
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Non-uniform Eshelby’s tensor inside a spherical inclusion in a functionally graded
space in transport phenomena

X. Wang*, E. Pan
Department of Civil Engineering and Department of Applied Mathematics, University of Akron, Akron, OH 44325-3905, USA

a r t i c l e i n f o

Article history:
Received 2 April 2008
Accepted 3 January 2009
Available online 7 January 2009

Keywords:
Functionally graded materials
Heat conduction
Eshelby’s inclusion problem
Eshelby’s conduction tensor
Analytical solution

a b s t r a c t

Within the framework of thermal conduction, we consider a functionally graded isotropic infinite
medium containing a spherical inclusion which undergoes prescribed uniform heat flux-free tempera-
ture gradient. In this research the thermal conductivity is assumed to be exponentially varied in space.
Analytical expressions in series form for the temperature and the second-order Eshelby’s conduction
tensor inside and outside the spherical inclusion are obtained. Our analytical results indicate that the
second-order Eshelby’s conduction tensor is non-uniform within the spherical inclusion and that it is in
general not symmetric. Furthermore our numerical results quantitatively demonstrate how the Eshelby’s
tensor within the spherical inclusion is non-uniformly distributed due to the spatially varying thermal
conductivity.

� 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Within the framework of steady thermal conduction, the
Eshelby’s inclusion problem (Eshelby, 1957) is defined as an
infinite medium U containing a subdomain u, called an inclusion,
which undergoes a prescribed uniform heat flux-free temperature
gradient (Quang et al., 2008), or ‘‘eigen thermal gradient’’ as
termed by Hatta and Taya (1985). In addition the second-order
tensor field relating the gradient of the temperature to the
uniform heat flux-free temperature gradient is called Eshelby’s
conduction tensor (Hatta and Taya, 1985; Quang et al., 2008). In
our understanding, the most attractive application of the study of
Eshelby’s inclusion problem in thermal conduction lies in that the
Eshelby’s conduction tensor can be further applied to predict the
effective conductivity of fibrous composite by the so-called
‘‘equivalent inclusion method’’ proposed by Hatta and Taya (1985),
which is an extension of Eshelby’s equivalent inclusion method in
elasticity (Eshelby, 1957).

We notice that in previous discussions on Eshelby’s inclusion
problem in thermal conduction (see for example, Hatta and Taya,
1985; Quang et al., 2008), the thermal conductivity tensor, no
matter isotropic or anisotropic, was assumed to be constant over
the infinite medium U. Functionally graded materials (FGMs),
which have found many engineering applications such as thermal

barrier coatings (Jarvis and Carter, 2002), are inhomogeneous
materials with smoothly varying material properties.

This research focuses on the study of the 3D Eshelby’s spherical
inclusion problem in an infinite FGM, in which the isotropic
thermal conductivity varies exponentially in space. Due to the
mathematical similarity between anti-plane elasticity and 2D heat
conduction, the simpler 2D Eshelby’s circular inclusion problem in
an FGM with exponentially varying thermal conductivity can be
considered as solved (Wang et al., 2008). As well known (Hatta and
Taya, 1985; Quang et al., 2008), the Eshelby’s conduction tensor
within an ellipsoidal inclusion (with the spherical inclusion as
a special case) in a homogeneous medium is uniform. The main
purpose of this study is to derive analytical expressions of the
second-order Eshelby’s conduction tensor and to quantitatively
demonstrate how the Eshelby’s conduction tensor is non-uniformly
distributed within the spherical inclusion in an FGM. The results
presented here for heat conduction are still valid for other transport
phenomena, such as electrostatics, magnetostatics, electric
conduction and diffusion (Ang et al., 1996; Sutradhar and Paulino,
2004; Quang et al., 2008).

2. Eshelby’s spherical inclusion problem in an FGM

As shown in Fig. 1, we consider a 3D infinite domain U con-
taining an Eshelby’s spherical inclusion u defined by

u : r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
#R. The Fourier’s law for an isotropic mate-

rial can be expressed as
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q1 ¼ k
h
e1 � e*

1ðxÞ
i
; q2 ¼ k

h
e2 � e*

2ðxÞ
i
;

q3 ¼ k
h
e3 � e*

3ðxÞ
i
; (1)

where qi and ei ¼ �T;i are the heat flux and the negative gradient
of the temperature field T, respectively; k ¼ kðxÞ is the spatially
varied thermal conductivity; e*

i ðxÞ is the negative heat flux-free
temperature gradient. More specifically e*

i ðxÞ is uniform and is
equal to e0

i inside the spherical inclusion u and vanishes outside the
spherical inclusion. In this research we assume that the thermal
conductivity is exponentially varied in the x3 direction, and is
described by

k ¼ expð2bx3Þk0; (2)

where the constant b is the exponential factor characterizing the
degree of material gradient in the x3 direction, and k0 is also
a material constant (or more specifically the thermal conductivity
at origin).

In the case of steady thermal conduction with no heat source,
the heat fluxes should satisfy the following divergence-free
equation

vq1

vx1
þ vq2

vx2
þ vq3

vx3
¼ 0: (3)

Consequently it follows from Eqs. (1)–(3) that the temperature
field should satisfy the following partial differential equations
within and outside the sphere

V2T þ 2b
vT
vx3
¼ �2be0

3; when r < R;

V2T þ 2b
vT
vx3
¼ 0; when r > R; (4)

where V2 ¼ v2=vx2
1 þ v2=vx2

2 þ v2=vx2
3 is the three-dimensional

(3D) Laplacian operator.
Next we introduce a new function f defined by

T ¼ expð�bx3Þf : (5)

As a result Eq. (4) can be equivalently expressed in terms of f as

V2f � b2f ¼ �2be0
3expðbx3Þ; when r < R;

V2f � b2f ¼ 0; when r > R (6)

which means that the new function f satisfies a 3D inhomogeneous
Helmholtz equation within the sphere and a 3D homogeneous
Helmholtz equation outside the sphere whose general solutions
can be easily obtained by separation of variables. Here it is of
interest to point out that the idea of the introduction of a new
function has been widely adopted when solving the governing
partial differential equations in an FGM (see for example, Ang et al.,
1996; Sutradhar and Paulino, 2004; Collet et al., 2006; Lazar, 2007;
Wang et al., 2007). In the following we will separately address three
typical cases for the prescribed heat flux-free temperature
gradient: (i) e0

1 ¼ e0
2 ¼ 0, e0

3s0; (ii) e0
2 ¼ e0

3 ¼ 0, e0
1s0; and (iii)

e0
1 ¼ e0

3 ¼ 0, e0
2s0 in order to derive the second-order conduction

tensor Su. It will be observed that the expressions of the general
solutions for the three cases are different.

2.1. e0
1 ¼ e0

2 ¼ 0, e0
3s0

For the case in which e0
1 ¼ e0

2 ¼ 0, e0
3s0, the general solution

to f inside and outside the spherical inclusion of radius R can be
expressed as (Abramovitz and Stegun, 1972; Moon and Spencer,
1988)

fin ¼ �e0
3x3expðbx3Þ þ e0

3

XN
n¼0

AninðjbjrÞPnðcosqÞ; for r < R;

(7)

fout ¼ e0
3

XN
n¼0

BnknðjbjrÞPnðcosqÞ; for r > R; (8)

where q ð0#q#pÞ is the ‘‘cone angle’’ measured from the x3 axis;
An and Bn ðn ¼ 0;1;2;3;.;þNÞ are unknown constants to be
determined; in and kn are the nth order modified spherical Bessel
functions of the first and second kinds, respectively; Pn is the
Legendre polynomial of order n. It is noticed that the azimuthal
angle 4 is absent in the above expressions of the general solution.

The inclusion-matrix interface r ¼ R is assumed to be perfectly
bonded, and can be expressed in terms of the temperature Tin
inside the inclusion and Tout outside as

Tin ¼ Tout;

vTin

vr
þ e0

3cosq ¼ vTout

vr
;

for r ¼ R: (9)

The first equation in Eq. (9) states that the temperature is
continuous across the interface r ¼ R, whilst the second one in Eq.
(9) states that the normal heat flux is also continuous across r ¼ R.
In view of Eq. (5), the above boundary conditions can also be
expressed in terms of f and vf

vr as

fin ¼ fout;

vfin
vr
þ e0

3cosqexpðbx3Þ ¼
vfout

vr
;

for r ¼ R; (10)

where fin is defined inside the spherical inclusion, whilst fout is
defined outside the spherical inclusion.

In order to satisfy the above boundary conditions at r ¼ R, we
first expand the exponential function expðbx3Þ as

Fig. 1. An infinite FGM containing a spherical inclusion u : r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

q
#R

with uniform heat flux-free temperature gradient e0
1; e

0
2; e

0
3.
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expðbx3Þ ¼
XþN

n¼0

ð2nþ 1ÞinðbrÞPnðcosqÞ; (11)

then the terms cosqexpðbx3Þ and cos2qexpðbx3Þ can be expanded as

cosqexpðbx3Þ ¼
XþN

n¼0

½nin�1ðbrÞ þ ðnþ 1Þinþ1ðbrÞ�PnðcosqÞ;

cos2qexpðbx3Þ ¼
XþN

n¼0

�
nðn� 1Þ
2n� 1

in�2ðbrÞ

þ 4n3 þ 6n2 � 1
ð2n� 1Þð2nþ 3ÞinðbrÞ

þ ðnþ 1Þðnþ 2Þ
2nþ 3

inþ2ðbrÞ
�

PnðcosqÞ: (12)

During the derivation of Eq. (12) from Eq. (11) we have utilized
the identity ð2nþ 1ÞxPnðxÞ ¼ ðnþ 1ÞPnþ1ðxÞ þ nPn�1ðxÞ. By
enforcing the boundary conditions across r ¼ R in Eq. (10), we then
obtain the following set of linear algebraic equations

inðjbjRÞAn � knðjbjRÞBn ¼ R½nin�1ðbRÞ þ ðnþ 1Þinþ1ðbRÞ�;

i0nðjbjRÞAn � k0nðjbjRÞBn ¼
bR
jbj

�
nðn� 1Þ
2n� 1

in�2ðbRÞ

þ 4n3 þ 6n2 � 1
ð2n� 1Þð2nþ 3ÞinðbRÞ

þ ðnþ 1Þðnþ 2Þ
2nþ 3

inþ2ðbRÞ
�
;

ðn ¼ 0;1;2;3;.;þNÞ; (13)

where the prime (0) denotes the derivative with respect to the
variable in the parenthesis, and

i0nðxÞ ¼
n

2nþ 1
in�1ðxÞ þ

nþ 1
2nþ 1

inþ1ðxÞ;

k0nðxÞ ¼ �
n

2nþ 1
kn�1ðxÞ �

nþ 1
2nþ 1

knþ1ðxÞ: (14)

As a result the unknowns An and Bn can be uniquely
determined as

An ¼ R
�

k0nðjbjRÞ½nin�1ðbRÞ þ ðnþ 1Þinþ1ðbRÞ�

� knðjbjRÞ
b

jbj

�
nðn� 1Þ
2n� 1

in�2ðbRÞ þ 4n3 þ 6n2 � 1
ð2n� 1Þð2nþ 3ÞinðbRÞ

þ ðnþ 1Þðnþ 2Þ
2nþ 3

inþ2ðbRÞ
���

inðjbjRÞk0nðjbjRÞ

� knðjbjRÞi0nðjbjRÞ
��1

;

Bn ¼ R
�

i0nðjbjRÞ½nin�1ðbRÞ þ ðnþ 1Þinþ1ðbRÞ�

� inðjbjRÞ
b

jbj

�
nðn� 1Þ
2n� 1

in�2ðbRÞ þ 4n3 þ 6n2 � 1
ð2n� 1Þð2nþ 3ÞinðbRÞ

þ ðnþ 1Þðnþ 2Þ
2nþ 3

inþ2ðbRÞ
���

inðjbjRÞk0nðjbjRÞ

� knðjbjRÞi0nðjbjRÞ
��1

ðn ¼ 0;1;2;3;.;þNÞ: (15)

Once An and Bn are determined, the temperature field inside and
outside the spherical inclusion is uniquely given by

Tin ¼ �e0
3x3 þ e0

3expð�bx3Þ
XN
n¼0

AninðjbjrÞPnðcosqÞ; for r < R;

(16)

Tout ¼ e0
3expð�bx3Þ

XN
n¼0

BnknðjbjrÞPnðcosqÞ; for r > R: (17)

In the spherical coordinate system, the negative gradient of the
temperature inside the sphere is distributed as

er

e0
3

¼ cosqþ expð�bx3Þ
"

bcosq
XN
n¼0

AninðjbjrÞPnðcosqÞ

� jbj
XN
n¼0

Ani0nðjbjrÞPnðcosqÞ
#
;

eq

e0
3

¼ �sinqþ expð�bx3Þsinq

"
r�1

XN
n¼0

AninðjbjrÞP0nðcosqÞ

� b
XN
n¼0

AninðjbjrÞPnðcosqÞ
#
; (18)

and outside the sphere it is

er

e0
3

¼ expð�bx3Þ
"

bcosq
XN
n¼0

BnknðjbjrÞPnðcosqÞ

� jbj
XN
n¼0

Bnk0nðjbjrÞPnðcosqÞ
#
;

eq

e0
3

¼ expð�bx3Þsinq

"
r�1

XN
n¼0

BnknðjbjrÞP0nðcosqÞ

� b
XN
n¼0

BnknðjbjrÞPnðcosqÞ
#
; (19)

where the derivative of the Legendre polynomial can be obtained
from the following identity

P0nðxÞ ¼
nxPnðxÞ � nPn�1ðxÞ

x2 � 1
: (20)

The gradient of temperature in Eqs. (18) and (19) is expressed in
the spherical coordinate system, it is not difficult to obtain the
gradient in the Cartesian coordinate system as

e1 ¼ ersinqcos4þ eqcosqcos4;

e2 ¼ ersinqsin4þ eqcosqsin4;

e3 ¼ ercosq� eqsinq: (21)

As a result the components of the Eshelby’s conduction tensor
due to e0

3 are

Su
13 ¼

e1

e0
3

; Su
23 ¼

e2

e0
3

; Su
33 ¼

e3

e0
3

: (22)

It can then be easily observed from Eqs. (18), (21) and (22) that
the components Su

13, Su
23, Su

33 of the Eshelby’s conduction tensor

X. Wang, E. Pan / European Journal of Mechanics A/Solids 28 (2009) 955–961 957
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inside the spherical inclusion in an FGM space is intrinsically non-
uniform. It should also be stressed that all the results derived in this
subsection display a symmetry of revolution around the x3
direction.

2.2. e0
2 ¼ e0

3 ¼ 0, e0
1s0

For the case in which e0
2 ¼ e0

3 ¼ 0, e0
1s0, the general solution

to f inside and outside the spherical inclusion of radius R can be
expressed as

fin ¼ e0
1

XN
n¼1

CninðjbjrÞP1
nðcosqÞcos4; for r < R; (23)

fout ¼ e0
1

XN
n¼1

DnknðjbjrÞP1
nðcosqÞcos4; for r > R; (24)

where Cn and Dn ðn ¼ 1;2;3;.;þNÞ are unknown constants to be
determined; P1

n is the associated Legendre function of degree n and
order 1. It should be noticed that the azimuthal angle 4 is present in
the above general solution expressions.

In this case the perfect inclusion-matrix interface r ¼ R can be
expressed in terms of T and vT

vr as

Tin ¼ Tout;

vTin

vr
þ e0

1cos4sinq ¼ vTout

vr
;

for r ¼ R (25)

or equivalently in terms of f and vf
vr

fin ¼ fout;

vfin
vr
þ e0

1cos4sinqexpðbx3Þ ¼
vfout

vr
;

for r ¼ R: (26)

Due to the fact that the exponential function expðbx3Þ can be
expanded into Eq. (11), then the term cos 4 sin q expðbx3Þ appearing
in Eq. (26)2 can be expanded into

cos4sinq expðbx3Þ¼
XþN

n¼1

½in�1ðbrÞ�inþ1ðbrÞ�P1
nðcosqÞcos4: (27)

During the above derivation we have utilized the identities
ð2nþ1ÞPnðxÞ¼ P0nþ1ðxÞ�P0n�1ðxÞ and P1

nðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2
p

P0nðxÞ. By
enforcing the boundary conditions across r¼R in Eq. (26), we then
obtain the following set of linear algebraic equations

inðjbjRÞCn � knðjbjRÞDn ¼ 0;

i0nðjbjRÞCn � k0nðjbjRÞDn ¼ �
1
jbj½in�1ðbRÞ � inþ1ðbRÞ�

ðn ¼ 1;2;3;.;þNÞ (28)

through which the unknowns Cn and Dn can be uniquely deter-
mined as

Cn ¼
1
jbj

knðjbjRÞ½in�1ðbRÞ � inþ1ðbRÞ�
inðjbjRÞk0nðjbjRÞ � knðjbjRÞi0nðjbjRÞ

;

Dn ¼
1
jbj

inðjbjRÞ½in�1ðbRÞ � inþ1ðbRÞ�
inðjbjRÞk0nðjbjRÞ � knðjbjRÞi0nðjbjRÞ

ðn ¼ 1;2;3;.;þNÞ: (29)

Once Cn and Dn are determined, the temperature field inside and
outside the spherical inclusion is uniquely given by

Tin ¼ e0
1expð�bx3Þ

XN
n¼1

CninðjbjrÞP1
nðcosqÞcos4; for r<R; (30)

Tout ¼ e0
1expð�bx3Þ

XN
n¼1

DnknðjbjrÞP1
nðcosqÞcos4; for r>R: (31)

In the spherical coordinate system, the negative gradient of the
temperature inside the sphere is distributed as

er

e0
1

¼ expð�bx3Þcos4

"
bcosq

XN
n¼1

CninðjbjrÞP1
nðcosqÞ

� jbj
XN
n¼1

Cni0nðjbjrÞP1
nðcosqÞ

#
;

eq

e0
1

¼ expð�bx3Þsinqcos4

"
r�1

XN
n¼1

CninðjbjrÞP1 0
n ðcosqÞ

� b
XN
n¼1

CninðjbjrÞP1
nðcosqÞ

#
;

e4

e0
1

¼ expð�bx3Þ
sin4

rsinq

XN
n¼1

CninðjbjrÞP1
nðcosqÞ; (32)

and outside the sphere it is

er

e0
1

¼ expð�bx3Þcos 4

"
b cos q

XN
n¼1

DnknðjbjrÞP1
nðcosqÞ

� jbj
XN
n¼1

Dnk0nðjbjrÞP1
nðcos qÞ

#
;

eq

e0
1

¼ expð�bx3Þsin q cos 4

"
r�1

XN
n¼1

DnknðjbjrÞP1 0
n ðcos qÞ

� b
XN
n¼1

DnknðjbjrÞP1
nðcosqÞ

#
;

e4

e0
1

¼ expð�bx3Þ
sin 4

r sin q

XN
n¼1

DnknðjbjrÞP1
nðcosqÞ; (33)

where the derivative of the associated Legendre polynomial can be
obtained from the following identity

P1 0
n ðxÞ ¼ �

nPnðxÞ þ ðn� 1ÞxP0nðxÞ � nP0n�1ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p ; (34)

with P0nðxÞ, the derivative of the Legendre polynomial having been
given by Eq. (20).

The gradient of temperature in Eqs. (32) and (33) is expressed in
the spherical coordinate system, it is not difficult to obtain the
gradient in the Cartesian coordinate system as

e1 ¼ er sin q cos 4þ eq cos q cos 4� e4sin 4;

e2 ¼ er sin q sin 4þ eq cos q sin 4þ e4cos 4;

e3 ¼ er cos q� eq sin q: (35)

As a result the components of the Eshelby’s conduction tensor
due to e0

1 are

Su
11 ¼

e1

e0
1

; Su
21 ¼

e2

e0
1

; Su
31 ¼

e3

e0
1

: (36)

X. Wang, E. Pan / European Journal of Mechanics A/Solids 28 (2009) 955–961958
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It can then be easily observed from Eqs. (32), (35) and (36) that
the components Su

11, Su
21, Su

31 of the Eshelby’s conduction tensor
inside the spherical inclusion in an FGM space are intrinsically non-
uniform.

2.3. e0
1 ¼ e0

3 ¼ 0, e0
2s0

Here it should be pointed out that the discussion for the case
e0

1¼e0
3¼0, e0

2s0 is very similar to that for e0
2¼e0

3¼0, e0
1s0. In the

following we only list the main results. In this case, the temperature
field inside and outside the spherical inclusion is given by

Tin ¼ e0
2expð�bx3Þ

XN
n¼1

CninðjbjrÞP1
nðcosqÞsin4; for r<R; (37)

Tout ¼ e0
2expð�bx3Þ

XN
n¼1

DnknðjbjrÞP1
nðcosqÞsin4; for r>R; (38)

where Cn and Dn ðn¼ 1;2;3;.;þNÞ are uniquely determined by
Eq. (29) so as to satisfy the following boundary conditions at the
perfect inclusion-matrix interface r ¼ R

Tin ¼ Tout;
vTin

vr
þ e0

2 sin 4 sin q ¼ vTout

vr
;

for r ¼ R: (39)

In the spherical coordinate system, the negative gradient of the
temperature inside the sphere is distributed as

er

e0
2

¼ expð�bx3Þsin4

"
b cos q

XN
n¼1

CninðjbjrÞP1
nðcosqÞ

� jbj
XN
n¼1

Cni0nðjbjrÞP1
nðcos qÞ

#
;

eq

e0
2

¼ expð�bx3Þsin q sin 4

"
r�1

XN
n¼1

CninðjbjrÞP1 0
n ðcosqÞ

� b
XN
n¼1

CninðjbjrÞP1
nðcos qÞ

#
;

e4

e0
2

¼ �expð�bx3Þ
cos4

r sinq

XN
n¼1

CninðjbjrÞP1
nðcosqÞ; (40)

and outside the sphere it is

er

e0
2

¼ expð�bx3Þsin4

"
bcosq

XN
n¼1

DnknðjbjrÞP1
nðcosqÞ

� jbj
XN
n¼1

Dnk0nðjbjrÞP1
nðcosqÞ

#
;

eq

e0
2

¼ expð�bx3Þsinqsin4

"
r�1

XN
n¼1

DnknðjbjrÞP1 0
n ðcosqÞ

� b
XN
n¼1

DnknðjbjrÞP1
nðcosqÞ

#
;

e4

e0
2

¼ �expð�bx3Þ
cos4

r sinq

XN
n¼1

DnknðjbjrÞP1
nðcosqÞ: (41)

The gradient of temperature in the Cartesian coordinate system
is determined by Eq. (35) once we obtain the gradient of temper-
ature in the spherical coordinate system. Consequently the
components of the Eshelby’s conduction tensor due to e0

2 are

Su
12 ¼

e1

e0
2

; Su
22 ¼

e2

e0
2

; Su
32 ¼

e3

e0
2

: (42)

It can then be easily observed from Eqs. (40), (35) and (42) that
the components Su

12, Su
22, Su

32 of the Eshelby’s conduction tensor
inside the spherical inclusion in an FGM space are intrinsically non-
uniform.

Up to now we have obtained the expressions for all the
components Su

ij of the second-order Eshelby’s conduction tensor
Su. The previous results show that: (i) all the components of Su

are non-uniform within the spherical inclusion; (ii) all the non-
diagonal components of Su are non-zero; (iii) Su is not symmetric
due to the fact that Su

13sSu
31 and Su

23sSu
32; (iv) there exist in total

five independent components in Su since the fact that
Su

12 ¼ Su
21 ¼ ðS

u
11� Su

22=2Þ tan24, Su
23 ¼ Su

13tan4 and Su
32 ¼ Su

31tan4.
By noticing that for a homogeneous material the Eshelby’s
conduction tensor within the spherical inclusion is Su ¼ I=3
(Hatta and Taya, 1985; Quang et al., 2008), then an Eshelby’s
spherical inclusion in an FGM will cause an Eshelby’s conduction
tensor Su which is a far cry from that for a homogeneous material.
In the following we present numerical results to quantitatively
demonstrate the non-uniform Eshelby’s conduction tensor inside
the spherical inclusion.

Fig. 2. Distributions of the dimensionless temperature field ~T ¼ �T=Re0
3 along the x3-axis for different values of the gradient parameter bR. e0

1 ¼ e0
2 ¼ 0, e0

3s0.
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3. Numerical results

In the following calculations, the heat flux-free temperature
gradient is always chosen as e0

1 ¼ e0
2 ¼ 0, e0

3s0. We demonstrate
in Figs. 2 and 3 the distributions of the dimensionless temperature
~T ¼ �T=ðRe0

3Þ and the Eshelby’s tensor component Su
33 ¼ e3=e0

3
along the x3-axis for different values of the gradient parameter bR.
During the calculations the series is truncated at n ¼ 20 in order to
obtain sufficiently accurate results with the relative errors less than
0.01%. When bR/0, the calculated temperature field and the
Eshelby’s tensor component Su

33 are in complete agreement with
the following exact results for a homogeneous material

~T ¼

8>><
>>:

1=ð3~x2
3Þ; ~x3 > 1;

~x3=3; �1 < ~x3 < 1;

�1=ð3~x2
3Þ; ~x3 < �1;

(43)

Su
33 ¼

(
�2=ð3j~x3j3Þ; j~x3j > 1;

1=3; j~x3j < 1;
(44)

where ~x3 ¼ x3=R. Our numerical results also verify that the
temperature is indeed continuous at the interface r ¼ R and that
the jump in the Eshelby’s tensor component Su

33 at the interface r ¼
R satisfies the following condition

	
Su

33


in�
	
Su

33


out¼ 1; ~x3 ¼ �1 (45)

which can be easily deduced from Eq. (9)2. Thus the results pre-
sented here can be considered as confirmed.

It is found that the gradient parameter has a significant influ-
ence on the distributions of the temperature field and the Eshelby’s
conduction tensor. More specifically the following can be observed
from Fig. 2 for the temperature distribution:

(i) The normalized temperature ~T always reaches its maximum at
x3 ¼ R and gets its minimum at x3 ¼ �R for a fixed value of
the gradient parameter b ðP0Þ;

(ii) The temperature within the spherical inclusion is no longer
a linear function of the coordinate x3 for a non-zero gradient
parameter b; the magnitudes of the temperature for x3 > R
outside the inclusion are always reduced, while those for x3 < �R
are always increased when the gradient parameter bR increases.

In addition the following can be observed from Fig. 3 for the
Eshelby’s tensor component Su

33:

(i) The Eshelby’s tensor component Su
33 reaches its maximum

value at the inclusion side of the interface x3 ¼ R, and gets its
minimum value at the matrix side of the interface x3 ¼ �R for
a fixed value of the gradient parameter b ðP0Þ;

(ii) The Eshelby’s tensor component Su
33 within the spherical

inclusion is no longer uniform for non-zero gradient
parameter b, and the non-uniformity of Su

33 within the
spherical inclusion is more apparent for bR¼2—4 (for
example when bR¼4, the internal Su

33 is 0.82 at x3¼R
whereas it is reduced to 0.35 for x3¼�R); our results show
that when bR is large enough (bR>8), the internal Eshelby’s
tensor component Su

33 within the sphere becomes nearly
uniform along the x3-axis.

Furthermore it is also observed that the distribution trends for
the temperature and Eshelby’s tensor induced by a 3D Eshelby’s
spherical inclusion are qualitatively in agreement with those
induced by a 2D Eshelby’s circular inclusion (Wang et al., 2008).

Finally we illustrate in Fig. 4 the contour plots of the dimen-
sionless temperature field ~T in the plane x2 ¼ 0 with bR ¼ 0:6.
This is to show an overall picture of the distributions of the

Fig. 3. Distributions of the Eshelby’s tensor component Su
33 ¼ e3=e0

3 along the x3-axis for different values of the gradient parameter bR. e0
1 ¼ e0

2 ¼ 0, e0
3s0.

Fig. 4. Contour plots of the dimensionless temperature field ~T ¼ �T=ðRe0
3Þ in the

plane x2 ¼ 0 with bR¼ 0.6. e0
1 ¼ e0

2 ¼ 0, e0
3s0.
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temperature field due to a uniform heat flux-free temperature
gradient e0

3 prescribed within the sphere with exponentially
varying thermal conductivity. It is observed that the temperature
contours for FGM are quite different from those for homogeneous
materials when b ¼ 0. For example, the temperature contours
within the spherical inclusion for a homogeneous material are
parallel straight lines, while those for an FGM are curved lines as
demonstrated in Fig. 4.

4. Conclusions

In this paper, the 3D Eshelby’s spherical inclusion problem in an
FGM with exponentially varying thermal conductivity was
addressed in detail. The temperature field was presented in Eqs.
(16) and (17) due to e0

3, Eqs. (30) and (31) due to e0
1, Eqs. (37) and

(38) due to e0
2 while the Eshelby’s conduction tensor, which is non-

uniform inside the spherical inclusion, was given by Eqs. (22), (36)
and (42). The analysis of an FGM containing a spherical inclusion
revealed that: (i) all the components of Su are non-uniform
within the spherical inclusion; (ii) all the non-diagonal components
of Su are non-zero; (iii) Su in general is not symmetric; (iv)
there exist in total five independent components in Su since
Su

12 ¼ Su
21 ¼ ðS

u
11 � Su

22=2Þ tan24, Su
23 ¼ Su

13tan4, Su
32 ¼ Su

31tan4.
Our numerical results also clearly demonstrated how the temper-
ature and the Eshelby’s conduction tensor are influenced by the
non-zero gradient parameter b. It is expected that the discussions
of a spherical inclusion in an FGM with some special non-expo-
nential variations (Sutradhar and Paulino, 2004; Collet et al., 2006)
can also be carried out.
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