations and
those using BISAR under both single and double horizontal circular loads are
presented in Fig. 3 and Fig. 4, respectively. It is clearly observed that present results

agree very well with those by BISAR, which therefore provides an indirect
verification to our program.

Effect of Horizontal Load

Figs. 5 and 6 show the strain contour of the pavement under vertical and horizontal
loads. The horizontal and vertical strains are computed at depth z=0.0999m (within
the first layer) and z=0.4501m (within the half-space substrate, i.e., in the third layer),
respectively. The pavement structure is still the one used in previous section as in
(14). 1t is evident that the strains under the two kinds of loads are quite different.
Under the vertical load in Fig. 5, the strains are symmetric with respect to both x- and
y-axes, and &, and g, are identical to each other after 7/2 rotation. Under the
horizontal load in Fig.6, on the other hand, the strains are anti-symmetric with respect
to y-axis and symmetric to x-axis. The locations of the maximum strains and the
corresponding magnitudes also change greatly. For example, under the same
configuration, for the vertical load case the maximum horizontal tensile strains are
£x=3.3x10, &enw.wx_o&“ and vertical compressive strain is &,=—7.42x10™, all
located at (x,y)=(0,0), whilst under the horizontal load the corresponding strains are
£:=1.33x10" at about (0.30m,0), ,=1.36x10* at about (-0.18m,0), and
&:=—1.34x10* at (0.25m,0).

Table 1 predicts the effect of the horizontal load on the maximum strains, where 5
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is the ratio of the horizontal load to vertical load. To predict the fatigue and rutting
performance, the following model (Timm and Newcomb, 2006) is used:

10°
N, =2.83x107°%(—)""* (15)
%n
1
16 3.87
N, =1x10°(—) (16)
m<
where
Ny=number of cycles until fatigue failure;
N=number of cycles until rutting failure;
& = critical horizontal tensile strain at bottom of asphalt layer;
&, = critical vertical compressive strain at top of subgrade layer.
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FIG. 3. Comparison of present work and BISAR (single load).
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Table 1. The Effect of Horizontal Load on Fatigue and Rutting Performance

Fatigue Rutting
8 (X107 5, (x10™)  &(x10%)  Ny(x10*) & (x10™*) N, (x10%)
b=0 3.3 3.3 3.3 1.9929 -7.4 1.3064
b=0.25 3.4 3.4 3.4 1.8142 7.6 1.1783
b=1 3.4 4.0 4.0 1.0877 -7.8 1.0660

As can be seen from Table 1, with increasing b, the maximum strains increase,
leading to the decrease of Ny and N,. Thus horizontal load could reduce the fatigue
and rutting lifetime. Consequently, ignoring horizontal load would overestimate the
failure performance. It also can be observed that the effect of the horizontal load on
fatigue is severer than that on rutting. For example, consideration of the horizontal
load (e.g. 5=1) will reduce a lifetime about 45.42% for fatigue and 18.40% for rutting
as compared to the estimation without the horizontal load (e.g. 5=0).

Effect of Material Anisotropy

To investigate the effect of pavement anisotropy, Fig. 7 presents the strain contours
at depth z=0.0999m for different transversely isotropic pavements (Table 2) under the
horizontal load. As mentioned above, the horizontal load would greatly influence
fatigue performance which is controlled by the horizontal strain. Thus in Fig. 7 only
horizontal strains &, &, are presented. It is also noted that for the seven transverse
isotropy configurations in Table 2, Case 1 is actually isotropic with the results already
being shown in Figs. 6a and 6b. The maximum strains for the seven different cases
are also presented in Table 2. The material property definitions in Table 2 are: E and
E' are the Young’s moduli in the plane of isotropy and in the direction normal to it,
T | on ot ¥ o a2 ot o1z o &_ % o o respectively; v and v' are the Poisson’s ratios characterizing the lateral strain

responses in the plane of isotropy to a stress acting parallel or normal to it,
tespectively; G’ is the shear modulus in planes normal to the plane of isotropy, and
G=E/2(1+v). The pavement is again a three-layered structure. However, the material
property in each layer is now transversely isotropic. More specifically, the Young’s
modulus E and Poisson’s ratio v in the first, second and third layers are the same as
those listed in (14), and the corresponding E'and v' in each layer are determined using
Table 2 for different cases.

x-ax

5b. &, (x10™, at z=0.0999m)

Table 2. The Effect of Anisotropy on Fatigue

E/E' G/G' W g (X105, (x107) & (x107
Casel 1.0 1.0 1.0 14 14 1.4
Case 2 1.0 2.0 1.0 1.2 1.3 1.3
o Case3 1.0 3.0 1.0 1.0 1.2 1.2
e T e T g Case4 1.5 1.0 1.0 1.3 1.5 1.5
5c¢. &, (x10™, at z=0.4501m) 6¢. & (x10*, at z=0.4501m) Case5 3.0 1.0 1.0 1.2 1.8 1.8
Case6 1.0 1.0 0.75 14 14 1.4

FIG. 5. Vertical loading. FIG. 6. Horizontal loading. ; Case 7 1.0 1.0 1.5 14 1.3 1.4
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For Cases 1, 2 and 3, it can be seen that with decreasing G, the maximum strain
decreases. It is interesting to observe that the maximum strains are all reached by &.
Cases 1, 4 and 5 show that maximum strain increases with decreasing E', and the
increase is more apparent than the decrease shown in Cases 1, 2 and 3. Thus the
strains are more sensitive to E' than to G. Similarly, the maximum strains are m_m.o
reached by &,. From Cases 1, 6 and 7 it is easy to conclude that the maximum strain
slightly decreases with decreasing v’ and are reached by &

1t is also interesting to find that the maxima &, for all the seven cases are 50@&
within the domain x&(0.24m, 0.36m) and ye(~0.06m, 0.06m), whilst for the maxima
&y they are in the domain x&(—0.24m, —0.12m) and ye(=0.06m, 0.06m), w_m.rozmr
their magnitudes are different. It can be anticipated that under the same rozmoam_
load configuration the critical strains will always be in the same domains without
being affected by the anisotropy configuration.

CONCLUSIONS

In this work, the response of a layered half-space pavement to Bimv._m horizontal
loads acting on the surface is established, and a FORTRAN program is %.<o~o@&
based on the present solution. The effect of the horizontal load is then &mos.wmma
showing that the horizontal load has a great influence on Eo.@mﬁBmﬁ fatigue
performance. For example our results show that ignoring the horizontal load would
result in an overestimate on the lifetime expectance of the pavement. mﬁ.@ﬁ
discussed in this paper is the effect of the pavement anisotropy on the strains,
showing that the critical strains are mostly sensitive to E, then to Q.mba less ”8 V. H@o
anisotropy will change greatly the magnitude of the critical strain _u.i m_.ﬂmrmu.\ _».a
position. Thus to predict the failure performance in pavement engineering, it is
anticipated that only certain domains, rather than the whole field, need to be
computed, which will greatly reduce the computation time.

APPENDIX

UT(4) = g.v:ﬂsto (ArAdA
%

UT(5) = |(T,, /1) (Ar)Ad A = ow.ﬁﬂz 1 AP)J(Ar)APdA

UT() = s?és 1 )T, (ARA*dA

0
UT(2) = 8?5 1 229 J,(Ar)A2dA
Ur@)= qqi_gii = qwah 1 )T (Ar)A*dA UT(6) = Mﬁiﬁ\i = wﬁ \ AW, (ARA2dA
UT(T) = q@iﬁgﬁi = QWQSN VW, (Ar)A*dA

0 0
UIN(Q2) = MQS 1 A)J,(APA*dA

UIN(l) = qQS 1 220 (Ar)A2d A

UIN(3)= g?,z 1P)J,(Ar)AdA = g?z 1 Ar)J,(Ar)A2dA
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UTN(4) = MS Wy (A2 A
UIN(5) = B_qic_gzi = OWQS ), (Ar)A2d A
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