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a b s t r a c t

We investigate a semi-infinite crack penetrating a piezoelectric circular inhomogeneity
bonded to an infinite piezoelectric matrix through a linear viscous interface. The tip of
the crack is at the center of the circular inhomogeneity. By means of the complex variable
and conformal mapping methods, exact closed-form solutions in terms of elementary func-
tions are derived for the following three loading cases: (i) nominal Mode-III stress and elec-
tric displacement intensity factors at infinity; (ii) a piezoelectric screw dislocation located
in the unbounded matrix; and (iii) a piezoelectric screw dislocation located in the inhomo-
geneity. The time-dependent electroelastic field in the cracked composite system is
obtained. Particularly the time-dependent stress and electric displacement intensity fac-
tors at the crack tip, jumps in the displacement and electric potential across the crack sur-
faces, displacement jump across the viscous interface, and image force acting on the
piezoelectric screw dislocation are all derived. It is found that the value of the relaxation
(or characteristic) time for this cracked composite system is just twice as that for the same
fibrous composite system without crack. Finally, we extend the methods to the more gen-
eral scenario where a semi-infinite wedge crack is within the inhomogeneity/matrix com-
posite system with a viscous interface.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Study of a semi-infinite crack half-way penetrating a circular inhomogeneity (Steif, 1987; Hutchinson, 1987) is funda-
mental to the understanding of failure mechanism in fiber reinforced composites (Erdogan and Gupta, 1975; Steif, 1987)
and plays a special role in quantifying the crack-tip shielding effect by micro-cracking at the tip of a macroscopic crack
(Hutchinson, 1987). The stress level at the tip of a macroscopic crack (represented by a semi-infinite crack or wedge crack)
can also be reduced or shielded by dislocations that are generated in the vicinity of the crack tip (Majumdar and Burns,1981;
Ohr et al., 1985). At elevated temperatures mass diffusion becomes important along the interface with periodically distrib-
uted microscopic steps (Raj and Ashby, 1971; Ashby, 1972). The microscopic mass diffusion-controlled mechanism along the
interface can be macroscopically described by the linear rheologic law for a viscous interface (Raj and Ashby, 1971; Ashby,
1972; He and Lim, 2001). Consequently it would be more realistic if the viscous interface (or time-dependent sliding inter-
face) and the nearby dislocations can be simultaneously incorporated into the benchmark problem of a semi-infinite crack
penetrating a circular inhomogeneity.

Even though various defect problems, such as cracks, dislocations, inhomogeneities (or inclusions), and interfaces in pie-
zoelectric materials which possess the intrinsic electromechanical coupling phenomenon, have been thoroughly investigated
(see, for example, Deeg, 1980; Pak, 1990a,b, 1992; Suo et al., 1992; Meguid and Deng, 1998; Deng and Meguid, 1999; Liu
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et al., 1999; Lee et al., 2000; Ru, 2001; Chen et al., 2002a,b; He and Lim, 2003; Wang and Pan, 2008; Wang et al., 2008a),
there are no analytical studies of the interaction among all these different kinds of defects in piezoelectric solids within a
unified framework.

Therefore, in this work we analytically investigate in detail a semi-infinite insulating crack (or wedge crack) half-way pe-
netrating a piezoelectric circular inhomogeneity bonded to an infinite piezoelectric matrix through a linear viscous interface
in the presence of a screw dislocation by means of the complex variable and conformal mapping techniques. Here, the screw
dislocation can be located either in the inhomogeneity or in the matrix. Due to the influence of the time-dependent linear
viscous interface, the analytic function vectors characterizing the electroelastic field are not only functions of the complex
variable z, but also functions of the real time t (Wang and Pan, 2008; Wang et al., 2008a). It should be noted that a solution to
this problem is unavailable, even in the simple framework of pure elasticity. The original problem can be more conveniently
discussed in the mapped f-plane. The reason why we can obtain closed-form solutions to this problem is due to the fact that:
(i) the number of the static and moving image singularities is finite in the f-plane even though we have two boundaries (one
straight, the other one circular) to address (Ting, 2005; Palaniappan, 2005; Wang et al., 2008b); (ii) the expressions of the
boundary conditions on the viscous interface in the f-plane are very similar to those for a circular inhomogeneity with a vis-
cous interface in the absence of the semi-infinite crack or wedge crack (Wang et al., 2008a). Here, we are particularly inter-
ested in the fracture parameters, such as stress and electric displacement intensity factors at the crack tip, jumps in
displacement and electric potential across the crack surfaces; the displacement jump across the viscous interface and image
force acting on the screw dislocation. All these results are time-dependent due to the influence of the viscous interface.

This paper is structured as follows. In Section 2, we present the basic equations which are essential for the ensuing anal-
ysis of a semi-infinite crack half-way penetrating a circular inhomogeneity with a viscous interface. Sections 3–5 are devoted
to the study of a semi-infinite insulating crack penetrating the inhomogeneity with a viscous interface under the action of
remote nominal stress and electric displacement intensity factors (Section 3), a screw dislocation in the matrix (Section 4)
and a screw dislocation in the inhomogeneity (Section 5). In Section 6, we discuss the more general scenario where a semi-
infinite wedge crack half-way penetrates a circular inhomogeneity with a viscous interface.

2. Basic equations

We consider an inhomogeneity/matrix composite plane containing a semi-infinite crack, as shown in Fig. 1. Cartesian and
polar coordinate systems are established with their origins at the crack tip such that the crack lies on the negative x-axis.
Both the circular inhomogeneity of radius R and the surrounding unbounded matrix are hexagonal piezoelectric materials
with their poling directions parallel to the fiber axis. In addition the circular inhomogeneity is bonded to the surrounding
matrix through a linear viscous interface L which will be described in more detail below. Throughout this paper, the sub-
scripts 1 and 2 (or the superscripts (1) and (2)) are adopted to identify the quantities in the inhomogeneity and matrix,
respectively. In this research we assume that the two-phase composite system is in a state of anti-plane deformation
(Pak, 1990a,b; Lee et al., 2000), and the inertia effect in both the inhomogeneity and matrix is ignored. Consequently the non-
trivial basic equations expressed in the Cartesian coordinate system (x,y) are listed below

rzx;x þ rzy;y ¼ 0; Dx;x þ Dy;y ¼ 0; ð1Þ
rzy

Dy

� �
¼

c44 �e15

e15 211

� �
w;y

Ey

� �
;

rzx

Dx

� �
¼

c44 �e15

e15 211

� �
w;x

Ex

� �
; ð2Þ

where a comma followed by x (or y) denotes partial derivatives with respect to x (or y); rzx, rzy are the shear stresses; Dx,Dy

are the electric displacements; Ex,Ey are the electric fields; w is the out-of-plane displacement; / is the electric potential; c44,
e15, and 211 are, respectively, the elastic modulus, piezoelectric constant, and dielectric permittivity. In addition we define
~c44 ¼ c44 þ e2

15=211 as the piezoelectrically stiffened elastic constant which will also be used in the following analysis.
The electroelastic field can be expressed in terms of a two-dimensional (2D) analytic function vector

fðz; tÞ ¼ ½ f1ðz; tÞ f2ðz; tÞ �T with z = x + iy being the complex variable and t being the time as follows:
w
/

� �
¼ Imffðz; tÞg; ð3Þ

rzy þ irzx

Dy þ iDx

� �
¼ Cf 0ðz; tÞ;

rzh þ irzr

Dh þ iDr

� �
¼ z
j z jCf 0ðz; tÞ; ð4Þ

where the material matrix C is defined as C ¼ c44 e15

e15 �211

� �
: Also in Eq. (4), the prime denotes differentiation with respect to

the complex variable z, and rzh, rzr, Dh, Dr are the stresses and electric displacements in the polar coordinate system (r,h). The
appearance of the real time t in the analytic function vector f is due solely to the influence of the viscous interface (Wang and
Pan, 2008; Wang et al., 2008a).

If we further introduce a conformal mapping function z = m(f), then

rzt þ irzn

Dt þ iDn

� �
¼ fCf 0ðf; tÞ
j fm0ðfÞ j ;

ð5Þ
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where f(z, t) = f[m(f), t] = f(f, t) has been adopted for the convenience of analysis; rzt, Dt, rzn, Dn are the tangential and normal
stresses and electric displacements in the curvilinear coordinate system expressed by m(f).

The boundary conditions on the viscous interface between the circular inhomogeneity and the matrix can be expressed as
(He and Lim, 2003; Wang et al., 2008a)

rð1Þzr ¼ rð2Þzr ; Dð1Þr ¼ Dð2Þr ;

/ð1Þ ¼ /ð2Þ;

rð1Þzr ¼ gð _wð2Þ � _wð1ÞÞ;
r ¼ R and t > 0 ð6Þ

where a dot over the quantity denotes differentiation with respect to time t, and g is the nonnegative interface slip coeffi-
cient which can be measured through properly designed experiment (He and Lim, 2003). At the initial time t = 0 the interface
L is a perfect one due to the fact that at t = 0 the displacement across the interface has no time to experience any jump (Fan
and Wang, 2003).

The boundary conditions on the upper and lower surfaces of the semi-infinite crack are traction-free and charge-free (Pak,
1990b; Lee et al., 2000)

rzy ¼ 0; Dy ¼ 0 at x < 0 and y ¼ 0 ð7Þ
The original boundary value problem can be more conveniently discussed by introducing the following conformal mapping
function:

z ¼ mðfÞ ¼ f2; ð8Þ

which maps the cracked z-plane onto the right half-plane in the f-plane (Re{f} P 0), as shown in Fig. 2. More specifically the
cracked circular inhomogeneity is mapped onto the half-circular region j f j<

ffiffiffi
R
p

and Re{f} P 0 in the f-plane; the cracked

Viscous Interface L

Piezoelectric
Inhomogeneity 1 

Piezoelectric Matrix 2 

x

y

R

Screw dislocation with 
line force and line charge 

r

θ

z0

cos
22

zy

K

r

σ θσ
π

∞ =

cos
22

D

y

K
D

r

θ
π

∞ =

Fig. 1. Schematic of a semi-infinite crack penetrating a piezoelectric circular inhomogeneity bonded to the surrounding matrix through a linear viscous
interface.

X. Wang et al. / International Journal of Solids and Structures 46 (2009) 203–216 205



Author's personal copy

matrix is mapped onto j f j>
ffiffiffi
R
p

and Re{f} P 0 in the f-plane; the inhomogeneity–matrix interface jzj = R is mapped onto the
half-circle j f j¼

ffiffiffi
R
p

and Re{f} P 0 in the f-plane. In the f-plane we have two boundaries to address: one is the straight
boundary Re{f} = 0, the other is the half-circular interface j f j¼

ffiffiffi
R
p

and Re{f} P 0. One reason why we can obtain closed-
form solutions to this problem is that the number of image singularities is finite in the f-plane (Ting, 2005; Palaniappan,
2005; Wang et al., 2008b). During the analysis we can first satisfy the boundary conditions on the straight surface
Re{f} = 0, then we satisfy the boundary conditions on the circular interface j f j¼

ffiffiffi
R
p

.
In the following we discuss in detail three loading cases:

(i) Far from the crack tip, the electroelastic field approaches the singular field specified by the Mode-III stress and electric
displacement intensity factors Kr and KD.

(ii) A piezoelectric screw dislocation located in the unbounded matrix. Here the screw dislocation is assumed to be
straight and infinitely long along the fiber axis, experiencing a displacement jump b and an electric potential jump
D/ across the slip plane. The dislocation can also have a line force p and line charge q along its core (Lee et al., 2000).

(iii) A piezoelectric screw dislocation located in the inhomogeneity. In this loading case it is assumed that p = q = 0.

3. Nominal field intensity factors at infinity

3.1. The complex potentials

When the matrix is subjected to nominal Mode-III stress and electric displacement intensity factors Kr and KD at infinity,
the asymptotic behavior of f2(z, t) defined in the matrix at infinity can be found as (Lee et al., 2000)

f2ðz; tÞ !
ffiffiffiffiffi
2z
p

r
C�1

2 K; as z!1 ð9Þ

where K ¼ Kr KD
� �T. Consequently in the f-plane, we obtain the following asymptotic behavior for f2(f, t)

f2ðf; tÞ !
ffiffiffiffi
2
p

r
fC�1

2 K; as f!1 ð10Þ

In view of the basic equations presented in Section 2, the boundary conditions on the viscous interface j f j¼
ffiffiffi
R
p

can be con-
cisely expressed in terms of f1(f, t) defined in the inhomogeneity and f2(f, t) defined in the matrix as (here we have implicitly

u

v

ζ0

R

Fig. 2. The mapped f-plane by using z = f2 for the semi-infinite crack problem in z-plane.
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extended the original half-circular interface j f j¼
ffiffiffi
R
p

and Re{f} P 0 to an imaginary total circular interface j f j¼
ffiffiffi
R
p

in view
of the remote loading in Eq. (10). Consequently the corresponding definition region for f1(f, t) is now j f j<

ffiffiffi
R
p

, whilst that for
f2(f, t) is now j f j>

ffiffiffi
R
p
Þ

C1fþ1 ðf; tÞ þ C1f�1
R
f
; t

� �
¼ C2f�2 ðf; tÞ þ C2fþ2

R
f
; t

� �
;

_f�2 ðf; tÞ �
_�fþ2

R
f
; t

� �
� _fþ1 ðf; tÞ þ

_�f�1
R
f
; t

� �
¼ KC1 ff 0þ1 ðf; tÞ �

R
f

�f 0�1
R
f
; t

� �� �
; ðj f j¼

ffiffiffi
R
p
Þ

ð11Þ

where the superscripts ‘‘+” and ‘‘�” denote the limit values from the inner and outer sides of the circle j f j¼
ffiffiffi
R
p

, and

K ¼ 1
2gR

diag½1 0 �: ð12Þ

It is of interest to notice that expression (11) in the f-plane is very similar in structure to those for a circular inhomogeneity
with a viscous interface in the absence of the semi-infinite crack (Wang et al., 2008a). This is another reason why we can
arrive at an analytical solution to this problem. It follows from Eq. (11)1 that

f2ðf; tÞ ¼ C�1
2 C1f1

R
f ; t
	 


þ f0ðfÞ � f0
R
f

	 

;

f2
R
f ; t
	 


¼ C�1
2 C1f1ðf; tÞ � f0ðfÞ þ f0

R
f

	 

:

ð13Þ

where f0ðfÞ ¼
ffiffiffi
2
p

q
C�1

2 Kf denotes the singular asymptotic behavior of f2(f, t) at infinity. Substituting the above results into Eq.

(12)2 and eliminating f2(f, t) and f̂2
R
f ; t
	 


, we obtain

KC1
R
f

�f 0�1
R
f
; t

� �
þHC1

_�f�1
R
f
; t

� �
¼ KC1ff 0þ1 ðf; tÞ þHC1

_fþ1 ðf; tÞ; ðj f j¼
ffiffiffi
R
p
Þ ð14Þ

where H ¼ H11 H12

H12 �H22

� �
¼ C�1

1 þ C�1
2 is real and symmetric. In addition the components H11 > 0, H22 > 0 and H12 are explic-

itly given by

H11 ¼
1

~cð1Þ44

þ 1
~cð2Þ44

; H22 ¼
cð1Þ44

~cð1Þ442
ð1Þ
11

þ cð2Þ44

~cð2Þ442
ð2Þ
11

; H12 ¼
eð1Þ15

~cð1Þ442
ð1Þ
11

þ eð2Þ15

~cð2Þ442
ð2Þ
11

: ð15Þ

Apparently the right-hand side of Eq. (14) is analytic within the circle |z| = R, while the left-hand side of Eq. (14) is analytic
outside the circle including the point at infinity. By employing the Liouville’s theorem, the left- and right-hand sides should
be identically zero. Consequently we obtain the following set of homogeneous first-order partial differential equation for
f1(f, t)

KC1ff 01ðf; tÞ þHC1
_f1ðf; tÞ ¼ 0; ðj f j<

ffiffiffi
R
p
Þ ð16Þ

In order to solve Eq. (16), we first consider the following eigenvalue problem:

ðK� kHÞv ¼ 0; ð17Þ

The two eigenvalues k1 and k2 of the above eigenvalue problem can be explicitly determined as

k1 ¼
H22

2gRðH11H22 þ H2
12Þ

> 0; k2 ¼ 0: ð18Þ

The eigenvectors associated with the two eigenvalues are

v1 ¼
H22

H12

� �
; v2 ¼

0
1

� �
: ð19Þ

It can be proved that the following orthogonal relationships with respect to the two real and symmetric matrices H and K
hold

UTHU ¼ diag½ d1 d2 �; UTKU ¼ k1d1diag½1 0 �; ð20Þ
where

U ¼ ½ v1 v2 �; ð21aÞ

and

d1 ¼ vT
1Hv1 ¼ k�1

1 vT
1Kv1 ¼ H22ðH11H22 þ H2

12Þ > 0;

d2 ¼ vT
2Hv2 ¼ �H22 < 0;

ð21bÞ
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We now introduce a new function vector Xðf; tÞ ¼ ½X1ðf; tÞ X2ðf; tÞ �T defined by

C1f1ðf; tÞ ¼ UXðf; tÞ; ð22Þ

In view of Eqs. (20) and (22), the original coupled set of differential Eq. (16) can be decoupled as follows:

_X1ðf; tÞ þ k1fX
0
1ðf; tÞ ¼ 0;

_X2ðf; tÞ ¼ 0;
ðj f j<

ffiffiffi
R
p
Þ ð23Þ

whose general solutions can be expediently given by

X1ðf; tÞ ¼ X1ðexpð�k1tÞf; 0Þ;
X2ðf; tÞ ¼ X2ðf; 0Þ;

ðj f j<
ffiffiffi
R
p
Þ ð24Þ

The above expression indicates that it is simple to arrive at the solutions of X1(f, t) and X2(f, t) once their initial values are
known. It is of interest to observe that the component function X2(f, t) is in fact time-independent. Due to the fact at time t = 0
the interface is perfect, we arrive at the following initial state of X(f, t)

Xðf;0Þ ¼ U�1C1f1ðf; 0Þ ¼ 2diag½ 1
d1

1
d2
�UTf0ðfÞ: ð25Þ

During the above derivation we have utilized the first orthogonal relationship in Eq. (20) and the following expression for
f1(f,0)

f1ðf; 0Þ ¼ 2C�1
1 H�1f0ðfÞ: ð26Þ

Finally, we arrive at

f1ðz; tÞ ¼ 2

ffiffiffiffiffi
2z
p

r
C�1

1 ½H
�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1

2 K; ðj z j< RÞ ð27Þ

f2ðz; tÞ ¼
ffiffiffiffiffi
2z
p

r
C�1

2 K� R

ffiffiffiffiffiffi
2
pz

r
C�1

2 ½I� 2½H�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1
2 �K; ðj z j> RÞ ð28Þ

where

M ¼ � 1
H22

0 0
0 1

� �
: ð29Þ

The electroelastic field in the inhomogeneity and matrix can be conveniently obtained by using the derived complex
potentials f1(z, t) and f2(z, t). Due to the fact that the relaxation (or characteristic) time t0 is the inverse of k1, it is observed
that the value of the relaxation time for the cracked composite system is twice as that for the same composite system with-
out crack (Wang et al., 2008a). It should also be noted that in the above discussion we adopt a different method than that
presented by Wang et al. (2008a). It is observed that the method presented here is mathematically more elegant than that in
Wang et al. (2008a).

3.2. The electroelastic field

The displacement and electric potential within the inhomogeneity and matrix are

wð1Þ

/ð1Þ

" #
¼ 2

ffiffiffiffiffi
2r
p

r
sin

h
2

C�1
1 ½H

�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1
2 K; ðr < RÞ ð30aÞ

wð2Þ

/ð2Þ

" #
¼

ffiffiffiffiffi
2r
p

r
C�1

2 K sin
h
2
þ

ffiffiffiffiffiffi
2
pr

r
R sin

h
2

C�1
2 ½I� 2½H�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1

2 �K; ðr > RÞ ð30bÞ

The corresponding stresses and electric displacements are

rð1Þzy

Dð1Þy

" #
¼

ffiffiffiffi
2
pr

q
cos h

2 ½H
�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1

2 K;

rð1Þzx

Dð1Þx

" #
¼ �

ffiffiffiffi
2
pr

q
sin h

2 ½H
�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1

2 K;

ðr < RÞ ð31aÞ

rð2Þzy

Dð2Þy

" #
¼ Kffiffiffiffiffiffi

2pr
p cos h

2þ Rffiffiffiffiffiffiffi
2pr3
p cos 3h

2 ½I� 2½H�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1
2 �K;

rð2Þzx

Dð2Þx

" #
¼ � Kffiffiffiffiffiffi

2pr
p sin h

2� Rffiffiffiffiffiffiffi
2pr3
p sin 3h

2 ½I� 2½H�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1
2 �K;

ðr > RÞ ð31bÞ
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Jumps in the displacement and electric potential across the crack surfaces are

Dwð1Þ

D/ð1Þ

" #
¼ 4

ffiffiffiffiffi
2r
p

r
C�1

1 ½H
�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1

2 K; ð�R 6 x 6 0; y ¼ 0Þ ð32aÞ

Dwð2Þ

D/ð2Þ

" #
¼ 2

ffiffiffiffiffi
2r
p

r
C�1

2 Kþ 2

ffiffiffiffiffiffi
2
pr

r
RC�1

2 ½I� 2½H�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1
2 �K; ðx 6 �R; y ¼ 0Þ ð32bÞ

where D means the value at the upper crack surface minuses that at the lower crack surface.
It is observed from Eq. (31) the stresses and electric displacements are regular at the point where the crack intersects the

inhomogeneity–matrix interface. This observation is in agreement with the result of Ting (2005). It should be noted that the
regular condition is only valid for a Mode-III crack discussed here, the stresses for a Mode-I crack are singular at the inter-
section point (Erdogan and Gupta, 1975; Wang and Ballarini, 2003). Here we would like to consider Eq. (32) in more detail.
Figs. 3 and 4 illustrate the jumps in the displacement and electric potential across the crack surfaces at five different times
~t ¼ k1t ¼ 0; 0:5;1:0;2:0;1 for a piezoelectric BaTiO3 fiber reinforced in a piezoelectric PZT-5 matrix under the remote inten-
sity factors Kr ¼ 1N

ffiffiffiffiffi
m
p

=m2 and KD = 0. The pertinent material properties of BaTiO3 are c44 = 4.4 � 1010 N/m2, e15 = 11.4 C/m2,
211 = 9.8722 � 10�9 C2/Nm2, whilst those of PZT-5 are given by c44 = 2.11 � 1010 N/m2, e15 = 12.3 C/m2, 211 = 8.1103 �
10�9 C2/Nm2. It is clearly observed from Figs. 3 and 4 that: (i) Dw is discontinuous at x = �R when t > 0, while D/ is always
continuous along the negative x-axis at any time; (ii) Dw at the inhomogeneity portion of the crack is positive when ~t < 1:0,
whereas it is negative when ~t > 1:0; (iii) Dw at the matrix portion of the crack and D/ at any position of the crack are always
positive at any time.

� The displacement jump along the inhomogeneity–matrix interface r = R can be obtained as

wð2Þ �wð1Þ ¼ 2 sin
h
2
½1� expð�k1tÞ�

ffiffiffiffiffiffi
2R
p

r
ðH222ð2Þ11 þ H12eð2Þ15 ÞK

r þ ðH22eð2Þ15 � H12cð2Þ44 ÞK
D

H22~cð2Þ442
ð2Þ
11

; ð33Þ

which indicates that at a certain fixed time the magnitude of the displacement jump across the viscous interface attains its
maximum when the interface intersects the semi-infinite crack at h = ±p. If the inhomogeneity and matrix have the same
material property with the same poling direction, i.e., cð1Þ44 ¼ cð2Þ44 ¼ c44, eð1Þ15 ¼ eð2Þ15 ¼ e15, 2ð1Þ11 ¼ 2

ð2Þ
11 ¼ 211, then Eq. (33) reduces

to

wð2Þ �wð1Þ ¼
ffiffiffiffiffiffi
2R
p

r
2Kr

c44
sin

h
2
½1� expð�k1tÞ�; ð34Þ

where k1 = c44/(4gR). It is of interest to notice that in this case the displacement jump along the interface r = R is in fact inde-
pendent of the piezoelectric and dielectric properties of the inhomogeneity or matrix, and is also independent of the nominal
electric displacement intensity factor at infinity. On the other hand, if the inhomogeneity and matrix have the same material
property but are poled in opposite directions, i.e., cð1Þ44 ¼ cð2Þ44 ¼ c44, eð2Þ15 ¼ �eð1Þ15 ¼ e15, 2ð1Þ11 ¼ 2

ð2Þ
11 ¼ 211, then Eq. (33) reduces to

Fig. 3. Displacement jump across the crack surfaces at five different times ~t ¼ k1t ¼ 0;0:5;1:0;2:0;1 under the remote intensity factors Kr ¼ 1N
ffiffiffiffiffi
m
p

=m2

and KD = 0.

X. Wang et al. / International Journal of Solids and Structures 46 (2009) 203–216 209



Author's personal copy

wð2Þ �wð1Þ ¼ 2

ffiffiffiffiffiffi
2R
p

r
211Kr þ e15KD

~c44211
sin

h
2
½1� expð�k1tÞ�; ð35Þ

where k1 ¼ ~c44=ð4gRÞ.
� The stress and electric displacement intensity factors at the crack tip are

KtipðtÞ ¼
Kr

tipðtÞ
KD

tipðtÞ

" #
¼

lim
z!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p j z j

p
rzy

	 

lim
z!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p j z j

p
Dy

	 

2
64

3
75 ¼ 2½H�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1

2 K; ð36Þ

or explicitly

Kr
tipðtÞ ¼

2 expð�k1tÞ
~cð2Þ442

ð2Þ
11 H11H22 þ H2

12

	 
 H222ð2Þ11 þ H12eð2Þ15

	 

Kr þ H22eð2Þ15 � H12cð2Þ44

	 

KD

h i
;

KD
tipðtÞ ¼

H12

H22
Kr

tipðtÞ �
2 eð2Þ15 Kr � cð2Þ44 KD
	 


~cð2Þ442
ð2Þ
11 H22

:

ð37Þ

It is observed from the above expression that Kr
tipð1Þ ¼ 0 due to the fact that when t ?1 the viscous interface becomes free-

sliding and does not sustain shear loads.

When ignoring the piezoelectric effect by letting eð1Þ15 ¼ eð2Þ15 ¼ 0, then we obtain

Kr
tipð0Þ
Kr ¼ 2cð1Þ44

cð1Þ44 þ cð2Þ44

; ð38Þ

which is the result obtained by Steif (1987).
If the inhomogeneity and matrix have the same material property with the same poling direction, i.e., cð1Þ44 ¼ cð2Þ44 ¼ c44,

eð1Þ15 ¼ eð2Þ15 ¼ e15, 2ð1Þ11 ¼ 2
ð2Þ
11 ¼ 211, then Eq. (37) reduces to

Kr
tipðtÞ ¼ expð�k1tÞKr; KD

tipðtÞ ¼ KD � e15½1� expð�k1tÞ�Kr

c44
; ð39Þ

which indicates that the stress intensity factor at the crack tip is independent of the piezoelectric and dielectric properties of
the inhomogeneity or matrix, and is also independent of the nominal electric displacement intensity factor at infinity.

On the other hand, if the inhomogeneity and matrix have the same material property but are poled in opposite directions,
i.e., cð1Þ44 ¼ cð2Þ44 ¼ c44, eð2Þ15 ¼ �eð1Þ15 ¼ e15, 2ð1Þ11 ¼ 2

ð2Þ
11 ¼ 211, then Eq. (37) reduces to

Kr
tipðtÞ ¼ expð�k1tÞ Kr þ e15

211
KD

� �
; KD

tipðtÞ ¼ KD � e15

c44
Kr; ð40Þ

which indicates that the electric displacement intensity factor at the crack tip is in fact time-independent.

Fig. 4. Electric potential jump across the crack surfaces at five different times ~t ¼ k1t ¼ 0; 0:5;1:0;2:0;1 under the remote intensity factors Kr ¼ 1N
ffiffiffiffiffi
m
p

=m2

and KD = 0.
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It should be pointed out that the method presented in this section can also be adopted conveniently to address more com-
plex interaction problems such as a screw dislocation located in the matrix or in the inhomogeneity as discussed in the next
two sections.

4. A piezoelectric screw dislocation in the matrix

In this section, we consider the loading case of a piezoelectric screw dislocation located in the unbounded matrix. The
original boundary value problem in the f-plane shown in Fig. 2 can be equivalently considered as the original extended dis-
location b̂ ¼ ½ b D/ �T and extended force f̂ ¼ ½ p �q �T located at f = f0, and the image dislocation �b̂ and image force f̂ lo-
cated at f ¼ ��f0 interacting with an intact circular inhomogeneity as shown in Fig. 5. Here, we ignore the intermediate steps,
which are similar to but somewhat more complicated than those presented previously for the remote load case. The two
analytic function vectors – f1(f, t) defined in the inhomogeneity and f2(f, t) defined in the matrix – due to the action of a pie-
zoelectric screw dislocation located at z = z0 (or f = f0) in the matrix can be finally obtained as

f1ðf; tÞ ¼ C�1
1 H�1 ln½f� expðk1tÞf0� þM ln

f� f0

f� expðk1tÞf0

� �
b̂� iC�1

2 f̂
p

�C�1
1 ½H

�1 ln fþ expðk1tÞ�f0� þM ln
fþ �f0

fþ expðk1tÞ�f0

� �
b̂þ iC�1

2 f̂
p

;

ð41Þ

f2ðf; tÞ ¼ C�1
2 H�1 ln

f� expð�k1tÞR�f�1
0

f
þM ln

f� R�f�1
0

f� expð�k1tÞR�f�1
0

� �
b̂þ iC�1

2 f̂
p

�C�1
2 H�1 ln

fþ expð�k1tÞRf�1
0

f
þM ln

fþ Rf�1
0

fþ expð�k1tÞRf�1
0

" #
b̂� iC�1

2 f̂
p

þ b̂� iC�1
2 f̂

2p
lnðf� f0Þ �

b̂þ iC�1
2 f̂

2p
lnðfþ �f0Þ �

b̂þ iC�1
2 f̂

2p
ln

f� R�f�1
0

f
þ b̂� iC�1

2 f̂
2p

ln
fþ Rf�1

0

f
;

ð42Þ

where f0 ¼
ffiffiffiffiffi
z0
p

; z0 ¼ r0 expðih0Þ.
Eq. (41) implies that the solution in the inhomogeneity in the f-plane can be considered as the superposition of the fol-

lowing two static and two moving singularities in a homogeneous infinite piezoelectric plane with material property C1: (i)
an extended dislocation 2C�1

1 Mb̂ and an extended force 2MC�1
2 f̂ located at the static singular point f = f0; (ii) an extended

dislocation �2C�1
1 Mb̂ and an extended force 2MC�1

2 f̂ located at the static singular point f ¼ ��f0; (iii) an extended dislocation
2C�1

1 ðH
�1 �MÞb̂ and an extended force 2ðH�1 �MÞC�1

2 f̂ located at the moving singular point f = exp(k1t)f0; (iv) an extended
dislocation �2C�1

1 ðH
�1 �MÞb̂ and an extended force 2ðH�1 �MÞC�1

2 f̂ located at the moving singular point f ¼ � expðk1tÞ�f0.
Thus the sum of the extended forces applied at the above four singularities is 4H�1C�1

2 f̂ while the sum of the extended dis-
locations vanishes.

u

v

R

ζ0ζ−

ˆˆ ,−b f ˆˆ ,b f

Fig. 5. Illustration of the image singularity.

X. Wang et al. / International Journal of Solids and Structures 46 (2009) 203–216 211



Author's personal copy

Similarly, Eq. (42) implies that the solution in the matrix in the f-plane can be considered as the superposition of the
following five static and two moving singularities in a homogeneous infinite piezoelectric plane with material property
C2: (i) an extended dislocation b̂ and an extended force f̂ located at the original static singular point f = f0; (ii) an extended
dislocation �b̂ and an extended force f̂ located at the static singular point f ¼ ��f0; (iii) an extended dislocation
ð2C�1

2 M� IÞb̂ and an extended force ðI� 2MC�1
2 Þf̂ located at the static singular point f ¼ R�f�1

0 ; (iv) an extended dislocation
ðI� 2C�1

2 MÞb̂ and an extended force ðI� 2MC�1
2 Þf̂ located at the static singular point f ¼ �Rf�1

0 ; (v) an extended force
2ð2H�1C�1

2 � IÞf̂ located at the static singular point f = 0; (vi) an extended dislocation 2C�1
2 ðH

�1 �MÞb̂ and an extended force
�2ðH�1 �MÞC�1

2 f̂ located at the moving singular point f ¼ expð�k1tÞR�f�1
0 ; (vii) an extended dislocation �2C�1

2 ðH
�1 �MÞb̂

and an extended force �2ðH�1 �MÞC�1
2 f̂ located at the moving singular point f ¼ � expð�k1tÞRf�1

0 . Thus the sum of the
extended forces applied at the above seven singularities is 2f̂ while the sum of the extended dislocations vanishes.

Once we have obtained the complex potentials, the stress and electric displacement intensity factors at the crack tip can
be easily found as

KtipðtÞ ¼
Kr

tipðtÞ
KD

tipðtÞ

" #
¼ �

ffiffiffiffiffiffiffiffi
2

pr0

s
½H�1 expð�k1tÞ þM½1� expð�k1tÞ�� b̂ cos

h0

2
� C�1

2 f̂ sin
h0

2

� �
; ð43Þ

In addition, the image force acting on the screw dislocation can be obtained by employing the Peach–Koehler formula
(Ohr et al., 1985; Lee et al., 2000) and the obtained complex potentials above as

Fx � iFy ¼ ðb̂TC2 � if̂TÞN; ð44Þ

where Fx and Fy are, respectively, the x- and y-components of the image force, and N is given by

N ¼ C�1
2 H�1 expð�k1tÞR

z0½r0 � expð�k1tÞR� þM
Rr0½1� expð�k1tÞ�

z0ðr0 � RÞ½r0 � expð�k1tÞR�

� �
b̂þ iC�1

2 f̂
2p

þ C�1
2 H�1 expð�k1tÞR

z0½z0 þ expð�k1tÞR�

�

þM
R½1� expð�k1tÞ�

ðz0 þ RÞ½z0 þ expð�k1tÞR�

�
b̂� iC�1

2 f̂
2p

� b̂� iC�1
2 f̂

8p
z0 þ 3R

z0ðz0 þ RÞ �
b̂þ iC�1

2 f̂
4p

r0ðz0 þ RÞ
z0ðz0 þ r0Þðr0 � RÞ : ð45Þ

Particularly, when the screw dislocation is located on the positive x-axis in the matrix and f̂ ¼ 0, the image force on the
screw dislocation is reduced to

Fx ¼
b̂TH�1b̂

p
R expð�k1tÞ

r2
0 � expð�2k1tÞR2 �

D/2

pH22

R½1� expð�k1tÞ�½r2
0 þ expð�k1tÞR2�

ðr2
0 � R2Þ½r2

0 � expð�2k1tÞR2�
� b̂TC2b̂

4p
r2

0 þ 2Rr0 � R2

r0ðr2
0 � R2Þ

;

Fy ¼ 0: ðr0 P RÞ
ð46Þ

It can be shown that if the inhomogeneity and matrix have the same material property with the same poling direction, at
the initial moment t=0 the intensity factors at the crack tip and the image force on the dislocation will reduce to those
derived by Lee et al. (2000), [Eqs. (34), (35), (39), (40), (41) with Kr = KD = 0].

5. A piezoelectric screw dislocation in the inhomogeneity

In this section, we consider the loading case of a piezoelectric screw dislocation located in the inhomogeneity. Here, we
assume that p = q = 0 (or equivalently f̂ ¼ 0Þ. The two analytic function vectors – f1(f, t) defined in the inhomogeneity and
f2(f, t) defined in the matrix – due to a screw dislocation located at z = z0 (or f = f0) in the inhomogeneity can be finally ob-
tained as

f1ðf; tÞ ¼
C�1

1

p
H�1 ln

f� expðk1tÞR�f�1
0

fþ expðk1tÞRf�1
0

þM ln
ðf� R�f�1

0 Þ½fþ expðk1tÞRf�1
0 �

ðfþ Rf�1
0 Þ½f� expðk1tÞR�f�1

0 �

" #
b̂ ð47Þ

þ b̂
2p

ln
f� f0

fþ �f0
þ b̂

2p
ln

fþ Rf�1
0

f� R�f�1
0

;

f2ðf; tÞ ¼
C�1

2

p
H�1 ln

f� expð�k1tÞf0

fþ expð�k1tÞ�f0
þM ln

ðf� f0Þ½fþ expð�k1tÞ�f0�
ðfþ �f0Þ½f� expð�k1tÞf0�

� �
b̂: ð48Þ

Eq. (47) indicates that the solution in the inhomogeneity in the f-plane can be considered as the superposition of the fol-
lowing four static and two moving singularities in a homogeneous infinite piezoelectric plane with material property C1: (i)
an extended dislocation b̂ located at the original static singular point f = f0; (ii) an extended dislocation �b̂ located at the
static singular point f ¼ ��f0; (iii) an extended dislocation ðI� 2C�1

1 MÞb̂ located at the static singular point f ¼ �Rf�1
0 ; (iv)

an extended dislocation ð2C�1
1 M� IÞb̂ located at the static singular point f ¼ R�f�1

0 ; (v) an extended dislocation
2C�1

1 ðH
�1 �MÞb̂ located at the moving singular point f ¼ expðk1tÞR�f�1

0 ; (vi) an extended dislocation �2C�1
1 ðH

�1 �MÞb̂ lo-
cated at the moving singular point f ¼ � expðk1tÞRf�1

0 . Thus the sum of the extended dislocations applied at the above six
singularities vanishes.
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Similarly, Eq. (48) indicates that the solution in the matrix in the f-plane can be considered as the superposition of the
following two static and two moving singularities in a homogeneous infinite piezoelectric plane with material property
C2: (i) an extended dislocation 2C�1

2 Mb̂ located at the static singular point f = f0; (ii) an extended dislocation �2C�1
2 Mb̂

located at the static singular point f ¼ ��f0; (iii) an extended dislocation 2C�1
2 ðH

�1 �MÞb̂ located at the moving singular point
f = exp(�k1t)f0; (iv) an extended dislocation �2C�1

2 ðH
�1 �MÞb̂ located at the moving singular point f ¼ � expð�k1tÞ�f0. Thus,

the sum of the extended dislocations applied at the above four singularities vanishes. It is also observed that the solution
structure for a piezoelectric screw dislocation inside the inhomogeneity [see Eqs. (47) and (48)] is different than that for
a piezoelectric screw dislocation in the matrix [see Eqs. (41) and (42)]. This is true even when the semi-infinite crack is
absent and when the inhomogeneity–matrix interface is perfect (Deng and Meguid, 1999).

The stress and electric displacement intensity factors at the crack tip can be easily obtained as

KtipðtÞ ¼
Kr

tipðtÞ
KD

tipðtÞ

" #
¼ �

ffiffiffiffiffiffiffiffiffi
2r0

pR2

s
H�1 expð�k1tÞ þM½1� expð�k1tÞ� � C1

2

� �
þ C1ffiffiffiffiffiffiffiffiffiffiffi

2pr0
p

( )
b̂ cos

h0

2
: ð49Þ

In addition, the image force on the screw dislocation can be obtained by employing the Peach–Koehler formula and the
obtained complex potentials above as

Fx � iFy ¼ b̂TC1P; ð50Þ

where P is given by

P ¼ R
z0 þ r0

z0

C�1
1

2p
ðH�1 �MÞ expðk1tÞ

½r0 � expðk1tÞR�½z0 þ expðk1tÞR� þ
M

ðr0 � RÞðz0 þ RÞ

" #
b̂� b̂

8p
3z0 þ r0

z0ðz0 þ r0Þ
� b̂

4p
Rðz0 þ r0Þ

z0ðr0 � RÞðz0 þ RÞ : ð51Þ

Particularly, when the screw dislocation is located on the positive x-axis in the inhomogeneity, the image force on the
screw dislocation is given by

Fx ¼
b̂TH�1b̂

p
R expðk1tÞ

r2
0 � expð2k1tÞR2 �

D/2

pH22

R½1� expðk1tÞ�½r2
0 þ expðk1tÞR2�

ðr2
0 � R2Þ½r2

0 � expð2k1tÞR2�
� b̂TC1b̂

4p
r2

0 þ 2Rr0 � R2

r0ðr2
0 � R2Þ

;

Fy ¼ 0; ð0 6 r0 6 RÞ
ð52Þ

We observe that it is enough to replace �k1 with k1 in Eq. (46) to arrive at Eq. (52).

6. Extension to a wedge crack

In this section, we will look into the more general scenario where a semi-infinite insulating wedge crack of angle a
(0 6 a 6 p) is located in the composite system as shown in Fig. 6. When a = 0 the wedge crack will reduce to a semi-infinite
slit crack studied previously; When a = p the wedge crack becomes a straight boundary x = 0. It should be noticed that the
wedge crack problem also has some practical implications (Ohr et al., 1985).

The original boundary value problem can be more conveniently discussed by introducing the following conformal map-
ping function (Ohr et al., 1985)

z ¼ mðfÞ ¼ f1=q; ð53Þ

where q ¼ p
2p�a. The above mapping function can map the wedge cracked z-plane onto the right half-plane in the f-plane

(Re{f} P 0), as shown in Fig. 7. More specifically the wedge cracked circular inhomogeneity is mapped onto the half-circular
region |f| < Rq and Re{f} P 0 in the f-plane; the wedge cracked matrix is mapped onto |f| > Rq and Re{f} P 0 in the f-plane;
the inhomogeneity–matrix interface |z| = R is mapped onto the half- circle |f| = Rq and Re{f} P 0 in the f-plane.

We first consider the following remote loading

f2ðz; tÞ !
zq

qð2pÞ1�q C�1
2 K; as z!1 ð54Þ

where K ¼ Kr KD
� �T. Remember that the remote stress and electric displacement intensity factors Kr and KD are now

defined for a wedge crack of angle a (Ohr et al., 1985). At infinity the stresses and electric displacements behave as follows:

rð2Þzy ¼
Kr cos½ð1� qÞh�
ð2prÞ1�q ; rð2Þzx ¼ �

Kr sin½ð1� qÞh�
ð2prÞ1�q ;

Dð2Þy ¼
KD cos½ð1� qÞh�
ð2prÞ1�q ;Dð2Þx ¼ �

KD sin½ð1� qÞh�
ð2prÞ1�q ;

as r !1 ð55Þ
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The boundary conditions on the viscous interface jfj = Rq can be concisely expressed in terms of f1(f, t) defined in the inho-
mogeneity and f2(f, t) defined in the matrix as

C1fþ1 ðf; tÞ þ C1
�f�1

R2q

f
; t

 !
¼ C2f�2 ðf; tÞ þ C2

�fþ2
R2q

f
; t

 !
;

_f�2 ðf; tÞ �
_�fþ2

R2q

f
; t

 !
� _fþ1 ðf; tÞ þ

_�f�1
R2q

f
; t

 !
¼ KC1 ff 0þ1 ðf; tÞ �

R2q

f
�f 0�1

R2q

f
; t

 !" #
; ðj f j¼ RqÞ

ð56Þ

where

K ¼ q
gR

diag½1 0 �: ð57Þ

By ignoring the intermediate steps, the two analytic function vectors – f1(z, t) defined in the inhomogeneity and f2(z, t)
defined in the matrix – can be finally obtained as

f1ðz; tÞ ¼
2zq

qð2pÞ1�q C�1
1 ½H

�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1
2 K; ðj z j< RÞ ð58Þ

f2ðz; tÞ ¼
zqC�1

2 K

qð2pÞ1�q �
R2qz�q

qð2pÞ1�q C�1
2 ½I� 2½H�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1

2 �K; ðj z j> RÞ ð59Þ

where H and M are the same as those defined in previous sections, whereas k1 is different and is defined as follows:

k1 ¼
qH22

gRðH11H22 þ H2
12Þ

> 0: ð60Þ
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Fig. 6. Schematic of a semi-infinite wedge crack of angle a penetrating a piezoelectric circular inhomogeneity bonded to the surrounding piezoelectric
matrix through a linear viscous interface.
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It is observed that the value of the relaxation time for the wedge cracked composite system is 1/q times than that for the
same composite system without wedge crack. The stress and electric displacement intensity factors at the tip of the wedge
crack is

KtipðtÞ ¼
Kr

tipðtÞ
KD

tipðtÞ

" #
¼ 2½H�1 expð�k1tÞ þM½1� expð�k1tÞ��C�1

2 K: ð61Þ

It is of interest to observe that the above expression is very similar to Eq. (36) for a semi-infinite crack (a = 0) except that
now k1 is defined by Eq. (60). The intensity factors for a wedge crack decay faster than those for a slit crack due to the fact
that the relaxation time for a wedge crack is smaller than that for a slit crack. The displacement jump along the inhomoge-
neity–matrix interface r = R can be obtained as

wð2Þ �wð1Þ ¼ sinðqhÞ½1� expð�k1tÞ� 2Rq

qð2pÞ1�q

ðH222ð2Þ11 þ H12eð2Þ15 ÞK
r þ ðH22eð2Þ15 � H12cð2Þ44 ÞK

D

H22~cð2Þ442
ð2Þ
11

; ð62Þ

which indicates that at a certain fixed time the magnitude of the displacement jump across the viscous interface attains its
maximum when the interface intersects the semi-infinite wedge crack at h = ±(p � a/2).

When a screw dislocation is located in the matrix or in the inhomogeneity, it is enough to replace R by R2q in Eqs. (41),
(42), (47) and (48) to arrive at f1(f, t) and f2(f, t) for the wedge crack problem while keeping in mind that now f0 ¼ zq

0 and k1 is
defined by Eq. (60). It is not difficult to derive the stress and electric displacement intensity factors at the tip of the wedge
crack and the image force acting on the screw dislocation.

7. Conclusions

A theoretical analysis was carried out for a semi-infinite crack (or wedge crack of angle a) half-way penetrating a piezo-
electric circular inhomogeneity with a viscous interface in the presence of a screw dislocation either in the inhomogeneity or
in the surrounding matrix. The characteristic time for the composite system in the presence of a semi-infinite crack is twice
as that for the same composite system without crack. In the more general scenario, the characteristic time for the composite
system in the presence of a semi-infinite wedge crack of angle a (0 6 a 6 p) is (2 � a/p) times than that for the same com-
posite system without wedge crack. The generality of the present model lies in that some previously proposed models
(Majumdar and Burns, 1981; Ohr et al., 1985; Steif, 1987; Lee et al., 2000; Chen et al., 2002a) can be considered as special
cases of the present model. In this investigation we only addressed the so-called insulating crack or wedge crack. In fact the

ζ

u

v

qR

0

Fig. 7. The mapped f-plane by using z = f1/q for the semi-infinite wedge crack problem in z-plane.
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problems of a conducting crack (Wang et al., 2003) and a conducting rigid line (anti-crack) (Chen et al., 2002b) can also be
discussed similarly. When we discuss crack-tip shielding due to microcracking, the simple inhomogeneity model adopted
here is not enough. A more realistic model would have the electromechanical moduli varying smoothly with distance from
the crack tip until the uncracked moduli are reached (Steif, 1987). In this case an interesting problem to be solved is how the
characteristic time for the composite system is influenced by the radially varying moduli within the circular inhomogeneity.
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