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Abstract: In this paper a new method is proposed to analyze the mechanical response of a linear viscoelastic pavement. The material
parameters of the asphalt concrete are characterized by the relaxation modulus and creep compliance, which are further represented by the
Prony series. By virtue of the Laplace transform and the correspondence principle, the solution in the Laplace domain is first derived. The
interconversion between the relaxation modulus and creep compliance is then applied to treat the complicated inverse Laplace transform.
The displacement, strain, and stress fields are represented concisely in terms of the convolution integral in the time domain, which is
subsequently solved analytically. Therefore, responses of the viscoelastic pavement are finally expressed analytically in the time domain
and numerically in space domain, called a semianalytical approach. Since both the relaxation modulus and creep compliance are used
simultaneously, instead of only one parameter in the conventional methods, the present method is also called a dual-parameter method.
The present formulation is verified at both the short- and long-term time limits analytically and at the other finite time numerically, as
compared to the conventional numerical methods. We clearly show that the present dual-parameter and semianalytical method can predict
accurately the time-dependent responses of the viscoelastic pavement, especially at the long-term time. The present formulation could also

be employed to validate the widely used collocation method.
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Introduction

Mechanical responses of flexible pavements are of primary im-
portance in pavement analysis and design. Conventionally, the
pavement is regarded as a layered elastic structure with many
studies already being carried out based on the well-known layered
elastic theory. For example, Burmister presented analytical solu-
tions for both a two-layered pavement (Burmister 1943) and a
three-layered pavement (Burmister 1945a,b,c). In the last de-
cades, the theory has been extended for an arbitrary number of
layers and various computer codes have been developed, e.g.,
BISAR (De Jong et al. 1979), KENLAYER (Huang 1993),
JULEA (Uzen 1994), with JULEA being further incorporated into
the MEPDG (NCHRP 2004). Contributions to the general layered
elastic structures can also be found in the geotechnical field, e.g.,
in Pan (1997), Yue and Yin (1998), and Pak and Guzina (2002).

As is well known, however, an asphalt concrete (AC) layer in
the flexible pavement behaves viscoelastically, and, thus, vis-
coelastic models are required to simulate the time-dependent be-
havior of the pavement (Elseifi et al. 2006). In order to predict the
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viscoelastic response of the pavement, most of the previous works
(Chou and Larew 1969; Huang 1967, 1973; Hopman 1996) ap-
plied the integral transform methods (e.g., Fourier and Laplace
transforms) to the constitutive equation of the viscoelastic mate-
rial first, and then employed the correspondence principle (Lee
1955; Radok 1957). However, there are two major challenges in
solving the viscoelastic pavement response by using the corre-
spondence principle. The first challenge lies in the difficulty of
obtaining the associated elastic solution for a multilayered struc-
ture, and the other one is associated with the inverse transform
where the larger the number of layers is, the more difficult to
invert the transform analytically. To avoid the difficulty caused by
the integral transform methods, the collocation method (Schapery
1962) was proposed along with the inverse Laplace transform
(Huang 1967, 1973, 1993). The viscoelastic pavement response
could also be solved by directly applying the collocation method
in the time domain (Elliott and Moavenzadeh 1971; Park and Kim
1998).

Due to the challenges/difficulties mentioned above, the pave-
ment response is often treated as elastic. For example, MEPDG
(NCHRP 2004) is based on the layered elastic theory, in which
the input modulus is a constant in spite of the fact that the vis-
coelasticity of asphalt concrete has been characterized. Even
when treating the viscoelastic pavement, only simplified models,
such as the beam (Hardy and Cebon 1993) or plate (Kim et al.
2002) model, were investigated. Currently, the study of visco-
elastic pavement in the context of general viscoelasticity theory
is usually conducted through the finite-element-based methods
(Sargand 2002; Xu 2004). However, as indicated in these analy-
ses, such methods were time-consuming and had tremendous dif-
ficulty in predicting the long-term responses of the viscoelastic
pavement.

In this paper, we present a semianalytical approach to solve the
time-dependent response of the viscoelastic pavement. The mate-
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Fig. 1. Multilayered viscoelastic pavement structure

rial parameters of the asphalt concrete are first characterized by
both the relaxation modulus and creep compliance simultaneously
(we name the method as the dual-parameter method), which are
further represented by the Prony series. By virtue of the Laplace
transform and the correspondence principle, the solution of the
layered pavement in the Laplace domain is then derived. In order
to treat the complicated inverse Laplace transform, the intercon-
version between the relaxation modulus and creep compliance is
proposed. In so doing, the displacement, strain and stress fields
are finally represented concisely in terms of the convolution inte-
gral in time domain, which are subsequently solved analytically.
Therefore, in terms of the proposed novel approach, responses of
the viscoelastic pavement are expressed analytically in time do-
main and numerically in space domain, called a semianalytical
approach. The present method is verified at both the short- and
long-term time limits analytically and at the other finite time nu-
merically using the conventional numerical methods. We clearly
show that the present dual-parameter and semianalytical method
can predict accurately the time-dependent responses of the vis-
coelastic pavement, especially at the long-term time. The present
formulation could also be employed to validate the widely used
collocation method in the future.

Model Description and Elastic Solutions

A typical multilayered pavement is depicted in Fig. 1. The pave-
ment is composed of p layers, which are horizontally infinite with
layer thickness h;=z,—-z_, (i=1,2,...,p). H=total thickness
above the infinite half-space, which is also called the (p+1)th
layer. Each layer is homogeneous, isotropic, and elastic except
for the first layer, which is viscoelastic. In other words, to in-
corporate the viscoelasticity of asphalt concrete, layer 1 is
characterized by the time-dependent modulus of elasticity E(r)
and time-independent Poisson’s ratio v. The layers are perfectly
bonded and, thus, the tractions and displacements are continuous
across the interface. The time-dependent load ¢(z) is uniformly
applied to the circle of radius R on the surface z=0. Since the
problem is axis-symmetric, the cylindrical coordinates (r,0,z) are
employed.

The elastic pavement is examined first, in which both the
Young’s modulus and Poisson’s ratio are time-independent con-
stants. The constitutive equation for an elastic material is given by
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Uij=)\8kk6ij+ 2G8ij (1)

where o;; and g;=stress and strain tensors; N and G=elastic
Lamé constants; &y =volumetric strain (with repeated indexes
taking the summation from 1 to 3); and d;;/=Kronecker delta.

In this study, a step load is applied on the surface, i.e.

—qh(t) r<R
(r,z=0)= 2
ox(r2=0) { 0 r>R @
where h(r)=Heaviside step function.
According to Pan et al. (2007b), the solutions for the purely
elastic pavement at the location (r,z) of layer k can be expressed
as integrals in the space-transformed domain. For example

0
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where the integral kernels Uy, MU, T;/m, and T),=components
of [H(n,2)], i.e.

[H(TLZ)]:[UL MUy Tr/m TM]T (7)

and J,(nr)=Bessel function of order n.
Boundary conditions [Eq. (2)] at £>0 are transformed to

V"2—1TqR

TL('T],OJ) = TL(T]’O) ==

Ty(M,051) = T1(1,0) =0

By virtue of the propagator matrix method, [H(m,z)] can then be
computed from

Ji(mR) (8)

[H(TI’Z)LX] = [AE(”f]’Z)]4><4[K('Y])]4><1 )

where [K(7m)]=column matrix in the half-space to be determined,
and the subscripts, e.g., 4 X 1, denote the dimension, which will
be omitted for simplicity in the following sections. In Eq. (9), the
superscript E also denotes the elastic problem, and

[A%(n,2)] = [ag(z = 20 e ()] -+ [y (o)t (Ry)]
X[Z,(n,H)] (10)

with [a®] in Eq. (10) being termed as the propagator matrix,
which links [H(m,z)] at the top to the bottom of a layer. In other
words, for layer k, for instance

[H(n,z-)] = [af[H(n,z0)] (11)

In addition, in Eq. (10), [ZF]=solution matrix in the homogeneous
half-space evaluated at z=H=z,

[H(n.z,)]=[Z}(.H)][K(n)] (12)
The elements of [af] and [ZF] are listed in Appendix 1.
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Viscoelastic Behavior of Asphalt Concrete

The viscoelastic behavior of asphalt concrete can be modeled by
either the generalized Maxwell model consisting of a spring and
M Maxwell elements connected in parallel, or the generalized
Kelvin model consisting of a spring and N Voigt elements con-
nected in series (Gibson et al. 2003; Elseifi et al. 2006). The
relaxation modulus E(7) from the generalized Maxwell model and
the creep compliance D(f) from the generalized Kelvin model are
given by (Park and Schapery 1999)

M
E(t)=E,+ >, Ee™"i (13)
i=1
N
D(t)=Dy+ X, D{(1 - ") (14)

=l

where E, and E;=equilibrium modulus and relaxation strength,
respectively; and p;=relaxation time; Dy, D;, and 7;=glassy
compliance, the retardation strength, and the retardation time, re-
spectively. It is noticed that at t=0, E,=E(0)=E,+=¥ E; and
Dy=D(0).

The expression in the form of Eq. (13) or (14) is named as the
Prony series. The Prony series of the relaxation modulus and
creep compliance are mathematically equivalent if the constants
are chosen properly (Park and Schapery 1999; Sargand 2002).
Thus, the relaxation modulus E(f) can be represented by the creep
compliance D(f) and vice versa, which is referred to as intercon-
version between the relaxation modulus and creep compliance
(Park and Shapery 1999; Park and Kim 1999, 2001). It is noted
that for the purely elastic material, E(f)D(f)=1, which was also
used as a crude approximation for quasi-elasticity and weak
viscoelasticity (Park and Kim 1999). For a typical viscoelastic
material, however, E(r) and D(r) are related by (Ferry 1980; Park
and Kim 1999)

t
f E(t—=7)D(7)dt=tor E(t) = D(t) =t for t >0 (15)
0
where ( *) means the convolution integral.

Applying the Laplace transform f(s)= of(®)e™'dr to Eq. (15)
and making use of Egs. (13) and (14), we then have

E(s)D(s) = 1 (16)
where
~ i E
E(s)=sE(s)=E,+ >, ——PL (17)
o spit1
~ N D
D(s)=sD(s) =Dy + 2, —— (18)
=1 ST 1

;(s) =s/(s) is also called the Carson transform (Park and Schapery
1999).
Correspondence Principle

For a general viscoelastic material, the constitutive equation is
expressed as (Xu 2004)

" dn(7) " dG(7)
= f_w TSkk(t - 7)8;dT + 2[_06 e g;(t—7)dt

(19)

where parameters, such as \(7), G(7), et al., are similar to those in
Eq. (1), but are time dependent. The Lamé coefficients \(z), G(r)
can be estimated by the following:

E(t)v

R o
LB
G= 2(1+v) @y

Applying the Laplace transform to Egs. (19)—(21) yields

0= i(s)gkkSij + 25(S)§U 22
o Eov
Ns) = (1+v)(1=2v) =
- E(s)
G = 2w o

According to the correspondence principle (Lee 1955; Radok
1957), it is observed from Egs. (1) and (22) that the viscoelastic
solution in the Laplace domain can be easily obtained from the
elastic solution by directly replacing the boundary condition ¢
with g(s) [the Laplace transform of ¢(r)] and the Lamé constants

N and G with )\:(s) and 5(3) for the viscoelastic asphalt material.

Dual-Parameter Method

The propagator matrix [a;(s)] for the viscoelastic AC layer can be
obtained directly by replacing A and G with \(s) and G(s) in the
propagator matrix [a,]. It is found that [a,(s)] is a function of
E(s)

[@(s)] =[a@,(E(s),1/E(s))] (25)

It can be shown that E(s) is in both the numerator and denomi-

nator of the propagator matrix. For E(s) in the denominator, it
implies poles of s in [a;(s)], which will raise tedious mathematic
complexity when the solution is transformed back to time domain
using the inverse Laplace transform. In order to solve the prob-
lem, the interconversion between the relaxation modulus and
creep compliance shown in Eq. (16) is employed. In other words,
Eq. (25) can be equivalently expressed as

[@,(s)] = [@(E(5),D(s))] (26)

Substituting Eqs. (17) and (18) into Eq. (26) and making use of
Appendix I yields

N M
[@,(s)]=[a,]+ [bl]FE] ST+ + [Ul]g oilspi+ 1) (27)

where ¢ ;=(1+v)D; (j=0,1,...,N), 1/cy=—-E;j/[2(1-v})] (i
=0,1,...,M). The elements of [a,], [b,], and [v,] are listed in
Appendix II.

It is observed from Eq. (27) and Appendix II that the propa-
gator matrix [a,] for the viscoelastic AC layer is composed of two
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parts: the first part [a,] is the propagator matrix for an elastic
material and the other one, which includes [b,] and [v,], totally
N+M terms, is caused by and related to viscoelasticity.

Applying the correspondence principle to Eq. (10), substitut-
ing Eq. (27) into the result and employing the inverse Laplace
transform, the expression in Eq. (9) for the field point in the
viscoelastic AC layer can be derived as

[H(n,z:0)]=[AM,2D)[K(n;0)]+[B(n.2) e, (1) [K(n:0) ]}

+[V(n.2) Heo()*[K(n:0) ]} (28)
where

N

@)= > et (29)
=1 Ti
o

@y(t) = >, ——e i (30)
i=1 PiC2i

[A(.2)]=[a\(D)][ax] - [a,-1][a,][Z,(n.H)] 31)
[B(n.2)]=[b1(2)[ax] -+ [a,-1][a,)[Z,(n.H)] (32)

[V(n.29)]=[vi(d)]la.] - [a,-1][a,][Z,(n.H)] (33)

Again in Eq. (28) [K(n;#)] is a 4 X 1 time-dependent column
matrix in the subgrade half-space and two of its components are
zeros since it is required that the solution should be finite at

infinity. Therefore, [K(n;)]sx1=[[0]rx;,[k(n;0) 1% ]. Eq. (28)
can then be rewritten as

[UM,z;0)]=[A(M,2) ]l k() ]+ [B(M,2) 1ot (0 *[k(n;0) ]}
(34)

[T(n,z;0]=[A(M,2) Lol k(n: )]+ [V(M,2) ]ofea(6) [ () I}
(35)
where [U(m,z;0)]=[Up.mUyl", [T(n.z;0]=[Tp/n.,Ty]"; and
[~1i; and [~],,=submatrices of [~] with dimension of 2 X2,
e.g.

[A(m,2) ] [A(M.2)]1
[A(n,2)]=| oo e (36)
[A(M,2)]o1 [A(M.2)]n

Conventionally, either the relaxation modulus or creep compli-
ance can be used to solve such a viscoelastic problem. Here in
this section, we show that by using the relaxation modulus and
creep compliance simultaneously, the displacement and traction
in the viscoelastic AC layer can be represented concisely and
analogously as in Egs. (34) and (35). Thus, this method is called
a dual-parameter method. It is noticed that the displacement in
Eq. (34) is related to the creep compliance by ¢,(¢) and the trac-
tion in Eq. (35) is related to the relaxation modulus by @,(1).

Viscoelastic Solution

Volterra System of Equations

We consider the traction boundary condition at the surface z=0 in
Eq. (35)
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[T(n,0:0)]=[A(,0) La[x(n: )]+ [V(n,0) Lf@2(t) [x(m: ) ]}
(37)

where [T(n,0;1)]=[T(n,0)]=time step load expressed in Eq. (8).
It can be observed that Eq. (37) involves the convolution integral
of [k(n;1)], leading to tedious computation complexity. The
evaluation of convolution integrals is always a very challenging
work and gains extensive attention in the field of both mathemat-
ics and engineering (Linz 1985). Conventionally, the numerical
method is adopted to deal with the convolution integral. For ex-
ample, Park and Kim (1999) introduced several common numeri-
cal rules and Xu (2004) employed the trapezoid rule in dealing
with the convolution integral. However, the computation at an
arbitrary time by using those numerical rules has two closely
related problems: the first one is that it needs all records of pre-
vious steps, and the other one is that the error in the previous step
will propagate to the current step. Thus, this computation is not
only very time-consuming, but also unreliable, especially for
long-term response prediction. We solve this problem by employ-
ing our dual-parameter and semianalytical approach.

Matrix Equation and Solution

We first rewrite Eq. (37) as a linear Volterra system of equations
of second kind (Linz 1985)

M
[k(n:;0)]=[f(n:0)] = [CoN) I Llwi(n;1)] (38)
i=1

where
[f(n;0]=[A(n,0)]5[T(0,0:1)] (39)
[C(n)]=[AM,0)]5[V(1,0)],, (40)
[win:n)]= f Pk (m;T)]dr (41)
0
l;=1/p;cy; (42)
Bi=—l/p; (43)

Since the kernel in the convolution integral [Eq. (41)] is ex-
ponential, the following expression can be derived:

[wim;n)]=[k(n;0)]+ BLwi(m;1)] (44)

[wi(m;0)]=0 (45)

where dot (-) denotes differentiation with respect to time 7. Sub-
stituting Eq. (38) into Eq. (44) yields

Di(ms )]+ [CONIY Llwi(ms0)] = BLwi(n:n] = [f(n30)]
i=1

(46)

Expanding Eq. (46) into the matrix form, together with the
initial condition [Eq. (45)] yields

[W(n:0]+ Q) IW(n;)] = [F(n;1)] (47)

[W(n;0)]=0 (48)

where
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(W] =[Iwi (0] [wa(ms) 15 (s 1T (49)

[Fon;0] =[O0 1n o] (s ] (50)
[Cn)1l; =By [C(m)]i, [C)]; [C) iy
[C(T])]Zl [C(”ﬂ)]l? = Boly - [C(Tl)]li [C(T])JIM
O remn e, [Col-Bly - [Colly 5D
L [C(”ﬂ)]ll [C(’ﬂ)]lz [C(ﬂ)]li [C(ﬂ)]lM - Bumlo ]

and /y=2 X2 identity matrix.
Now, the general solution to the linear equation system
[Eq. (47)] can be expressed as

[Wn:0)]=[XKe"H)[A]+ (") f (e MIXT[F(n;7)]ldr

(52)

where [A]=unknown coefficient vector; w; and [X]=eigenvalues
and eigenvector matrix of the 2M X 2M matrix [Q], i.e.

[XKoX]™" =~ [0] (53)

and

()= (54)
eo2mt

For the step load in this study, [f(n;f)]=[f(n)] and [F(n;?)]
=[F(n)] at £>0. Eq. (52) can then be reduced to the following
expression by combining the initial condition [Eq. (48)]

el =1

w;

[W(n:0)]= [X]< >[X]"[F(n)] (55)

Pavement Response

From Eq. (49), it can be seen that the elements of [W] will also
follow the form of Eq. (55) and can be further written as

Wai_i(m;31)

Woy(m:t) } =([(Wl+[@Df] (=12, ....M)

(56)

[wi(n;0)]= [

where

[q,l] _ % % |:§2i—l,mc"l,2k—l gZi—l,mCm,Zk :| imt (57)

k=1 m=1 Ezi,mCrn,zk—l gZi,mzm,Zk w

m

[(I)l] - g 2EM |:§2i—1,m€m,2k—l gZi—l,mCm,Zk :| __1 (58)

k=1 m=1 EZi,mgm,Zk—l Eimlmok 1@y

with £, { being the elements of [X] and [X]!, respectively.
Substituting Eq. (56) into Eq. (38) gives

2M

M
[k(n;0] = [f(n:0] = [CONI Llwin:0] =[xl + 2 [Xule®
m=1

i=1
(59)

where

M M
1 i—1,mSm,2k— i—1,mSm
D= = S LC@IS 3 ) Snaicn bty

i=1 k=1 gZi,mgm,Zk—l §2i,m€m,2k
(60)
2M
[xol =AM = 2 [x] (61)

m=1

Substituting Eq. (59) into Egs. (34) and (35) yields the fol-
lowing expansion coefficients for the displacement and traction
vectors at a field point in the AC layer (z<h,):

2M N

[Un.z:0]=[Qe] + 2 [Q,Je" + X [y Je (62)
m=1 Jj=1
2M M

[T(m,z;0)]=[O] + E [©,]en" + E (O e (63)

m=1 i=1

where
N -
[Q0]=[A(,9]ulxol + 2 — B D)Julxo] - (64)
j=t 7
N -
[0, 1= (A2 Dalx] + 2 ———[B2]alx.]  (65)
J=LEme g
. 2M _
(21121 = LIB2) D] + 7,2 [BOLD]alx]
Qj m=1Pm = &;

(66)

M

(O] = [A(T]’Zf)]zz[)(o] + 2 __l)i[v()\,?f)]zz[XO] (67)

i=1 i

M
.
[®m] = [A(Tl’zf)]ZZ[Xm] + 2 : [V(T]’Z)]zz[an] (68)

i=1 Pm— Bi
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[O2r)= ey, Talxal + E B [V(n.2) IoalX]
(69)
with rj:I/chlj; and (xj:—l/"rj.
For a field point in the elastic layer (z>h,), we have
[UM,z:0)]=[A(n,2)]12[k(n:0)]=[A(M,2) 120 X0]
2M
+ E [A(niz)]IZ[Xm]emmt (70)
m=1
[T(n,z;0)]=[A(M,2) Lol k(M:0)] = [A(M,2) ][ x0]
2M
+ 2 [AM.2) ol X Je" (71)
m=1

With these expansion coefficients, the final (nonzero) solutions
in the cylindrical coordinates can be derived and expressed in the
form of Bessel integrals similar to Egs. (3)—(6)

1 oo
ur,z;t) = - == f (MUp)J1(r)ndm (72)
V2w Jy
1 o0
u(r,z;t) = /=f (U Jo(mr)mdn (73)
21 J
S p— J (T ()i (74)
2wy
o.(rz;0)= o f ( )Jo(nr)nzdn (75)
ORI B (0}
Grr(r’z’t - 1 _vo-zz+ \“”E 0 1+v
. (num{ o+ d (“’)]ndn (76)

[T Ew

— # (nUy)Jo(mr)mdn
- V2mly 1-v

2v
0-96(r’Z;t) = 1 vo-z"_o-rr_

(77)

1 (" ~
enlrzit) === f (1+v)DO)*(Tyy)Jy(nr)m’dn - (78)
/ ZTT 0

1 * v
e (rz;t) == ( 2)(11 Up)Jo(mr)m’dn
\"21T 0 1-v

1 m(l—v—2v2)ﬁ (TL)
+— | | ————|D0)*| £ )Iy(mrm*d
\'/2_"TJ0 - o Jfonnmdn

(79)
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%

-1
e, (rz)=—= (MUyJo(nrm’dn
V27T 0

Lo
+—7=| (MUy)——mdn (80)

Jl(”f]’”)

See(”ZjJ) - /—f (MUy) (81)

where (nU,,), (U,), (Ty), and (T, /m) are the time-dependent in-
tegral kernels solved by either Egs. (62) and (63) or Egs. (70) and
(71). The expressions involving convolution integral ( *) can be
further expressed as the summation of the exponential terms. In
the above expressions, E(7) and D(r) are also the inverse Laplace

transforms of E(s) and D(s), namely

EN)=ERWN) -2, ?e‘”pi (82)
i=1 Pi
D(1) = Dyd(t) + 2 —l 1 (83)

where 8(r)=Dirac delta function, which will disappear after con-
volution integral ( *).

In order to find the solutions in the Cartesian coordinates,
one can simply apply the coordinate transformation between the
cylindrical and Cartesian systems.

It can be concluded that by using the dual-parameter method,
the displacement, strain, and stress fields can be expressed as the
Prony series of exponential terms, which could be applied to
verify the collocation method. In the collocation method, on the
other hand, the number of exponential terms is assumed to be
fixed for any field point. However, it is shown that the number of
exponential terms varies with the position of the field point. For
instance, for certain m, there are 2M exponential terms for the
displacement if the field point is not located in the AC layer,
while the number is 2M + N for displacement and 3M for traction
for the field point in the AC layer.

The final solutions in the Prony series form also imply that the
solutions are analytical in time domain, and one needs only to
carry out the infinite integration of the products of Bessel function
in the space domain as shown in Egs. (72)—(81). As such, these
solutions are semianalytical. As for the integration of the products
of Bessel function, various numerical methods have been devel-
oped, and in this paper, we adopt the algorithm proposed by
Lucas (1995). In other words, the infinite integration is approxi-
mated by the summation of a series of partial integrations as

Mn+1

+0 N
2, (rdn =2, .20, (mdn  (84)
0

n=1Jm,
The numerical details on the integration of Eq. (84) are similar
to those in our recent elastic pavement program MultiSmart3D, a
fast and accurate program developed for the multilayered elastic
pavement (Pan et al. 2007a).

Analytical Verification

Before numerical computation, two special cases, named the ini-
tial state and the steady state, will be discussed to validate the
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above solution analytically. It can be derived from Egs. (13), (14),
(17), and (18), that the following relations hold:

E(0)=E,=E,+ %1 E;= lim E(s) (85)
D(0) =Dy = lim D(s) (86)
Therefore
E0)D(0) = lim E(5)D(s) = 1 (87)
Similarly |
E@)D() = lim EOD() = lim E)D(s) =1 (88)

For the elastic material, E(rf)D(r)=1, thus, from Egs. (87) and
(88) it can be anticipated that at the initial and steady states the
viscoelastic material behaves like an elastic material and the vis-
coelastic solution should be the same as the elastic solution. We
verify these in the next two subsections.

Initial-State Solution

The solutions for z;<h; at =0 can be reduced from Egs. (62)
and (63) as

2M N
[U(m,z3=0)]=[Qo(,2)]+ 2 [Q,(0,2)]+ 2 [Qorej(1,2)]
m=1 Jj=1
(89)
2M

[T(n.2:=0)]1=[Og(m,2)]+ >, [0,,(n,2)]+ E [@217,4(1,2)]

m=1 i=1
(90)
By combining Egs. (64)—(69) with Eq. (59), Egs. (89) and (90)

can be rewritten as

[U(n,z;t=0)]=[A(,2)]12[k(n;0)] (91)

[T(M,z:t=0)]=[A(n,2)]2[k(n;0)] (92)

It has been found that [a,], the elastic part of the propagator
matrix for the viscoelastic material in Eq. (27), can be expressed
in terms of the two parameters £(0) and D(0) as

[a;(n,2)]=[a,(n,z:D(0),E(0))] (93)

Making use of Eq. (87) and Appendixes I and II, it is easy to
prove that

[a;(n,2:D(0),E(0))] = [af(n,z;E(0))] (94)

It should be stressed that Eq. (94) holds only when ED=1. After
straightforward computation

[A(,2)]=[A(M,2:D(0),E(0))] =[A"(n,z;E(0))]  (95)

Finally, substituting Eq. (95) into Egs. (91) and (92) yields the
elastic solution

[U(m,z;t=0)]=[A%(n,2;E(0))];[k(n;0)] (96)

[T(n,z;t=0)]=[A"(n,z;E(0)) ]2[x(;0)] (97)

Steady-State Solution

From Egs. (62) and (63), the solutions for z,<<h; at t— o are
reduced to

[U(n,z3t — )] =[Q(n,2)] (98)

[T(m,z:t = *)] =[Oy(n,2)] (99)

Similarly, by combining Egs. (64)-(69) with Eq. (59), Egs. (98)
and (99) are rewritten as

N
[U(n,z;t — )] = ([A(n,Z)]lz +2 _—ri[B(n,Z)]12>[K(n;t — )]

j=1 &

(100)

M
[T(n,z;t — )] = ([A(n,z)]zz +2 _Eli[v(ﬂ,z)]zz)[K(”ﬂ;f — )]

i=1 Pi
(101)

After straightforward mathematical manipulations, it is found
that

N
(A2 + 2 B2 =[5 D6).EC)];, (102)
=1 %

1

[A(M,2)]n+ E
=1 Bz

Following the same procedure for the initial-state problem and
making use of Eq. (88), we arrive at

[A(m,2;D(), E(=))] = [A%(n,z; E(=))] (104)

Making use also of Eq. (104), Egs. (100) and (101) are finally
reduced to

[Un,z3t — )] =[AB(, 2 E(2) ][ k(37 — )] (105)

[V(”ﬂ 2] =[A(n,2;D(*),E())], (103)

[T(n,z;t — %)]=[AF(n,2;E()) ]o[k(n;t — )] (106)

It is shown clearly from Egs. (96) and (97) and Egs. (105) and
(106) that at =0 and t— oo, the viscoelastic model is reduced to
the elastic one, and, thus, the viscoelastic solution can be obtained
by directly solving the elastic model with ¢(¢) and E(¢) being
replaced by their values at the corresponding times.

Numerical Examples

As proved above, the response of the viscoelastic pavement at the
initial and steady states can be evaluated directly through the
elastic solution. However, to evaluate the pavement performance
during its service life, it is important to predict the pavement
response at any chosen time. We present the numerical results
below for the time-dependent response of the selected pavements.

Material Characterization

The proposed method can be applied to compute the response of
the viscoelastic pavement at any time. An example discussed in
Xu (2004) will be examined. In this example, the pavement is
composed of AC, granular subbase, and subgrade with parameters
listed in Table 1. This pavement is under the action of a dual-tire
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Table 1. Typical Three-Layer Pavement (Xu 2004)

Thickness Young’s modulus Poisson’s
Layer (in.) (psi) ratio
AC 8.0 Viscoelastic 0.35
Subbase 8.0 30,000 0.3
Subgrade Infinite 5,000 0.3

single-axle load of 18 kip. The tire centers are on the surface
of the pavement with coordinates (x,y)=(0,0) and (0, 12 in.),
and the tire pressure and tire radius are 100 psi and 3.785 in.,
respectively. The AC layer is viscoelastic and the relaxation
modulus E; and relaxation time p; presented in Eq. (13) are listed
in Table 2. The corresponding creep compliance and retardation
time presented in Eq. (14) are computed using Eq. (16) and listed
in Table 3.

Table 2. Relaxation Modulus and Relaxation Time for the Viscoelastic
AC Layer (Xu 2004)

E; Pi
i (psi) ()
_ 12,500 (i.e., E,) —

1 735,300 0.008441
2 386,200 0.1319

3 107,500 1.968

4 20,360 39.25

Table 3. Creep Compliance and Retardation Time for the Viscoelastic
AC Layer

J (psi™") (s)
0 7.92451 % 1077 —
1 8.72639 % 1077 0.0189201
2 3.56881 % 107 0.452776
3 1.80369 X 1075 8.61009
4 5.67292 % 1075 117.703
1.6 i — 1.6
E(f) //
[ et (o) e i
12~ el 1.2
A g3
=08} R —08S
~~ .// ~
= /s =
ST |
’ (a) S
—0.4
0 | | I [ 0
0 1 2 3 4 5

Time t (s)

The variation of E(¢) and D(¢) versus time is plotted in
Fig. 2(a), showing that E(z) decreases quickly with time, while
D(r) increases slowly with time. The product of E(f) and D(r) is
plotted in Fig. 2(b). As proved analytically, the values of E(r)D(t)
at =0 and t—o0 are equal to 1, implying an elastic response
at these two time moments. It is also observed from Fig. 2(b)
that E(r)D(r) varies dramatically immediately after the loads are
applied. The minimum value of E(z)D(z) is about 0.65 around
t=0.5 s, indicating that the viscoelasticity will affect the re-
sponses significantly in this time interval.

Numerical Comparison with Finite-Element-Based
Method

The stresses o, o,, and strains &,,, &,,, along the depth of
the pavement at r=0.01 s and =1 s are calculated and plotted in
Fig. 3. For comparison, the results of Xu (2004) based on the
finite element method are also plotted. It is clearly observed from
Fig. 3 that, when ¢ is small, e.g., t=0.01 s, the stresses from Xu’s
solution and the present semianalytical solution agree well with
each other. The strains from both Xu’s solution and the present
semianalytical solution also agree well with each other for field
points above the subgrade. At r=1 s, however, both results devi-
ate from each other substantially. In Xu’s method and other finite-
element-based methods, numerical schemes were employed to
treat the convolution integral numerically in the time domain.
However, the convolution integral has a property of “memory,”
i.e., a computation at current time requires the computation at all
previous times, and, thus, errors will accumulate with time. This
is why Xu'’s results agree well with the present method at a small
time (r=0.01), but not at a larger time (r=1s). The present
method, on the other hand, is analytical in the time domain and,
thus, circumvents this drawback.

Fig. 4 shows the time variation of the horizontal strains &, and
£y at (x,y,2)=(0,0,7.99 in.). It is observed from Fig. 4 that the
strain increases monotonically to a peak value at about =5 s, and
then decreases to its limiting steady state with increasing time.
We point out again that while most traditional numerical methods
have difficulty in predicting correctly the long-term responses be-

E@®OD()

0.6 = 0.6 T T T T | —
0 0.1 02 03 04 05
0.5 1 l 1 l 1 l 1
0 200 400 600 800
Time ¢ (s)

Fig. 2. Variation of (a) the relaxation modulus E(z) and creep compliance D(r); (b) the product of E(z) and D(¢) with time
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cause of the required large amount of memory in computation, the
present semianalytical method can easily capture the actual trend
of the field response at large times since it is analytical in the time
domain.

Numerical Comparison with the Collocation Method

The only method that can predict pavement long-term responses
is the collocation method proposed by Schapery (1962). The col-
location method has been widely used in computing viscoelastic
pavement responses (Huang 1993; Park and Kim 1998). In terms
of the collocation method, the viscoelastic response is expressed
by the Prony series

K
R(t)= D, Ty (107)
k=1

where I'y and T, (k=1,2,...,K) are constants. While the time

constants 7, are preassumed, e.g., 7,={0.01,0.03,0.1,1,10,
30,0} as adopted in Huang (1993), the coefficients I'; are solved
from Eq. (107) by imposing the response of Eq. (107) equal to the
given results at the collocation time points.

We showed analytically that the pavement viscoelastic re-
sponse can be expressed in terms of the Prony series, which in-
volves infinite terms. However, in the classical collocation
method, only finite terms were employed, i.e., Eq. (107). As a
result, the collocation method may lead to inaccurate results.
For instance, Figs. 5 and 6 show the time-dependent vertical dis-
placement u, at (x,y,z)=(0,0,0) and the critical strain ¢,, at
(x,y,2)=(0,0,7.99 in.) based on the present semianalytical
method and the collocation method. In the collocation method,
two collocation schemes are used: seven-point collocations with
time constants 7;,={0.01,0.03,0.1,1,10,30,}, and 18-point col-
locations with 7,={0.01,0.03,0.1,1,3,10,30,60,100,200,300,
400,500,600,700,800,2,000,}.
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Fig. 4. Variation of horizontal strains &,, and &y, at (x,y,2)=(0,0,7.99 in.) with time #: (a) short-time response; (b) long-term response

It is observed from Figs. 5 and 6 that, in short-term time, the
time-dependent response predicted by the collocation method, es-
pecially the displacement, agrees very well with the result from
the present method. The only discrepancy lies roughly in the time
range [2,6] s. In the long-term time, on the other hand, the pre-
diction by the seven-point collocations shows great discrepancy
in the time range [50,400] s, while the prediction is improved
greatly by the 18-point collocations. However, it should be no-
ticed that although the 18-point collocations predicted results
closer to those from the presented method, as compared to the
seven-point collocations, it failed to capture the monotonic trend
of the strain ,, as shown in Fig. 6(b). Therefore, while the re-
sponses of the viscoelastic pavement could be approximated by
the collocation method, one may need to preselect more time
collocation points. Furthermore, the collocation scheme is
problem-dependent and as such it is difficult to be executed for
general complicated cases. On the other hand, the proposed semi-
analytical solution can be applied to conduct much more compre-
hensive studies in the future.

005 T { T { T { T { T
0.04 —
=
= 003 — G=——6—= Present Method 1
wo (@—6—=© Collocation Method (7 Points)
S A=A\ Collocation Method (18 Points)
0.02 J* —
(a)
001 1 l 1 l 1 l 1 l 1
0 2 4 6 8 10

Time ¢ (s)

Conclusions

In this paper, a dual-parameter method is developed to solve the
time-dependent response of the multilayered viscoelastic pave-
ment under surface loadings. By virtue of the dual parameters, a
semianalytical solution is derived in terms of which the pavement
responses are expressed analytically in the time domain for the
first time. This method avoids the numerical complexity in inte-
gral transform methods and the expensive computational cost in
the traditional numerical handling of viscoelasticity. The present
solution also reveals that the responses are indeed in the form of
the Prony series, with infinite series terms. Thus, the present re-
sult can be further applied to verify other numerical methods in
viscoelasticity, such as the widely adopted collocation method.
Since the present approach can be applied to predict accurately
the pavement responses at any time quickly, it can be applied to
conduct a reliable study on the mechanistic analysis of the vis-
coelastic pavement in the near future.
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0.06 — —
&—9—=< Present Method
G—6—=© Collocation Method (7 Points)
Le—2—2A Collocation Method (18 Points) |
—
k=
~— 0.04 —
N
=
0.02 }— —
0 | | |
0 200 400 600 800

Time ¢ (s)

Fig. 5. Comparison of deflection u, at (x,y,z)=(0,0,0) between the present and collocation methods: (a) short-term response; (b) long-term

response
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Fig. 6. Comparison of the critical strain ,, at (x,y,z)=(0,0,7.99 in.) between the present and collocation methods: (a) short-term response; (b)

long-term response
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Appendix |

1. The elements of the solution matrix [ZZ(z)] of each layer in
Eq. (12) can be expressed as (omitting the superscript E)

z . © z
Z“=clem le=C1€ ® Z13=<;+C1Z>€n~

) -z z
Z]4=(_+CIZ>€ ne Zzl=01€pm
M

. S3 p
Zzz=—cl€ nz Z23=(—+Clz>e"“
M

(108)

where ¢; (i=1,2,3)=material coefficients in the layer and
are related to the Young’s modulus E and Poisson’s ratio v as

1+v 2(1 +v)(1 —v)
Ci=—7"- Cy=-

E E

(1+v)(1-2v)
c3= £

(109)

2. The elements of the propagator matrix [af] of layer k in
Eq. (11) can be expressed as (omitting the subscript k and
superscript E)

ay, = asy = cosh(nh) + ynh sinh(nh)
ay, =— a3 = (y + 1)sinh(nh) + ynh cosh(nh)
a3 =— c,(y +2)sinh(nh) — ynhc, cosh(nh)
a4 =~ a3 =—ynhc, sinh(nh)
ay == azy = (y + 1)sinh(nh) — ynh cosh(nh)
ayy = agy = cosh(nh) — ynh sinh(nh)
a4 = ¢ (y + 2)sinh(nh) + ¢, ynh cosh(nh)
as; = sinh(nh)/c, — nh cosh(nh)/c,
asy, =—ay; = —mhsinh(nh)/c,

ay, = sinh(nh)/c, + mh cosh(nh)/c, (110)

where y=—1/2(1-v), and h=thickness of the layer.

Appendix Il

1. The elements of the propagator matrix [a,] of layer 1 with
thickness /4, in Eq. (27) can be expressed as

ayy = asy = cosh(nhy) +ymh, sinh(n,)
aj, =—ag=nhyy, cosh(nh)) + (y; + 1)sinh(n/;)
a3 = cipyimh cosh(nhy) — co(y; +2)sinh(nh,)
a14== a3 == cypY Mh; sinh(nh;)

ay == azy = (y; + D)sinh(nh,) = y\mh, cosh(nh,)
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Ay = gy = cosh(nhy) = yymh sinh(nh,)
= cyo(yy +2)sinh(nhy) + ¢y mh, cosh(nhy)
as; = sinh(nh;)/cz = nhy cosh(nhy)eyg
az == ay =—nh; sinh(nh)/cy

Ay = Sinh(’r]hl)/czo+”qh1 COSh('T]hl)/CZO (111)

where v,=—1/2(1-v)); c,o=(1+v|)Dy; and 1/c,y=—E,/
2(1-v}).

2. The nonzero elements of matrices [b,] and [v,] of layer 1
with thickness &, in Eq. (27) can be expressed as

b3 =~ byy=~ymh, cosh(nh,) — (y; + 2)sinh(nh;)
b4 == by3=—"yymh; sinh(nh,) (112)
31 = U3, =Mh, cosh(nhy) - sinh(nh,)
U4 == mh, sinh(nh;)

U4p =—mh; cosh(nh,) — sinh(nh;) (113)
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