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On Partially Debonded Circular
Inclusions in Finite Plane
Elastostatics of Harmonic
Materials
We investigate a partially debonded circular elastic inclusion embedded in a particular
class of harmonic materials by using the complex variable method under finite plane-
strain deformations. A complete (or full-field) solution is derived. It is observed that the
stresses in general exhibit oscillatory singularities near the two tips of the arc shaped
interface crack. Particularly the traditional inverse square root singularity for stresses is
observed when the asymptotic behavior of the harmonic materials obeys a constitutive
restriction proposed by Knowles and Sternberg (1975, “On the Singularity Induced by
Certain Mixed Boundary Conditions in Linearized and Nonlinear Elastostatics,” Int. J.
Solids Struct., 11, pp. 1173–1201). It is also found that the number of admissible states
under finite plane deformations for given external loads can be two, one, or even zero.
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Introduction
The problem of a circular arc shaped crack lying along the

nterface of an elastic inclusion is a classical one and has received
onsiderable amount of attention �1–4�. In these studies, the
ixed-boundary value problem was formulated on the basis of the

omplex variable approach and was finally reduced to an inhomo-
eneous Riemann–Hilbert problem whose exact solution can be
asily derived. These studies show that the stresses near the tips of
n interface arc crack still exhibit the same oscillatory singulari-
ies as those obtained for a straight crack between dissimilar me-
ia �5,6�. In previous investigations �1,4�, the problem of an arc
haped interfacial crack was solved within the framework of lin-
ar elastostatics. In contrast, an exact solution to the analogous
roblem in finite elasticity is still absent.

An elegant complex variable formulation of a class of problems
nvolving the finite plane-strain deformations of a set of com-
ressible hyperelastic materials of harmonic type was recently de-
eloped �7�. The complex variable formulation �7� has also been
pplied to �i� get a complete solution for a planar interface crack
etween two half-planes occupied by two dissimilar harmonic ma-
erials �7�, �ii� obtain a complete solution for an elliptical inclu-
ion with uniform interior stress field perfectly bonded to a matrix
f harmonic materials under any uniform remote stress distribu-
ion �8�, �iii� identify the harmonic shapes for harmonic materials
9�, and �iv� analyze the surface instability of a harmonic solid
ttracted by a rigid body through the influence of van der Waals
orces �10�.

The objective of the present work is to investigate in detail a
wo-dimensional crack along the interface of a circular elastic
nclusion embedded in an unbounded matrix of harmonic materi-
ls loaded by remote uniform Piola stresses. By using the complex
ariable method, the original mixed-boundary value problem is
nally reduced to an inhomogeneous Riemann–Hilbert problem. It

s found that the Piola stresses near the tips of the arc interface
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crack still exhibit the oscillatory singularities as those obtained for
a straight crack �7�. Particularly the conventional inverse square
root singularity for stresses near the tips of the interface arc crack
is still observed when the asymptotic behavior of the harmonic
materials obeys a constitutive restriction proposed by Knowles
and Sternberg �11�.

2 Basic Formulations
Let the complex variable z=x1+ ix2 be the initial coordinates of

a material particle in the undeformed configuration and w�z�
=y1�z�+ iy2�z� be the corresponding spatial coordinates in the de-
formed configuration. The deformation gradient tensor is defined
as

Fij =
�yi

�xj
�1�

For a particular class of harmonic materials, the strain energy
density W defined with respect to the undeformed unit area can be
expressed by

W = 2��F�I� − J�, F��I� =
1

4�
�I + �I2 − 16��� �2�

Here I and J are the scalar invariants of FFT given by

I = �1 + �2 = �FijFij + 2J, J = �1�2 = det�F� �3�

where �1 and �2 are the principal stretches, � is the shear modu-
lus, and 1 /2���1, ��0 are two material constants. This spe-
cial class of harmonic materials has attracted considerable atten-
tion �12,13�.

According to the formulation developed by Ru �7�, the defor-
mation w�z� can be written in terms of two analytic functions ��z�
and 	�z� as

iw�z� = ���z� + i	�z� +
�z

���z�
�4�
and the complex Piola stress function 
�z� is given by
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�z� = 2i���� − 1���z� + i	�z� +
�z

���z�� �5�

In addition, the Piola stress components can be written in terms
f the Piola stress function 
 as

− �21 + i�11 = 
,2, �22 − i�12 = 
,1 �6�

Complete Solution for a Partially Debonded Circu-
ar Inclusion

As shown in Fig. 1, we consider a circular inclusion of radius R
artially bonded to an infinite matrix. We take the origin at the
enter of the inclusion and assume that an interfacial arc crack,
hose surface is traction-free, is made along the arc Lc of the

nterface while along the remaining arc Lb the inclusion is still
erfectly bonded to the matrix. Furthermore, let the center of the
rc Lc lie on the positive x1-axis and the central angle subtended
y the arc Lc is 2�0. a=Rei�0 and b=Re−i�0 are two crack tips. The
lastic materials occupying the inclusion and the matrix belong to
he special class of harmonic materials characterized by Eq. �2�
ith the associated elastic constants �1, �1, and �1 and �2, �2,

nd �2, respectively. The composite system is assumed to be un-
er the remote uniform Piola stresses �11


 , �22

 , �12


 , and �21

 .

hroughout this paper, all physical quantities associated with the
ircular inclusion and unbounded matrix are identified by the sub-
cripts 1 and 2, respectively.

The continuity condition of tractions across the total interface
z�=R can be expressed as

���1 − 1��1
+�z� + i�	̄1

−�R2/z� +
��1z

�̄1�
−�R2/z�

= ��2 − 1��2
−�z� + i	̄2

+�R2/z� +
�2z

�̄�+�R2/z�
, ��z� = R� �7�

Fig. 1 An arc crack along the interfa
matrix
2
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where �=�1 /�2, and the superscripts “+” and “−” denote the
limit values from the inner and outer sides of the interface �z�=R,
respectively.

It follows from Eq. �7� that

���1 − 1��1
+�z� − i	̄2

+�R2/z� −
�2z

�̄2�
+�R2/z�

= ��2 − 1��2
−�z� − i�	̄1

−�R2/z� −
��1z

�̄1�
−�R2/z�

, ��z� = R� �8�

At infinity, it is assumed that the remote Piola stresses are uni-
form. Then �2�z� and 	2�z� exhibit the following asymptotic be-
havior:

�2�z� = Az + o�1�, 	2�z� = Bz + o�1�, �z� → 
 �9�

where the two complex constants A and B are related to the re-
mote Piola stresses �11


 ,�22

 ,�12


 , and �21

 through the following

relations:

− �21

 + i�11


 = 2�2��1 − �2�A + iB̄ −
�2

Ā
�

i�22

 + �12


 = 2�2��1 − �2�A − iB̄ −
�2

Ā
� �10�

In view of Eqs. �8� and �9�, we now define the following new

between a circular inclusion and the
ce
function ��z� as
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��z� = 	���1 − 1��1�z� − i	̄2�R2/z� −
�2z

�̄2��R
2/z�

+ � ��1

�1��0�
− ��2 − 1�A�z + iB̄R2z−1, �z� � R

��2 − 1��2�z� − i�	̄1�R2/z� −
��1z

�̄1��R
2/z�

+ � ��1

�1��0�
− ��2 − 1�A�z + iB̄R2z−1, �z� � R
 �11�
It is apparent that ��z� is continuous across the interface �z�
R and then analytic in the whole plane including the points at
ero and at infinity. Consequently, ��z�=0. As a result we arrive
t the following relationships:

i	̄2�R2/z� +
�2z

�̄2��R
2/z�

= ���1 − 1��1�z�

+ � ��1

�1��0�
− ��2 − 1�A�z + iB̄R2z−1

�12a�

i	̄1�R2/z� +
�1z

�̄1��R
2/z�

= �−1��2 − 1��2�z�

+ � �1

�1��0�
− �−1��2 − 1�A�z + i�−1B̄R2z−1

�12b�

The traction-free condition of the cracked part Lc of the inter-
ace can be expressed as

��1 − 1��1
+�z� + i	̄1

−�R2/z� +
�1z

�̄1�
−�R2/z�

= 0, z � Lc �13�

Substituting the result of Eq. �12b� into Eq. �13� yields

��1 − 1��1
+�z� + �−1��2 − 1��2

−�z� + � �1

�1��0�
− �−1��2 − 1�A�z

+ i�−1B̄R2z−1 = 0, z � Lc �14�

In view of Eq. �14�, we introduce an auxiliary function h�z�
efined by

�z�

= 	��1 − 1��1�z� +
�1

�1��0�
z , �z� � R

�−1�1 − �2��2�z� + �−1��2 − 1�Az − i�−1B̄R2z−1, �z� � R



�15�

Apparently h�z� is holomorphic in �z��R and �z��R, respec-
ively. h�z�=o�1� as �z�→
. Furthermore,

h+�z� − h−�z� = 0, z � L �16�
c
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The continuity condition of displacements across the bonded
part Lb of the interface can be expressed as

�1�1
+�z� + i	̄1

−�R2/z� +
�1z

�̄1�
−�R2/z�

= �2�2
−�z� + i	̄2

+�R2/z�

+
�2z

�̄2�
+�R2/z�

, z � Lb

�17�
Utilizing Eqs. �12� and �15�, the above expression can be

equivalently expressed in terms of h�z� as

h+�z� + kh−�z� =
�1 − 1

�1 − ���1 − 1�� �1

��1 − 1��1��0�
+ A�z

−
iB̄R2��1 − 1�

��2 − 1���1 − ���1 − 1��
z−1, z � Lb

�18�
where

k =
�1 − �1����2 + �1 − �2��
�1 − �2���1 + ��1 − �1��

� 0 �19�

Therefore, it is observed that the stresses near the two crack tips
a=Rei�0 and b=Re−i�0 exhibit oscillatory singularities, a phenom-
enon in agreement with that observed for a planar interface crack
�7�.

If we choose �1=�2=1 /2 for the situation in which F��I� / I
approaches unity as I tends to infinity �7,11�, then Eq. �18� sim-
plifies to

h+�z� + h−�z� =
1

1 + �
� 2�1

�1��0�
− A�z −

2iB̄R2

1 + �
z−1, z � Lb

�20�
The solution to the inhomogeneous Riemann–Hilbert problem

�i.e., Eqs. �16� and �20�� can be expediently given by

h�z� =
1

1 + �
� �1

�1��0�
−

A

2
��z − X�z�� −

iB̄R2

1 + �
�z−1 − z−1X−1�0�X�z��

�21�

where the multivalued function X�z�=��z−a��z−b� is discontinu-
ous across the bonded part Lb of the interface, and X�z�=z+o�1�
as �z�→
. It follows from the above result and Eq. �15� that
�1�z� = −
2

1 + �
� �1

�1��0�
−

A

2
��z − X�z�� +

2iB̄R2

1 + �
�z−1 − z−1X−1�0�X�z�� +

2�1

�1��0�
z , ��z� � R�

�2�z� =
2�

1 + �
� �1

�1��0�
−

A

2
��z − X�z�� −

2i�B̄R2

1 + �
�z−1 − z−1X−1�0�X�z�� + 2iB̄R2z−1 + Az , ��z� � R�

�22�

Once �1�z� and �2�z� are determined, the other two analytic functions 	1�z� and 	2�z� can be determined from Eq. �12� as
JANUARY 2009, Vol. 76 / 011012-3
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	1�z� = i�−1��2 − 1��̄2�R2/z� −
i�1R2

z�1��z�
+ i� �1

�1��0�
− �−1��2 − 1�Ā�R2z−1 + �−1Bz , ��z� � R�

	2�z� = i���1 − 1��̄1�R2/z� −
i�2R2

z�2��z�
+ i� ��1

�1��0�
− ��2 − 1�Ā�R2z−1 + Bz , ��z� � R�

�23�
Now the unknown �1��0� has to be determined by the following
quation:

�1��0� −
2�1�X��0� + ��

1 + �

1

�1��0�
=

A�1 − X��0��
1 + �

−
iB̄R2

1 + �

X��0�
X�0�

�24�
here
inclusion is

11012-4 / Vol. 76, JANUARY 2009
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X�0� = R, X��0� = − cos �0, X��0� =
sin2 �0

R
�25�

Next we discuss the roots to Eq. �24� according to the three
cases: ��cos �0, �=cos �0, and ��cos �0.

• X��0�+��0 �or ��cos �0�
In this case there exist two distinct roots for ���0�.
1
��1��0�� =
�A�1 + cos �0� − iB̄ sin2 �0� + ��A�1 + cos �0� − iB̄ sin2 �0�2 + 8�1�1 + ���� − cos �0�

2�1 + ��

arg
�1��0�� = arg
A�1 + cos �0� − iB̄ sin2 �0� �26a�
or

��1��0�� =
− �A�1 + cos �0� − iB̄ sin2 �0� + ��A�1 + cos �0� − iB̄ sin2 �0�2 + 8�1�1 + ���� − cos �0�

2�1 + ��

arg
�1��0�� = arg
A�1 + cos �0� − iB̄ sin2 �0� − � �26b�
• X��0�+�=0 �or �=cos �0�

In this case there exists only one single root for �1��0�.

�1��0� = A −
iB̄ sin2 �0

1 + cos �0
�27�

• X��0�+��0 �or ��cos �0�
This case includes three subcases.

• If �A�1+cos �0�− iB̄ sin2 �0��2�2�1�1+���cos �0−��, then there also exist two roots for �1��0�.

��1��0�� =
�A�1 + cos �0� − iB̄ sin2 �0� � ��A�1 + cos �0� − iB̄ sin2 �0�2 + 8�1�1 + ���� − cos �0�

2�1 + ��

arg
�1��0�� = arg
A�1 + cos �0� − iB̄ sin2 �0� �28�
• If �A�1+cos �0�− iB̄ sin2 �0�=2�2�1�1+���cos �0−��, then
there exists only one root for �1��0�.

�1��0� =
A�1 + cos �0� − iB̄ sin2 �0

2�1 + ��
�29�

• If �A�1+cos �0�− iB̄ sin2 �0��2�2�1�1+���cos �0−��,
then there is no possible root for �1��0�.

Due to the fact that the mean Piola stress within the cir-
cular inclusion is given by �9�

�11 + �22 = 4�1 Im��1 − �1��1��z� +
�1

�1��z��, ��z� � R�

�30�
Then the average mean Piola stress within the circular
��11 + �22�average = 4�1 Im��1 − �1��1��0� +
�1

�1��0��
�31�

It is observed from the above expression that the average
mean Piola stress within the circular inclusion is closely
related with �1��0�.

4 Complete Solution for a Perfectly Bonded Circular
Inclusion

If the circular inclusion is perfectly bonded to the matrix, then
the two pairs of analytic functions �1�z� ,	1�z� and �2�z� ,	2�z�

can be easily determined to be
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�1�z� =

A −
�1 − ���1

�1��0�
�1 + ��1 − �1�

z, 	1�z� =
B

��2 + �1 − �2�
z, ��z� � R�

�32�

�2�z� = Az −
i�� − 1�B̄R2

��2 + �1 − �2�
z−1, 	2�z� = Bz + i�� �1

�1 + ��1 − �1�

− �2�Ā +
��1

�1 + ��1 − �1�
1

�1��0��R2z−1

−
i�2R2z

Az2 +
i�� − 1�B̄R2

��2 + �1 − �2�

, ��z� � R� �33�

It then follows from Eq. �32� that stresses are uniform within
he perfectly bonded circular inclusion. The uniformity of stresses
ithin a more general elliptical inclusion has been observed by Ru

t al. �8�. The unknown �1��0� in Eqs. �32� and �33� can be deter-
ined by the following equation.

�1��0� +
�1 − ���1

�1 + ��1 − �1�
1

�1��0�
=

A

�1 + ��1 − �1�
�34�

In the following, we discuss the roots to Eq. �34� for the three
ases: ��1 �the inclusion is stiffer than the matrix�, �=1 �the
nclusion and the matrix have the same shear modulus�, and �

1 �the inclusion is softer than the matrix�.

• ��1 �the inclusion is stiffer than the matrix�
In this case there are two roots for �1��0�.

��1��0�� =
�A� + ��A�2 + 4��1 + ��1 − �1���� − 1��1

2��1 + ��1 − �1��

arg
�1��0�� = arg
A� �35a�
or

��1��0�� =
− �A� + ��A�2 + 4��1 + ��1 − �1���� − 1��1

2��1 + ��1 − �1��

arg
�1��0�� = arg
A� − � �35b�
• �=1 �the inclusion and matrix have the same shear

modulus�
In this case there is only one root for �1��0�.

�1��0� = A �36�
• ��1 �the inclusion is softer than the matrix�

This case includes three subcases.

• If �A��2���1+��1−�1���1−���1, then there also exist two
roots for �1��0�.

��1��0�� =
�A� � ��A�2 − 4��1 + ��1 − �1���1 − ���1

2��1 + ��1 − �1��

arg
�1��0�� = arg
A� �37�
• If �A�=2���1+��1−�1���1−���1, then there exists only

one root for �1��0�.

�1��0� =
A

2��1 + ��1 − �1��
�38�

• If �A��2���1+��1−�1���1−���1, then there is no possible
root for �1��0�.

Finally if we let � =0 �there is no crack on the interface�
0
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in Eq. �24�, and let �1=�2=1 /2 in Eq. �34�, then Eqs. �24�
and �34� will both reduce to the following equation.

�1��0� +
2�1�1 − ��

1 + �

1

�1��0�
=

2A

1 + �
�39�

which partially verifies the correctness of both Eqs. �24�
and �34�.

5 Conclusions
We have investigated the finite plane-strain deformation of a

circular elastic inclusion bonded partially to an unbounded matrix.
The elastic materials occupying the inclusion and the matrix be-
long to the class of harmonic materials. A complete solution to the
arc interface crack problem is derived by means of the complex
variable method. During the derivation, we focus on the case �1
=�2=1 /2 in which the oscillatory singularity will disappear. We
also present the complete solution for a circular inclusion per-
fectly bonded to the matrix. The results show that:

• When one of the two conditions �i� ��cos �0

or �ii� ��cos �0 and �A�1+cos �0�− iB̄ sin2 �0�
�2�2�1�1+���cos �0−�� is satisfied, it is possible to find
two different states under finite plane deformations for the
given remote uniform Piola stresses.

• When one of the two conditions �i� �=cos �0

or �ii� ��cos �0 and �A�1+cos �0�− iB̄ sin2 �0�
=2�2�1�1+���cos �0−�� is satisfied, there exists only one
possible state under finite plane deformations for the given
remote uniform Piola stresses.

• Otherwise when the condition ��cos �0 and �A�1
+cos �0�− iB̄ sin2 �0��2�2�1�1+���cos �0−�� is met,
there exists no possible state under finite plane deformations
for the given remote uniform Piola stresses.
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