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a b s t r a c t

In this paper, we present the dual boundary element method (dual-BEM) or single-domain BEM to

analyze the mixed three-dimensional (3D) stress intensity factors (SIFs) in a finite and transversely

isotropic solid containing an internal square crack. The planes of both the transverse isotropy and square

crack can be oriented arbitrarily with respect to a fixed global coordinate system. A set of four special

nine-node quadrilateral elements are utilized to approximate the crack front as well as the outer

boundary, and the mixed 3D SIFs are evaluated using the asymptotic relation between the SIFs and the

relative crack opening displacements (COD) via the Barnett–Lothe tensor.

Numerical examples are presented for a cracked cuboid which is transversely isotropic with any

given orientation and is under a uniform vertical traction on its top and bottom surfaces. The square

crack is located in the center of the cuboid but is oriented arbitrarily. Our results show that among the

selected material and crack orientations, the mode-I SIF reaches the largest possible value when

the material inclined angle c1 ¼ 451 and dig angle b1 ¼ 451, and the crack inclined angle c2 ¼ 01 and dig

angle b2 ¼ 01. It is further observed that when the crack is oriented vertically or nearly vertically, the

mode-I SIF becomes negative, indicating that the crack closes due to an overall compressive loading

normal to the crack surface. Variation of the SIFs for modes II and III along the crack fronts also shows

some interesting features for different combinations of the material and crack orientations.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Rock fracture mechanics is essentially an extension of the
classic fracture mechanics in solids [1,2], which recognizes the
importance of the stress intensity near a crack tip. Irwin [2]
introduced the stress intensity factors (SIFs) to describe the stress
and displacement fields near a crack tip. As is well known, there
are three basic crack propagation modes in the fracture process:
opening (mode I), sliding (mode II), and tearing (mode III), and
furthermore, mechanical safety of a solid elastic structure can be
analyzed based on these SIFs. Therefore, determination of SIFs
near the crack front in linear elastic fracture mechanics has been
always an interesting but challenging task. While most previous
studies in SIFs were focused on one or two fracture modes, mixed
three-dimensional (3D) modes need to be considered as materials
could mostly fail under combined tensile/compressive, shearing,
and tearing loads. For 3D isotropic elastic materials, Singh et al. [3]
obtained the SIFs using the concept of a universal crack closure
ll rights reserved.

Chen),
integral. For transversely isotropic, orthotropic, and anisotropic
solids, Pan and Yuan [4] presented the general relationship
between the SIF and the relative crack opening displacement
(COD). Lazarus et al. [5] compared the calculated SIFs with
experimental results for brittle solids under mixed mode I–III or
I–II–III loadings. The 3D SIFs were also calculated by Zhou et al. [6]
using the variable-order singular boundary element. More
recently, Yue et al. [7] employed the dual boundary element
method (dual-BEM) in their calculation of the 3D SIFs of an
inclined square crack within a bi-material cuboid. We point out
that the dual-BEM was originally proposed by Hong and Chen [8]
as reviewed in [9]. Other recent representative works in this
direction are those by Ariza and Dominguez [10], Liu et al. [11],
Hatzigeorgiou and Beskos [12], Partheymüller et al. [13], Popov
et al. [14], Zhao et al. [15], Lo et al. [16], dell’Erba and Aliabadi [17],
and Blackburn [18]. The weakly singular and weak-form integral
equation method recently proposed by Rundamornrat [19] and
Rungamornrat and Mear [20] is also very efficient in crack analysis
in anisotropic media. Besides the analytical (integral equation)
and BEM methods [21], other common methods, such as the
finite difference (FD) [22–24] and the finite element (FE) [25,26],
were also applied for 3D SIF analysis. Since both the FD and FE
methods require discretization of the whole problem domain,
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these methods could be time consuming and more expensive than
the BEM in fracture analysis.

In this paper, we apply the dual-BEM or the single-domain BEM
to analyze the mixed 3D SIFs in a finite and transversely isotropic
solid containing an internal square crack. Both the transversely
isotropic plane and square crack plane can be oriented arbitrarily
with respect to a fixed global coordinate system. A set of special
nine-node quadrilateral elements are utilized to approximate
the crack surface as well as the outer boundary, and the mixed
3D SIFs are evaluated using the asymptotic relation between the
SIFs and the relative CODs via the Barnett–Lothe tensor. Our
numerical examples show clearly the strong dependence of 3D
SIFs on both the material and crack orientations, and these results
could be useful in fracture analysis and design of anisotropic
elastic solids.

The paper is organized as follows: in Section 2, we briefly
present the required basic equations, including the related local
and global coordinate systems. In Section 3, the two important
BEM equations are presented for the modeling of a cracked
3D anisotropic cuboid: One is the displacement BEM and another
is the traction BEM. The special crack front elements and
the corresponding formulation for the mixed SIF calculation are
presented in Section 4, and detailed numerical results are
discussed in Section 5. Finally, conclusions are drawn in Section 6.
2. Basic equations

We consider a transversely isotropic elastic finite domain with
arbitrarily oriented transverse isotropy plane. Inside this domain,
there is a central square crack, which is also oriented arbitrarily.
First, shown in Fig. 1 is the relation between the global
coordinates (x, y, z) or (x1, x2, x3) and the local transversely
isotropic material coordinate system x0, y0, and z0, where z0 is
along the symmetry axis of the material, and (x0�y0) is parallel to
the isotropic plane. The inclined angle c1 is defined as the angle
between the global horizontal plane and the isotropic plane of the
material, and the dip orientation b1 is defined as the angle
between the inclined angle plane and the global y-axis.
z (x3)

x (x1)

y (x2)

x′

y′

z′
o

�1

�1

Fig. 1. Relation between the local (x0 , y0, z0) and global (x, y, z) coordinate systems

where the local z0-axis is along the symmetry axis of the transversely isotropic

material. In other words, the local (x0 , y0)-plane is parallel to the isotropic plane of

the material; c1 is the inclined angle between the global horizontal plane (x, y) and

the local isotropic plane (x0 , y0); b1 is the dip orientation between the global y-axis

and the include plane.
It is obvious that the transformation between the local (x0, y0, z0)
and global (x, y, z) coordinates can be described by the following
relation:
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To solve the problem using the BEM formulation, we first
present the governing equations in linear elasticity.
(1)
 Equations of equilibrium:

sij;j þ bi ¼ 0; i; j ¼ 1;2;3 (2)

where sij is the stress tensor; bi the body force component;
and subscript ‘‘,j’’ denotes partial differentiation with respect
to the global coordinates x, y, and z.
(2)
 Constitutive relation:

½�� ¼ ½a�½s� (3)

where

½�� ¼ ½�11; �22; �33;2�23;2�13;2�12�
t (4)

is the strain in the column matrix form, and

½s� ¼ ½s11;s22;s33;s23;s13;s12�
t (5)

is the stress in the column matrix form. Also in Eq. (3), [a] is
the elastic compliance matrix of the anisotropic elastic solid.
For the transversely isotropic material, there are five inde-
pendent elastic parameters (E, E0, n, n0, and G0) in the matrix
[a]. The definitions of these moduli are: E and E0 are the
Young’s moduli in the plane of transverse isotropy and in a
direction normal to it, respectively; n and n0 are the Poisson’s
ratios characterizing the lateral strain response in the plane of
transverse isotropy to a stress acting parallel and normal to it,
respectively; G0 is the shear modulus normal to the plane of
transverse isotropy. Furthermore, the shear modulus G in the
plane of transverse isotropy is equal to E/(2(1+n)). For the
transversely isotropic material oriented arbitrarily with
respect to the global coordinate system, the matrix [a] will
also be a function of the inclined angle c1 and dip orientation
b1. As an example, Appendix A lists the elements of [a] when
b1 ¼ 0 [27]. It is further observed from Appendix A that the
coefficients a15, a25, a35, and a46 are zero when c1 is equal to
01 or 901.
(3)
 Strain–displacement relation:

�ij ¼ 0:5ðui;j þ uj;iÞ; i; j ¼ 1;2;3 (6)

where ui are the elastic displacements.
3. Single-domain boundary integral equations

We now present the basic relations in the boundary
element analysis for fracture problems in linear elasticity. It is
based on the dual-BEM [8,9] or the single-domain BEM [28]
approach.

We assume that the finite domain under consideration is free
of any body force (i.e., bi ¼ 0 in Eq. (2)) and is bounded by an outer
boundary S with given boundary conditions. Inside its domain,
there is a crack described by its surface G (where G ¼ G+

¼ –G�,
with superscripts ‘‘+’’ and ‘‘�’’ denoting the positive and negative
sides of the crack). We further assume that the tractions on both
sides of the crack are equal and opposite. Then the single-domain
BEM formulation consists of the following displacement and
traction boundary integral equations [29].
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(1)
 Displacement boundary integral equations

bijujðySÞ þ

Z
S

T�ijðyS;xSÞujðxSÞdSðxSÞ �

Z
S

U�ijðyS;xSÞTjðxSÞdSðxSÞ

¼ �

Z
G

T�ijðyS;xGþ Þ½ujðxGþ Þ � ujðxG� Þ�dGðxGþ Þ (7)

where bij are coefficients that depend only on the local
geometry of the uncracked boundary at yS. A point on the
positive (or negative) side of the crack is denoted by xGþ (or
xG� ), and on the uncracked boundary by both xS and yS. Also
in Eq. (7), uj and Tj represent the displacements and tractions
on the boundary (or crack surface), and U�ij and T�ij are the
Green’s functions for displacements and tractions in a general
anisotropic elastic solid [4], respectively. A practical material
case that will be studied in detail in this paper is the
transversely isotropic material with arbitrary material orien-
tation with respect to the global coordinates. We also point
out that the first integral on the left-hand side of Eq. (7) has a
strong singularity, which will be treated by the rigid-body
motion method. At the same time, the calculation of bij can
also be avoided. The second term on the left-hand side has
only a weak singularity, and thus, is integrable.
(2)
Fig. 2. Four different types of elements for the uncracked boundary and the crack

surface.
Traction boundary integral equations

½TlðyGþ Þ � TlðyG� Þ�

2
þ nmðyGþ Þ

�

Z
S

clmikT�ij;kðyGþ ;xSÞujðxSÞdSðxSÞ þ nmðyGþ Þ

�

Z
G

clmikT�ij;kðyGþ ;xGþ Þ½ujðxGþ Þ � ujðxG� Þ�dGðxGþ Þ

¼ nmðyGþ Þ

Z
S

clmikU�ij;kðyGþ ;xSÞTjðxSÞdSðxSÞ (8)

where nm is the unit outward normal of the positive side of
the crack surface at yGþ and clmik is the fourth-order stiffness
tensor of the anisotropic medium; U�ij;k and T�ij;k are the
derivatives of the Green’s displacements and tractions with
respect to the source point, respectively [30].
Eqs. (7) and (8) form a pair of boundary integral equations,
called single-domain BEMs, and they can be applied to generally
anisotropic media. They can be discretized and solved numerically
for unknown boundary displacements (or the relative CODs on the
crack surface) and tractions. However, before we apply these
single-domain BEMs to calculate the mixed SIFs, we first briefly
present the special elements and the approach for the evaluation
of 3D SIF.
4. Different types of boundary/crack elements
and SIF expressions

In order to discretize both the boundary and crack surface, the
nine-node quadrilateral curved elements are used [4]. There are
four types of elements, with type I for the uncracked boundary or
the interior of the crack surface, and the other three types for
different crack fronts (types II–IV), as shown in Fig. 2.

First, the global coordinates xi at any point within the element
are expressed as

xi ¼
X9

j¼1

fjx
j
i; i ¼ 1;2;3 (9)

where the subscript i denotes the component of nodal coordinates
and the superscript j denotes the number of nodes. The shape
functions fj (j ¼ 1–9) are functions of the intrinsic coordinates
(x1, x2), and their expressions for different elements are listed in
Appendix B.
Similarly, the displacements ui, and traction Ti on the
uncracked boundary, and the relative COD Dui (Dui ¼ uGþ

i � uG�
i )

on the crack surface can be approximated as

ui ¼
X9

j¼1

fju
j
i; Ti ¼

X9

j¼1

fjT
j
i; Dui ¼

X9

j¼1

fjDuj
i,

i ¼ 1;2;3 (10)

However, for the relative COD on the crack element near a crack
front, weight functions need to be multiplied for accurate
evaluation of the SIFs. It is well known that for a crack in a
homogeneous and anisotropic solid, the relative COD is propor-
tional to

ffiffiffi
r
p

, where r is the distance behind the crack tip (front).
Therefore, for element types II–IV (Fig. 2), we employ the
following approximation for the relative COD:

Dui ¼
X9

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ x2Þ

p
fj Duj

i; i ¼ 1;2;3 (11)

Dui ¼
X9

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ x1Þð1þ x2Þ

p
fj Duj

i; i ¼ 1;2;3 (12)

Dui ¼
X9

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x1Þð1þ x2Þ

p
fj Duj

i; i ¼ 1;2;3 (13)

where the corresponding shape functions fj given in Appendix B
should be used correspondingly.

Once the relative CODs are solved in the global coordinates,
they can be transformed to the local coordinates (or the
crack-tip coordinates) to find the SIFs. Assume that the
crack front is smooth and that the crack tip is away from
the corner; then the singular term in the asymptotic expansion
of the displacement field near the crack tip (front) satisfies the
generalized plane strain condition in the local coordinates.
Actually, if we let r be the distance behind the crack front,
then in terms of the relative CODs in the crack-tip coordinate, the
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three SIFs can be expressed as follows:

K II

K I

K III

8><
>:

9>=
>; ¼ 2

ffiffiffiffiffi
2r

p

r
L�1

Du1

Du2

Du3

8><
>:

9>=
>;, (14)

where L is the Barnett–Lothe tensor [31], which depends
only on the anisotropic properties of the solid in the crack
front coordinates. The normalized SIFs (FI, FII, and FIII) can be
W
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Fig. 3. A central square crack (ABCD: 2a�2a) within a finite cuboid W�W�H

under a uniform normal stress T in the vertical direction. The orientation of the

square crack is described by the inclined angle c2 and dip orientation b2.
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Fig. 4. The normalized mode-I SIF along the square-shaped crack fronts AB, BC, CD,

and DA for different crack orientation (c2,b2) within a finite transversely isotropic

cuboid. The material orientation is fixed at (c1 ¼ 01,b1 ¼ 01).
calculated as follows:

FI

FII

FIII

8><
>:

9>=
>; ¼ T�1

ffiffiffiffiffiffi
1

pa

r K I

K II

K III

8><
>:

9>=
>; (15)

where a is the half crack length and T the applied vertical traction
in the problem to be discussed below. We also point out that r in
Eq. (14) was selected to be 0.00001a in our numerical calculation.
5. Numerical results and discussion

Consider a linearly elastic, homogeneous, and transversely
isotropic cuboid with dimension W�W�H, as shown in Fig. 3.
Let x, y, and z (or x1, x2, and x3) be the global Cartesian coordinates
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Fig. 5. The normalized mode-II SIF along the square-shaped crack fronts AB, BC,

CD, and DA for different crack orientation (c2,b2) within a finite transversely

isotropic cuboid. The material orientation is fixed at (c1 ¼ 01,b1 ¼ 01).
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Fig. 6. The normalized mode-I SIF along the square-shaped crack fronts AB, BC, CD,

and DA for different crack orientation (c2,b2) within a finite transversely isotropic

cuboid. The material orientation is fixed at (c1 ¼ 451,b1 ¼ 451).
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with their origin in the center of the cuboid. A square crack of
2a�2a is also located in the center of the cuboid, and a local
coordinate system (x00, y00, z00) is attached to it with its z00-axis
normal to the crack surface. The crack orientation is described by
two angles: the inclined angle c2 and dip orientation b2, where c2

is defined as the angle between the global horizontal (x�y) plane
and the crack plane (x00, y00), and b2 as the angle between the global
y-axis and the inclined angle plane.

The cracked finite cuboid is under a uniform normal tensile
stress T applied at the top and bottom faces, as shown in Fig. 3. In
the numerical example, the cuboid size is chosen to be H/W ¼ 2
and the square size 2a/W ¼ 0.5. The material is a transversely
isotropic marble and its elastic properties were obtained experi-
mentally [32] as E ¼ 90 GPa, E0 ¼ 55 GPa, n ¼ n0 ¼ 0.3, G ¼ 35 GPa,
and G0 ¼ 21 GPa. After checking our program for a couple of
special cases for accuracy, 40 and 36 nine-nodal quadrilateral
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Fig. 7. (a) The normalized mode-II SIF along the square-shaped crack fronts AB, BC,

CD, and DA for different crack orientation (c2,b2) within a finite transversely

isotropic cuboid. The material orientation is fixed at (c1 ¼ 451,b1 ¼ 451). (b) The

normalized mode-III SIF along the square-shaped crack fronts AB, BC, CD, and DA

for different crack orientation (c2,b2) within a finite transversely isotropic cuboid.

The material orientation is fixed at (c1 ¼ 451,b1 ¼ 451).
elements were used to discretize the uncracked boundary and the
crack surface, respectively, for the numerical examples presented
below, with a relative error of 0.01 percent. Furthermore, the SIFs
are plotted along the crack front using the four sides AB, BC, CD,
and DA of the square, as shown in Fig. 3.

First, three types of materials, i.e., the transversely isotropic
rocks with inclined angle and dip orientation (c1,b1) ¼ (01, 01),
(451, 451) and (901, 01), and five types of crack inclined angle c2

( ¼ 01, 301, 451, 601, 901) (b2 ¼ 01) were selected to calculate the
mode-I, mode-II, and mode-III SIFs along the sides of the crack.
Shown in Fig. 4 is the variation of the normalized mode-I SIF
(FI) along the crack front for different crack angles when the
material angles are fixed at c1 ¼ 01, b1 ¼ 01. As is expected, the
SIFs are the same along all the four sides, reaching either a
maximum or minimum in the middle of the side. It is also
interesting that this maximum value changes substantially for
varying crack angle, from 1.12 when the crack angle c2 ¼ 01 to
�0.432 when c2 ¼ 901, passing the zero value when the crack
angle is approximately at c2 ¼ 601. The positive (negative) SIF
value indicates that the crack is opened (closed) corresponding to
the applied traction on the top (bottom) of the cuboid. Crack
closure is actually a very common phenomenon and also an
important issue in rock mechanics [33].

Shown in Fig. 5 is the variation of the normalized mode-II SIF
(FII) along the four sides of the crack front. Its variation is
antisymmetric with respect to the corner C. In other words, the SIF
along CDA can be obtained from that along ABC by simply
changing the sign. It is also observed that the maximum value of
FII is equal to 0.419 in AB when the crack angle c2 ¼ 451, and it is
zero when c2 ¼ 01 and 901. This indicates that when c2 ¼ 01 and
901, the crack is under pure tensile and compressive loading,
respectively. It is also interesting that for any crack angle, the
magnitude of FII along BC or DA is much smaller, at 0.079, as
compared to its maximum value along AD and CD at 0.419. Due to
the symmetric property, the mode-III SIF follows a similar trend
as mode-II SIF, only the two horizontal axes being switched
(x002y00, Fig. 3).

Fig. 6 shows the variation of the normalized mode-I SIF FI in
the transversely isotropic material with inclined angle c1 ¼ 451
and dip orientation b1 ¼ 451, along the square crack front, for
different crack angles c2 ¼ 01, 301, 451, 601, and 901 (b2 ¼ 01). It is
Crack front
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Fig. 8. The normalized mode-I SIF along the square-shaped crack fronts AB, BC, CD,

and DA for different crack orientation (c2,b2) within a finite transversely isotropic

cuboid. The material orientation is fixed at (c1 ¼ 901,b1 ¼ 01).
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observed that the SIF FI is the same along the crack fronts ABC and
CDA, and that its maximum value for this material type is larger
than that for the material case with c1 ¼ 01 and b1 ¼ 01 (1.4 in
Fig. 6 vs. 1.12 in Fig. 4). Furthermore, similar to Fig. 4, the
maximum SIF value along each side decreases with increasing dip
angle c2. It reaches zero when the dip angle is somewhere
between 601 and 901; then, it comes negative, corresponding to
the crack closure. Figs. 7a and b show, respectively, the variation
of the normalized SIFs FII and FIII in the material with angles
c1 ¼ 451 and b1 ¼ 451, along the square crack front, for different
crack angles c2 ¼ 01, 301, 451, 601, and 901 (b2 ¼ 01). It is observed
that the SIF values for the shear and tearing modes along the crack
front ABC are antisymmetric as compared to those along CDA. It is
further noticed that the maximum SIF for FII is reached along the
crack fronts AB and CD, whilst for FIII, the maximum is along BC
and DA.
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Fig. 9. (a) The normalized mode-II SIF along the square-shaped crack fronts AB, BC,

CD, and DA for different crack orientation (c2,b2) within a finite transversely

isotropic cuboid. The material orientation is fixed at (c1 ¼ 901,b1 ¼ 01). (b)The

normalized mode-III SIF along the square-shaped crack fronts AB, BC, CD, and DA

for different crack orientation (c2,b2) within a finite transversely isotropic cuboid.

The material orientation is fixed at (c1 ¼ 901,b1 ¼ 01).
The variation of the SIFs along the crack front for the other
material case is shown in Figs. 8 and 9, where the material
orientation angles are c1 ¼ 901 and b1 ¼ 01, and the crack angles
are c2 ¼ 01, 301, 451, 601, and 901 (b2 ¼ 01). Comparing Fig. 8 to
Fig. 4, we noted that while in Fig. 4, the SIFs of mode-I are the
same along each side of the square, in Fig. 8, they are the
same along sides AB and CD, and the same along BC and DA.
Furthermore, the maximum SIF along AB and CD is larger than
that along BC and DA (1.185 vs. 0.94), with these two values being,
respectively, larger and smaller than those in Fig. 4. This different
phenomenon is due to the fact that in Fig. 8 the material isotropic
plane is normal to the crack plane, whilst in Fig. 4 both planes are
parallel to each other.

Figs. 9a and b show, respectively, the corresponding variation of
the normalized SIFs FII and FIII with material angles c1 ¼ 901 and
b1 ¼ 01, along the square crack front, for different crack angles
c2 ¼ 01, 301, 451, 601, and 901 (b2 ¼ 01). Again, we observed that
the SIF values for the shear and tearing modes along the crack front
ABC are antisymmetric as compared to those along CDA. It is
further noticed that the maximum SIF for FII is reached along the
crack fronts AB and CD, whilst for FIII, the maximum is along BC and
DA. Furthermore, the magnitude of the maximum in FII is larger
than that in FIII (0.474 vs. 0.287), due to the different orientation
relations between the crack fronts and the material isotropic plane.

We have also run our program for another case where the
material orientation angles are c1 ¼ b1 ¼ 451, but the crack angles
are (c2,b2) ¼ (301, 01), (301, 301), (301, 601), (601, 01), (601, 301), and
(601, 601) (Figs. 10 and 11a, b). It is observed from Fig. 10 that the
crack inclined angle c2 is an important factor in the mode-I SIF. It
is obvious that the SIF values are much larger for c2 ¼ 301 than
those for c2 ¼ 601, independent of the crack dip orientation b2.
Furthermore, for fixed c2 ¼ 301, the SIF value increases with
increasing dip orientation b2. Figs. 11a and b show the corre-
sponding FII and FIII along the crack front. As can be seen, the
variation of FII and FIII is much more complicated than that of FI,
although they still possess the antisymmetric feature. In other
words, the SIF values along the crack front ABC have the same
magnitude but opposite sign as compared to those along CDA.

Finally, shown in Figs. 12a–c are the relative CODs. Fig. 12a is for
the material angles c1 ¼ b1 ¼ 01 and crack angles c2 ¼ b2 ¼ 01. It is
apparent that for this case, the crack is under a uniform pure tensile
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isotropic cuboid. The material orientation is fixed at (c1 ¼ 451,b1 ¼ 451). (b) The
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The material orientation is fixed at (c1 ¼ 451,b1 ¼ 451).
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stress in the vertical direction and one observes only the opening
COD (there is no shearing displacement). However, in Fig. 12b,
where the material angles c1 ¼ b1 ¼ 01 but the crack angles
c2 ¼ 901 and b2 ¼ 01, the relative COD is negative (shown in
Fig. 12b is the magnitude of the relative COD), implying that the
crack surface is under a pure compression. When the material
angles c1 ¼ 451, b1 ¼ 451 and crack angles c2 ¼ 451 and b2 ¼ 451,
one observes not only a relative COD in the normal direction of the
crack, but also a relative shear displacement, as shown in Fig. 12c
for the relative shearing displacement.
6. Conclusions

We applied the dual-BEM or the single-domain BEM to the
analysis of mixed 3D SIFs in a finite and transversely isotropic
solid containing an internal square crack. A set of four special
nine-node quadrilateral elements are employed to approximate
the crack surface as well as the outer boundary. The mixed 3D SIFs
are evaluated using the asymptotic relation between the SIFs and
the relative CODs via the Barnett–Lothe tensor. Numerical
examples of the mixed 3D SIFs are presented for a transversely
isotropic and cracked rock cuboid with any given material
orientation. The cuboid is under a uniform vertical traction along
its top and bottom surfaces and the central square crack is
arbitrarily oriented. Our results show that among the selected
material and crack orientations, the mode-I SIF reaches the largest
possible value when the material inclined angle c1 ¼ 451 and dig
angle b1 ¼ 451, and the crack inclined angle c2 ¼ 01 and dig angle
b2 ¼ 01. It is further observed that when the crack is oriented
vertically or nearly vertically, the mode-I SIF becomes negative,
indicating that the crack closes due to an overall compressive
loading normal to the crack surface. Variation of the SIFs for
modes II and III along the crack fronts also shows some interesting
features for different combinations of the material and crack
orientations, which could be useful in the future failure analysis
and design of cracked anisotropic solids.
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Appendix A

The anisotropic elastic compliance [a] as functions of the
elastic constants (E, E0, n, n0, and G0) and the inclined angle
(c1) with fixed b1 ¼ 01
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C.-S. Chen et al. / Engineering Analysis with Boundary Elements 33 (2009) 128–136 135
a44 ¼
sin2 c1

G
þ

cos2 c1

G0

a46 ¼ sinc1 cosc1

1

G
�

1

G0

� �

a55 ¼ sin2 2c1

1

E0
þ

1

E
þ 2

n0

E

� �
þ

cos2 2c1

G0

a66 ¼
cos2 c1

G
þ

sin2 c1

G0

a14 ¼ a16 ¼ a24 ¼ a26 ¼ a34 ¼ a36 ¼ a45 ¼ a56 ¼ 0 (A.1)

Appendix B

Shape functions for the four special elements
Shape functions for type-I element

f1 ¼ 0:25x1x2ðx1 � 1Þðx2 � 1Þ
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Shape functions for type-II element
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Shape functions for type-III element
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Shape functions for type-IV element
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