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This paper addresses the time-dependent magnetoelectroelastic responses of multiferroic fibrous
composites with a viscous interface. First, the problem of an isolated multiferroic fiber embedded in
an infinite multiferroic matrix is rigorously solved. It is observed that the internal
magnetoelectroelastic field such as stresses, electric displacements, and magnetic inductions inside
an isolated multiferroic fiber is uniform but time dependent. The Mori–Tanaka mean-field method
is then utilized to derive an extremely concise expression of the time-dependent effective moduli of
the multiferroic fibrous composite. The numerical results demonstrate that the viscosity of the
interface will cause a time-decaying magnetoelectric effect of the BaTiO3–CoFe2O4 fibrous
composite. As the time approaches infinity the magnetoelectric effect will approach zero due to the
fact that a viscous interface will finally evolve into a free-sliding one which does not sustain shear
stress. This interesting feature should be particularly important to the analysis and design of
multiferroic composites where the interface is utilized to enhance the magnetoelectric effect.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3089213�

I. INTRODUCTION

Recently magnetoelectric �ME� multiferroic materials,
which simultaneously possess both ferroelectric and ferro-
magnetic order in the same phase, have attracted significant
attention from the scientific community due to their ME ef-
fect, dielectric polarization of a material under magnetic
field, or induced magnetization under an electric field.1–3 Par-
ticularly multiferroic composites made of ferromagnetic and
ferroelectric phases can exhibit a strong extrinsic ME effect
through the product property, which is absent in the constitu-
ents and which can be a few orders larger than the intrinsic
ME effect observed in natural single-phase multiferroic
materials.4–6 It has been identified that the interface in mul-
tiferroic composites is critical in achieving the ME effect,
and that any kind of imperfection at the interface would lead
to a reduction in the ME effect.5,7–9

At elevated working temperatures exceeding about one-
third of the homologous temperature, mass transport be-
comes important along high diffusivity path such as an inter-
face or grain boundary.10 Experimental data of Srinivasan et
al.5 have demonstrated that the interfacial diffusion of metal
ions between manganites and PZT will degrade the ME ef-
fect in multilayer composites. Raj and Ashby11 and Ashby12

suggested that the microscopically mass diffusion-controlled
mechanism on a length scale comparable to the size of the
asperity of the interface can be macroscopically described by

the linear law for a viscous interface: �̇=� /�, where �̇ is the
sliding velocity �i.e., the differentiation of the relative sliding

with respect to time t�, � is the interfacial shear stress, and �
is the interfacial viscosity which can be determined experi-
mentally and theoretically.11–14

Motivated by the importance of the interface in the ME
effect of multiferroic composites, we propose, in this paper, a
theoretical framework to study how the interfacial diffusion
characterized by a viscous interface influences the ME effect
in the multiferroic composite. For simplicity, the possible
contribution of the current density due to the flow of ions at
the interface is not considered, which renders only a scalar
magnetic potential into the governing equations. This paper
is organized as follows: In Sec. II, the problem of an isolated
fiber in an infinite matrix is solved in detail; In Sec. III, we
derive the time-dependent effective moduli of the multifer-
roic composite based on the Mori–Tanaka mean-field
method; a numerical example of the ME effect is given in
Sec. IV; and conclusions are drawn in Sec. V.

II. ISOLATED FIBER IN AN INFINITE MATRIX

We first consider an isolated multiferroic fiber with a
circular cross section �phase 2� of radius R centered at the
origin embedded in an infinite multiferroic matrix �phase 1�
�Fig. 1�. Both the fiber and matrix are 6 mm material sym-
metry about the fiber axis. At infinity, the matrix is subjected
to the antiplane shear stresses �zx

� and �zy
� , and the in-plane

electric displacements Dx
� and Dy

�, and magnetic fluxes Bx
�

and By
�. Thus the two-phase composite system is in a state of

antiplane deformation described by

ux = uy = 0, uz = w�x,y,t� ,
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� = ��x,y,t�, � = ��x,y,t� . �1�

where ux, uy, and uz denote the elastic displacement compo-
nents in the x, y, and z directions, respectively; � and � are
the electric and magnetic potentials; and t is the time.

Thus the constitutive equations reduce to

�zx = c44
�w

�x
+ e15

��

�x
+ q15

��

�x
,

�zy = c44
�w

�y
+ e15

��

�y
+ q15

��

�y
,

Dx = e15
�w

�x
− �11

��

�x
− 	11

��

�x
,

Dy = e15
�w

�y
− �11

��

�y
− 	11

��

�y
,

Bx = q15
�w

�x
− 	11

��

�x
− 
11

��

�x
,

By = q15
�w

�y
− 	11

��

�y
− 
11

��

�y
, �2�

where �kz, Dk, Bk, �k=x ,y�, c44, e15, q15, �11, 	11, and 
11 are
the stresses, electric displacements, magnetic fluxes �i.e.,
magnetic inductions�, elastic modulus, piezoelectric coeffi-
cient, piezomagnetic coefficient, dielectric permittivity, ME
coefficient, and the magnetic permeability, respectively.

Under this antiplane deformation, the governing equa-
tions are simplified to

c44�
2w + e15�

2� + q15�
2� = 0,

e15�
2w − �11�

2� − 	11�
2� = 0,

q15�
2w − 	11�

2� − 
11�
2� = 0, �3�

where �2=�2 /�x2+�2 /�y2 is the two-dimensional Laplace
operator. In Eq. �3� we have ignored the inertia effect in the
fiber and matrix.

The general solution to Eq. �3� can be given by

u = �w � � �T = f�z,t� , �4�

where z=x+iy=r exp�i�� is the complex variable. The ap-
pearance of the real time variable t in Eq. �4� comes from the
influence of the viscous interface.

Furthermore, the strains, stresses, electric fields, electric
displacements, magnetic fields, and magnetic fluxes can also
be concisely expressed in terms of f�z , t� as follows:

� �zy + i�zx

− Ey − iEx

− Hy − iHx
� = f��z,t�, ��zy + i�zx

Dy + iDx

By + iBx
� = Lf��z,t� , �5�

where the superscript comma stands for the differentiation
with respect to the complex variable z, and L is a real and
symmetric 3
3 matrix given by

L = �c44 e15 q15

e15 − �11 − 	11

q15 − 	11 − 
11
� . �6�

The strains �zx and �zy, electric fields Ex and Ey, and the
magnetic fields Hx and Hy in Eq. �5� are related to w, � and
� through

�zx = w,x, �zy = w,y ,

Ex = − �,x, Ey = − �,y ,

Hx = − �,x, Hy = − �,y . �7�

The boundary conditions on the viscous interface �or
time-dependent sliding interface� between the fiber and ma-
trix can be written as

�zr
�1� = �zr

�2�, Dr
�1� = Dr

�2�, Br
�1� = Br

�2�,

��1� = ��2�, ��1� = ��2�, r = R and t � 0

�zr
�2� = ��ẇ�1� − ẇ�2�� , �8�

where the overdot denotes differentiation with respect to
time t.

At the initial moment the interface is a perfect one on
which

�zr
�1� = �zr

�2�, Dr
�1� = Dr

�2�, Br
�1� = Br

�2�,

w�1� = w�2�, ��1� = ��2�, ��1� = ��2�, r = R and t = 0

�9�

In view of the above initial conditions, Eq. �8� can also
be expressed more concisely as

��zr
�1�

Dr
�1�

Br
�1� � = ��zr

�2�

Dr
�2�

Br
�2� �, �ẇ�1� − ẇ�2�

�̇�1� − �̇�2�

�̇�1� − �̇�2� � = R���zr
�2�

Dr
�2�

Br
�2� � ,

FIG. 1. �Color online� A multiferroic circular cylindrical fiber of radius R
bonded to an infinite multiferroic matrix through a viscous interface. The
polarization and magnetization direction is along the fiber axis.
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r = R and t � 0 �10�

where � is a 3
3 diagonal matrix defined by

� =
1

�R
diag�1 0 0 � . �11�

The interface conditions in Eq. �10� can also be ex-
pressed in terms of two analytic function vectors, f1�z , t� de-
fined in the matrix and f2�z , t� defined in the fiber, as follows

L2f2
+�z,t� + L2f2

−�R2

z
,t� = L1f1

−�z,t� + L1f1
+�R2

z
,t� , �12a�

ḟ1
−�z,t� − ḟ1

+�R2

z
,t� − ḟ2

+�z,t� + ḟ2
−�R2

z
,t�

= �L2	zf2�
+�z,t� −

R2

z
f2�

−�R2

z
,t�
 ,

�z� = R and t � 0. �12b�

It follows from Eq. �12a� that

f1�z,t� = L1
−1L2f2�R2

z
,t� + kz − k

R2

z
,

f1�R2

z
,t� = L1

−1L2f2�z,t� − kz + k
R2

z
, �13�

where the vector k is related to the remote loading through
the following:

k = L1
−1��zy

� + i�zx
�

Dy
� + iDx

�

By
� + iBx

� � . �14�

Substituting Eq. �13� into Eq. �12b� and eliminating f1
−�z�

and f1
+�R2 /z�, we finally arrive at the following set of first-

order partial differential equations:

z�L2f2��z,t� + HL2ḟ2�z,t� = 0, ��z� � R� , �15�

where H is a real and symmetric matrix given by

H = HT = �H11 H12 H13

H12 H22 H23

H13 H23 H33
� = L1

−1 + L2
−1. �16�

In order to solve Eq. �15�, we first consider the following
eigenvalue problem:

�� − �H�v = 0 , �17�

The three eigenvalues �i, �i=1–3� of this eigenvalue
problem can be explicitly determined as

�1 =
H22H33 − H23

2

�R�H�
� 0, �2 = �3 = 0. �18�

The eigenvectors associated with these eigenvalues are

v1 = � H22H33 − H23
2

H13H23 − H12H33

H12H23 − H13H22
�, v2 = �0

1

0
�, v3 = � 0

− H23

H22
� .

�19�

It can be proved that the following orthogonal relation-
ships with respect to the two real and symmetric matrices H
and � hold

�TH� = diag��1 �2 �3 � ,

�T�� = �1�1 diag�1 0 0 � , �20�

where

� = �v1 v2 v3 � , �21a�

and

�1 = v1
THv1 = �1

−1v1
T�v1 = �H��H22H33 − H23

2 � ,

�2 = v2
THv2 = H22,

�3 = v3
THv3 = H22�H22H33 − H23

2 � . �21b�

We now introduce a new vector function ��z , t�
= ��1�z , t� �2�z , t� �3�z , t��T defined by

L2f2�z,t� = ���z,t� , �22�

In view of Eqs. �20� and �22�, the original coupled set of
differential Eqs. �15� can be decoupled as follows:

�̇1�z,t� + �1z�1��z,t� = 0,

�̇2�z,t� = 0, ��z� � R� ,

�̇3�z,t� = 0, �23�

whose solutions can be expediently given by

�1�z,t� = �1�exp�− �1t�z,0� ,

�2�z,t� = �2�z,0�, ��z� � R� ,

�3�z,t� = �3�z,0� . �24�

It is of interest to observe that the two component func-
tions �2�z , t� and �3�z , t� are in fact time independent. Due
to the fact that at the time t=0 the interface is a perfect one,
then we arrive at the following initial state of ��z , t�:

��z,0� = �−1L2f2�z,0� = 2 diag	 1

�1

1

�2

1

�3

�Tkz .

�25�

During the above derivation we have utilized the first
orthogonal relationship in Eq. �20� and the following expres-
sion:

f2�z,0� = 2L2
−1H−1kz . �26�

It follows from Eqs. �24� and �25� that the explicit solu-
tion of ��z , t� is
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��z,t� = 2 diag	 exp�− �1t�
�1

1

�2

1

�3

�Tkz . �27�

Consequently f1�z , t� defined in the matrix and f2�z , t� defined
in the fiber are given by

f1�z,t� = 	2L1
−1� diag	 exp�− �1t�

�1

1

�2

1

�3

�T − I



kR2z−1 + kz ,

f2�z,t� = 2L2
−1� diag	 exp�− �1t�

�1

1

�2

1

�3

�Tkz , �28�

which indicates that the internal magnetoelectroelastic field
such as stresses, electric displacements and magnetic induc-
tions inside the multiferroic fiber is uniform but time depen-
dent.

III. TIME-DEPENDENT EFFECTIVE MODULI

We assume that the aligned circular multiferroic fibers of
same radius are randomly distributed in the x-y plane; then
the fiber-reinforced multiferroic composite is transversely
isotropic with the x-y plane being the isotropic plane. The
overall constitutive law for the fibrous multiferroic compos-
ite can be represented by

���zy

�Dy

�By


� = Lc� ��zy

�− Ey

�− Hy


�, ���zx

�Dx

�Bx


� = Lc� ��zx

�− Ex

�− Hx


� , �29�

where � �
 stands for the average value, and Lc is the effec-
tive moduli of the fibrous composite. In the following we
will apply the Mori–Tanaka mean-field method9,14–17 to de-
rive the expression for the effective moduli Lc.

In order to describe the overall behavior of the multifer-
roic composite, we focus on a representative volume element
�RVE�. In addition we assume that the RVE is subjected to
the loadings �zy

� , Dy
�, and By

�. Then, the volume-averaged
physical quantities within the RVE can be proved to be9,14,17

���zy

�Dy

�By


� = �1 − c2����zy
1

�Dy
1

�By
1
� + c2���zy
2

�Dy
2

�By
2
� , �30�

� ��zy

�− Ey

�− Hy


� = �1 − c2�� ��zy
1

�− Ey
1

�− Hy
1
� + c2� ��zy
2

�− Ey
2

�− Hy
2
�

+
c2

�R2��l

�w�1� − w�2��n̂2dl

0

0
� , �31�

where ��1 and ��2 refer to the averages over volumes of
the matrix and fiber, respectively; c2 is the volume fraction of
the multiferroic fibers; the line integral is taken along the
perimeter l of a typical fiber and n̂2 the y component of the
unit normal vector on the interface in the outward direction

with respect to the fiber. In addition, ��zy
=�zy
� , �Dy
=Dy

�,
�By
=By

�. Here the Mori–Tanaka mean-field approximation
is adopted to evaluate ��zy
2, �Dy
2, and �By
2. Under this
approximation ��zy
2, �Dy
2, and �By
2 are equal to the cor-
responding values of �zy, Dy, and By in an isolated fiber
embedded in an infinitely extended matrix that is subjected
to ��zy
1, �Dy
1, and �By
1 at infinity.

By employing the results of Eq. �28�, it is found that

���zy
2

�Dy
2

�By
2
� = 2� diag	 exp�− �1t�

�1

1

�2

1

�3




�TL1
−1���zy
1

�Dy
1

�By
1
� . �32�

Substituting these expressions into Eq. �30�, we can find

���zy
1

�Dy
1

�By
1
� = �2c2� diag	 exp�− �1t�

�1

1

�2

1

�3

�TL1

−1

+ �1 − c2�I�−1��zy
�

Dy
�

By
� � , �33�

In addition, we have

� ��zy
1

�− Ey
1

�− Hy
1
� = L1

−1���zy
1

�Dy
1

�By
1
�, � ��zy
2

�− Ey
2

�− Hy
2
� = L2

−1���zy
2

�Dy
2

�By
2
� ,

�34�

and the surface integral in Eq. �31� can be carried out as
follows:

1

�R2��l

�w�1� − w�2��n̂2dl

0

0
�

=
2�1 − exp�− �1t��

�1�1
�� diag�1 0 0 �


�TL1
−1���zy
1

�Dy
1

�By
1
� . �35�

By virtue of Eqs. �33�–�35�, Eq. �31� can be further writ-
ten into
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� ��zy

�− Ey

�− Hy


� = L1
−1��1 − c2�L1 + 2c2L1L2

−1� diag	 exp�− �1t�
�1

1

�2

1

�3

�T

+
2c2�1 − exp�− �1t��

�1�1
L1�� diag�1 0 0 ��T �


��1 − c2�L1 + 2c2� diag	 exp�− �1t�
�1

1

�2

1

�3

�T�−1��zy

�

Dy
�

By
� � . �36�

In addition, in view of the orthogonal relations in Eq.
�20�, the following identity can be established:

�1 − c2�L1 + 2c2L1L2
−1� diag	 exp�− �1t�

�1

1

�2

1

�3

�T

+
2c2�1 − exp�− �1t��

�1�1
L1�� diag�1 0 0 ��T

= �1 + c2�L1 − 2c2� diag	 exp�− �1t�
�1

1

�2

1

�3

�T.

�37�

Consequently we can simplify Eq. �36� as

� ��zy

�− Ey

�− Hy


� = L1
−1��1 + c2�L1 − 2c2�


diag	 exp�− �1t�
�1

1

�2

1

�3

�T�


��1 − c2�L1 + 2c2�


diag	 exp�− �1t�
�1

1

�2

1

�3

�T�−1��zy

�

Dy
�

By
� � .

�38�

Comparison of Eq. �29� with Eq. �38� immediately leads
to the time-dependent effective moduli as

Lc = Lc
T = L1��1 + c2�L1 − 2c2�


diag	 exp�− �1t�
�1

1

�2

1

�3

�T�−1


��1 − c2�L1 + 2c2�


diag	 exp�− �1t�
�1

1

�2

1

�3

�T� . �39�

By using the orthogonal relations in Eq. �20�, the above
expression can be simplified as

Lc�t̃� = L1��1 + c2�L1 − 2c2�H−1 exp�− t̃�

+ M�1 − exp�− t̃����−1 
 ��1 − c2�L1

+ 2c2�H−1 exp�− t̃�

+ M�1 − exp�− t̃���� , �40�

where t̃=�1t is a dimensionless time and

M = MT =
1

H22H33 − H23
2 �0 0 0

0 H33 − H23

0 − H23 H22
� . �41�

Equation �40� is a very concise expression for the effec-
tive magnetoelectroelastic moduli in the multiferroic fibrous
composite with a viscous interface. It reveals that while these
moduli are constant in space, they are time dependent. Fur-
thermore, one can easily show that at initial time t=0 these
effective moduli are reduced to

Lc�0� = L1��1 + c2�L1 − 2c2H−1�−1��1 − c2�L1 + 2c2H−1� ,

�42�

which are just the results for a perfect interface;4,9 on the
other hand, when t→� these effective moduli become

Lc��� = L1��1 + c2�L1 − 2c2M�−1��1 − c2�L1 + 2c2M� ,

�43�

which are the result for a free-sliding interface on which
�zr=0. This reduced result is actually interesting: For a mul-
tiferroic composite composed of piezoelectric fiber and mag-
netostrictive matrix �or vice versa�, we have H23�0; conse-
quently, it is observed from Eq. �43� that there is no ME
coupling �effect� when the time approaches infinity.

IV. TIME-DECAYING ME EFFECTS OF BATIO3 FIBERS
REINFORCED IN COFE2O4 MATRIX

As a numerical example, here we consider a typical mul-
tiferroic fibrous composite consisting of the magnetostrictive
CoFe2O4 matrix reinforced by the piezoelectric BaTiO3 fi-
bers. The pertinent material properties of BaTiO3 are: c44

=43
109 N /m2, e15=11.6 C /m2, �11=11.2

10−9 C2 /Nm2, 
11=5
10−6 Ns2 /C2; while those of
CoFe2O4 are: c44=45.3
109 N /m2, q15=550 m /A, �11

=0.08
10−9 C2 /Nm2, 
11=590
10−6 Ns2 /C2. Figure 2
demonstrates the ME coefficient 	11 as a function of the
BaTiO3 volume fraction c2 at four different normalized time
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t̃=0, 0.3, 1, 3 �t̃=�1t�. In this figure the dashed line indicates
the trace of the locations of the transient maximum ME ef-
fect at different times. It is observed from Fig. 2 that: �i� the
magnitude of 	11 monotonically decreases as the time in-
creases; �ii� the ME coefficient 	11 is ignorable when the
time t is equal to or greater than three times of the relaxation
time t0=1 /�1; �iii� the optimal value of the BaTiO3 volume
fraction, at which the transient maximum ME effect at a
fixed time occurs, decreases as the time evolves.

V. CONCLUSIONS

The Mori–Tanaka mean-field approach is applied to ob-
tain a closed-form expression of the time-dependent effective
moduli of multiferroic fibrous composites with a viscous in-
terface. This expression is considerably interesting since the
important ME effect in multiferroic composites is based on
the composite product property with the interface as a
bridge. While at the initial moment the effective moduli are
the largest, just as those for a perfect interface, they are re-

duced �or deteriorated� with time, and eventually decreased
to those for a free-sliding interface as time approaches infin-
ity. Our numerical results for the multiferroic composite of
BaTiO3 fibers reinforced in CoFe2O4 matrix further demon-
strate that the viscosity of the interface will cause a time-
decaying ME effect. We finally point out that while the re-
sponses of piezoelectric fibrous composites with a viscous
interface were considered previously,17 a concise expression
of the effective moduli as given in Eq. �40� has never been
reported in the literature, not to mention the complex multi-
ferroic composites presented in this article.
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