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a b s t r a c t

This research is devoted to the study of anisotropic bimaterials with Kelvin-type viscoelastic interface
under antiplane deformations. First we derive the Green’s function for a bimaterial with a Kelvin-type
viscoelastic interface subjected to an antiplane force and a screw dislocation by means of the complex
variable method. Explicit expressions are derived for the time-dependent stress field induced by the anti-
plane force and screw dislocation. Also presented is the time-dependent image force acting on the screw
dislocation due to its interaction with the Kelvin-type viscoelastic interface. Second we investigate a rect-
angular inclusion with uniform antiplane eigenstrains embedded in one of the two bonded anisotropic
half-planes by virtue of the derived Green’s function for a line force. The explicit expressions for the
time-dependent stress field induced by the rectangular inclusion are obtained in terms of the simple log-
arithmic and exponential integral functions. It is observed that in general the stresses exhibit the loga-
rithmic singularity at the four corners of the rectangular inclusion. Our results also show that when
one side of the rectangular inclusion lies on the viscoelastic interface, the interfacial tractions are still reg-
ular at the two corners of the inclusion which are located on the interface. Last we address a finite Griffith
crack normal to the viscoelastic interface by means of the obtained Green’s function for a screw disloca-
tion. The crack problem is formulated in terms of a resulting singular integral equation which is solved
numerically. The time-dependent stress intensity factors at the two crack tips are obtained and some
interesting features are discussed.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays composite structures have found many important
applications. It has been identified that the interface separating dif-
ferent phases in composites is critical in determining the local and
overall behaviors of the composites. At high temperatures the
time-dependent viscoelastic behavior of the interface should be ta-
ken into consideration (Fan and Wang, 2003).

In this research we will discuss some typical micromechanics
and fracture mechanics issues in anisotropic elastic bimaterials
with viscoelastic interface. In previous works on Green’s functions
only the isotropic properties of the bimaterials were considered
(Fan and Wang, 2003; Ang and Fan, 2004; Wang and Pan,
2008a). On the other hand discussions on Eshelby’s inclusion and
crack problems in composites with viscoelastic interface are still
very rare in the literature. Based on these considerations, this re-
search is concerned with some quasi-static antiplane problems of
an anisotropic elastic bimaterial with a Kelvin-type viscoelastic

interface in which the linear spring and the linear dashpot are con-
nected in parallel. In Section 2 we present the basic formulations
for the problem. In Section 3 we first derive the time-dependent
Green’s function for an anisotropic bimaterial with a viscoelastic
interface subjected to an antiplane force and a screw dislocation.
In Section 4 the obtained Green’s function for an antiplane force
is then employed to address a rectangular inclusion with uniform
antiplane eigenstrains in one of the two bonded anisotropic half-
planes. In Section 5 the obtained Green’s function for a screw dis-
location is employed to solve the problem of a crack normal to the
viscoelastic interface in the upper half-plane. Conclusions are
drawn in Section 6.

2. Basic formulations

In a fixed rectangular coordinate system xi (i = 1,2,3), we let ui

and rij be the elastic displacement and stress, respectively. If the
material possesses a symmetry plane at x3 = 0, then the stress–
strain relation for the antiplane deformation is

r31 ¼ C55u;1 þ C45u;2;
r32 ¼ C44u;2 þ C45u;1;

ð1Þ
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where u = u3, C44,C45,C55 are elastic constants and the subscript ‘‘,i”
stands for differentiation with respect to xi. The positive definite-
ness of the strain energy density requires that

C44 > 0; C55 > 0; C44C55 � C2
45 > 0: ð2Þ

For the special case of an orthotropic material with its material
orthotropic axes coincident with the reference axes, one has
C45 = 0.

The equation of equilibrium in terms of the displacement is

C55u;11 þ 2C45u;12 þ C44u;22 ¼ 0: ð3Þ

In writing Eq. (3) we have assumed that the inertia effect can be
neglected. The general solution of (3) can be expressed in terms of
a single analytic function f(zp, t) as (Ting, 1996)

u ¼ Im f ðzp; tÞ
� �

; zp ¼ x1 þ px2; ð4Þ

where

p ¼
�C45 þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44C55 � C2

45

q
C44

: ð5Þ

It should be noted that the appearance of the real time t in the
analytic function f is due solely to the influence of the viscoelastic
interface.

The stresses r31,r32 and the stress function / are then given by

r31 þ pr32 ¼ il Imfpgf 0ðzp; tÞ; ð6Þ
/ ¼ lRe f ðzp; tÞ

� �
; ð7Þ

where the prime denotes differentiation with respect to the com-

plex variable zp; l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44C55 � C2

45

q
, and the stresses r31,r32 are re-

lated to the stress function / through

r31 ¼ �/;2; r32 ¼ /;1: ð8Þ

3. Green’s functions for anisotropic bimaterials subjected to an
antiplane force and a screw dislocation

At the initial moment t = 0, we introduce an antiplane line force
q and a screw dislocation with magnitude b and fix them at the po-
sition (x1,x2) = (x0,y0), (y0 > 0) in the upper anisotropic half-plane
which is bonded to another lower anisotropic half-plane through
a Kelvin-type viscoelastic interface x2 = 0, as shown in Fig. 1. In
what follows the subscripts 1 and 2 (or the superscripts (1) and

(2)) are used to denote, respectively, the quantities in the upper
and lower half-planes. Due to the fact that zp1 = zp2 = z = x1 + ix2

on x2 = 0, we will replace zp1 and zp2 by the common variable z.
When the analysis is finished the complex variable should be chan-
ged back to the corresponding complex variables zp1 for the upper
half-plane and zp2 for the lower half-plane. The boundary condi-
tions on a Kelvin-type viscoelastic interface are given by

rð1Þ32 ¼ rð2Þ32 ¼ kðuð1Þ � uð2ÞÞ þ gð _uð1Þ � _uð2ÞÞ on x2 ¼ 0; ð9Þ

where a dot over the quantity denotes differentiation with respect
to real time t, k is the ‘‘spring constant” of the interface and g is
the viscosity coefficient. In the Kelvin model the linear spring and
the linear dashpot are connected in parallel (Fan and Wang, 2003).

The above boundary conditions can be equivalently expressed
in terms of the two analytic functions, f1(z, t) defined in the upper
half-plane and f2(z, t) defined in the lower half-plane, as

l1fþ1 ðx1; tÞ þ l1
�f�1 ðx1; tÞ ¼ l2f�2 ðx1; tÞ þ l2

�fþ2 ðx1; tÞ;
k fþ1 ðx1; tÞ � �f�1 ðx1; tÞ � f�2 ðx1; tÞ þ �fþ2 ðx1; tÞ
� �
þ g _fþ1 ðx1; tÞ � _�f�1 ðx1; tÞ � _f�2 ðx1; tÞ þ _�fþ2 ðx1; tÞ

h i
¼ il2 f 0�2 ðx1; tÞ þ �f 0þ2 ðx1; tÞ

� �
; x2 ¼ 0;

ð10Þ

where the superscripts ‘‘+” and ‘‘�” denote the limit values from the
upper and lower sides of the interface x2 = 0, respectively.

It follows from (10)1 that

f1ðz; tÞ ¼
l2

l1

�f 2ðz; tÞ þ f0ðzÞ � �f 0ðzÞ;

�f 1ðz; tÞ ¼
l2

l1
f2ðz; tÞ � f0ðzÞ þ �f 0ðzÞ;

ð11Þ

where f0ðzÞ ¼
b�il�1

1 q
2p lnðz� z0Þ, (z0 = x0 + p1y0) is the potential for a

line force and line dislocation at (x1,x2) = (x0,y0) in an infinite homo-
geneous material with the material properties Cð1Þ44 ;C

ð1Þ
45 ;C

ð1Þ
55 .

Substituting Eq. (11) into Eq. (10)2, we arrive at

k
l1 þl2

l1

�fþ2 ðx1; tÞ � il2
�f 0þ2 ðx1; tÞ þ g

l1 þl2

l1

_�fþ2 ðx1; tÞ � 2k�f 0ðx1Þ

¼ k
l1 þl2

l1
f�2 ðx1; tÞ þ il2f 0�2 ðx1; tÞ þ g

l1 þl2

l1

_f�2 ðx1; tÞ � 2kf0ðx1Þ

on x2 ¼ 0: ð12Þ

It is apparent that the left hand side of Eq. (12) is analytic in the
upper half-plane, whilst the right hand side of Eq. (12) is analytic in
the lower half-plane. Consequently the continuity condition in

Upper Anisotropic Half-Plane 
),,( )1(

55
)1(

45
)1(

44 CCC

Lower Anisotropic Half-Plane 
),,( )2(

55
)2(

45
)2(

44 CCC

x1

x2

Viscoelastic Interface 

(x0, y0) 

Line Force q and 
Screw Dislocation b

Fig. 1. An antiplane line force q and a screw dislocation b located at (x1,x2) = (x0,y0), (y0 > 0) in the upper anisotropic half-plane which is bonded to a lower anisotropic half-
plane through a Kelvin-type viscoelastic interface x2 = 0.
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Eq. (12) implies that the left and right sides of Eq. (12) are identi-
cally zero in the upper and lower half-planes, respectively. It
follows that

�ivf2ðz; tÞ þ f 02ðz; tÞ � ic _f 2ðz; tÞ ¼ �
vðqþ il1bÞ
pðl1 þ l2Þ

lnðz� z0Þ; x2 6 0;

ð13Þ

where v ¼ k l1þl2
l1l2

; c ¼ g l1þl2
l1l2

. At t = 0 when the dislocation and the
line force are just introduced into the upper half-plane, the dis-
placement across the interface has no time to have a jump due to
the dashpot. Therefore the displacement is continuous across the
interface at t = 0 (i.e., the interface is perfect when t = 0), and then
the following initial condition holds

f 02ðz; 0Þ ¼
l1b� iq

pðl1 þ l2Þ
1

z� z0
: ð14Þ

When t ?1, the interface should be at a steady state and there is
no time effect. In this case it follows from Eq. (13) that

�ivf2ðz;1Þþ f 02ðz;1Þ ¼ �
vðqþ il1bÞ
pðl1 þ l2Þ

lnðz� z0Þ: ð15Þ

The solution to the above is easy to be found as

f 02ðz;1Þ ¼
vðqþ il1bÞ
pðl1 þ l2Þ

exp ivðz� z0Þ½ �E1 ivðz� z0Þ½ �; ð16Þ

where the exponential integral is defined by

E1ðzÞ ¼ �
Z z

1

e�n

n
dn: ð17Þ

In addition

f 02ðz; tÞ ! 0 as z!1 ð18Þ

due to the fact that at far field the stresses should approach zero. In
view of the initial state equation (14), the steady state equation (16)
and far field condition equation (18), the solution to Eq. (13) can be
given by

f 02ðz; tÞ ¼
vðqþ il1bÞ
pðl1 þl2Þ

exp ivðz� z0Þ½ � E1 ivðz� z0Þ½ � � E1 ivðz� z0 � it=cÞ½ �f g

þ ðl1b� iqÞexpð�vt=cÞ
pðl1 þl2Þðz� z0 � it=cÞ :

ð19Þ

It can be checked from the above expression that the conditions,
Eqs. (14), (16) and (18), are satisfied. Here it shall be mentioned

that the term vðqþil1bÞ
pðl1þl2Þ

exp ikðz� z0Þ½ �E1 ikðz� z0Þ½ � in Eq. (19) is a par-

ticular solution to Eq. (13) while the other two terms h1(z, t) = ex-
p[iv(z � z0)]E1[iv(z � z0 � it/c)] and h2ðz; tÞ ¼ expð�vt=cÞ

z�z0�it=c in Eq. (19)

are two homogeneous solutions to Eq. (13), i.e.,

�ivhjðz; tÞ þ h0jðz; tÞ � ic _hjðz; tÞ ¼ 0; j ¼ 1;2: ð20Þ

In fact the above discussion on a line force and a dislocation can
be easily extended to any types of singularities such as concen-
trated couples interacting with the viscoelastic interface. Once
we know f2(z,0) for a perfect interface and f2(z,1) for a linear
spring interface, the solution at any time can be conveniently writ-
ten down as

f2ðz; tÞ ¼ f2ðz;1Þþ expð�vt=cÞ f2ðz� it=c;0Þ � f2ðz� it=c;1Þ½ �:
ð21Þ

It follows from Eqs. (11) and (19) that f1(z, t) can be determined
as

f 01ðz; tÞ ¼
vl2ðl�1

1 q� ibÞ
pðl1 þ l2Þ

exp �ivðz� �z0Þ½ �

E1 �ivðz� �z0Þ½ �f � E1 �ivðz� �z0 þ it=cÞ½ �g

þ l2ðbþ il�1
1 qÞ expð�vt=cÞ

pðl1 þ l2Þðz� �z0 þ it=cÞ �
bþ il�1

1 q
2pðz� �z0Þ

þ b� il�1
1 q

2pðz� z0Þ
: ð22Þ

In addition it is not difficult to write down the full-field expres-
sions as follows

f 01ðzp1;tÞ¼
vl2ðl�1

1 q� ibÞ
pðl1þl2Þ

exp �ivðzp1��z0Þ
� �

E1 �ivðzp1��z0Þ
� ��

�E1 �ivðzp1��z0þ it=cÞ
� ��

þl2ðbþ il�1
1 qÞexpð�vt=cÞ

pðl1þl2Þðzp1��z0þ it=cÞ�
bþ il�1

1 q
2pðzp1��z0Þ

þ b� il�1
1 q

2pðzp1�z0Þ
; ð23Þ

f 02ðzp2; tÞ ¼
vðqþ il1bÞ
pðl1 þ l2Þ

exp ivðzp2 � z0Þ
� �

E1 ivðzp2 � z0Þ
� ��

� E1 ivðzp2 � z0 � it=cÞ
� ��

þ ðl1b� iqÞ expð�vt=cÞ
pðl1 þ l2Þðzp2 � z0 � it=cÞ :

ð24Þ

Consequently the time-dependent stresses induced by the anti-
plane force and screw dislocation are given by

rð1Þ31 þ �p1rð1Þ32 ¼
vl1l2ðl1bþ iqÞ
pCð1Þ44 ðl1 þ l2Þ

exp �ivðzp1 � �z0Þ
� �

E1 �ivðzp1 � �z0 þ it=cÞ
� �

� E1 �ivðzp1 � �z0Þ
� �� �

þ l1l2ðq� il1bÞ expð�vt=cÞ
pCð1Þ44 ðl1 þ l2Þðzp1 � �z0 þ it=cÞ

� l1ðq� il1bÞ
2pCð1Þ44 ðzp1 � �z0Þ

� l1ðqþ il1bÞ
2pCð1Þ44 ðzp1 � z0Þ

; ð25Þ

in the upper half-plane, and

rð2Þ31 þ �p2rð2Þ32 ¼
vl2

2ðl1b� iqÞ
pCð2Þ44 ðl1 þ l2Þ

exp ivðzp2 � z0Þ
� �

E1 ivðzp2 � z0Þ
� �

� E1 ivðzp2 � z0 � it=cÞ
� �� �

� l2
2ðqþ il1bÞ expð�vt=cÞ

pCð2Þ44 ðl1 þ l2Þðzp2 � z0 � it=cÞ
; ð26Þ

in the lower half-plane.
In addition the time-dependent interfacial traction is distrib-

uted on the real x1-axis as follows

rð1Þ32 ¼ rð2Þ32

¼ vC
2p

Re ðqþ il1bÞ
g kþi~x

2

� �
kþ i~x

þ
expð�k~tÞ 1� g kþk~tþi~x

2

	 
h i
kþ k~t þ i~x

2
4

3
5

8<
:

9=
;;
ð27Þ

where

~x ¼ v x1 � x0 � y0 Refp1g½ �; ~t ¼ t=t0; ð28Þ

k ¼ y0v Imfp1g ¼
2y0k

Cð1Þ44 C
; t0 ¼ y0c Imfp1g ¼

2y0g
Cð1Þ44 C

;

C ¼ 2l2

l1 þ l2
; ð29Þ

and

gðzÞ ¼ 2z expð2zÞE1ð2zÞ: ð30Þ

In the above expressions, C (0 6 C6 2) is the two-phase mis-
match parameter, k is a dimensionless parameter measuring the
interface ‘‘rigidity” and t0 is the relaxation time.

X. Wang et al. / International Journal of Solids and Structures 46 (2009) 3725–3733 3727
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The image force on the screw dislocation with the line force
q = 0 can be determined as

Fy ¼�
b2l1

4py0
1�C gðkÞþ 1þ

~t
2

� ��1

exp �k~t
� �

1� g kþ k~t
2

� �
 �" #( )
;

Fx ¼ 0;

ð31Þ

where Fx and Fy are respectively the horizontal and vertical compo-
nents of the image force. Interestingly it is observed from the above
expression that once the two-phase mismatch parameter C, the
interface ‘‘rigidity” k and the relaxation time t0 are properly defined,
the expression of the image force on a screw dislocation in an
anisotropic bimaterial with a Kelvin-type viscoelastic interface is
nominally identical to that in an isotropic bimaterial with a
Kelvin-type viscoelastic interface (Fan and Wang, 2003; Wang and
Pan, 2008a). The influence of the anisotropic effect is reflected in
the above definitions of the two-phase mismatch parameter C,
the interface ‘‘rigidity” k and the relaxation time t0. When k = 0
for a viscous interface, it is found that

f 01ðzp1; tÞ ¼
l2ðbþ il�1

1 qÞ
pðl1 þ l2Þðzp1 � �z0 þ it=cÞ �

bþ il�1
1 q

2pðzp1 � �z0Þ

þ b� il�1
1 q

2pðzp1 � z0Þ
; ð32Þ

f 02ðzp2; tÞ ¼
l1b� iq

pðl1 þ l2Þ
1

zp2 � z0 � it=c
; ð33Þ

which approach the results for a completely debonded interface as
t ?1. The image force on the dislocation due to its interaction with
a viscous interface thus is

Fy ¼ �
b2l1

4py0
1� C 1þ t

2t0

� ��1
" #

: ð34Þ

In the following two sections we will demonstrate that the ob-
tained Green’s function due to a line force and a screw dislocation
can be used to investigate a rectangular inclusion with uniform
eigenstrain and a crack normal to the viscoelastic interface.

4. The time-dependent elastic field induced by a rectangular
inclusion in an anisotropic bimaterial with a viscoelastic
interface

Rectangular inclusions are very common in strained quantum
wire structures (i.e., Pan, 2004; Jiang and Pan, 2004). In this sec-
tion, therefore, we consider a rectangular inclusion X with uniform
antiplane eigenstrains e�31; e�32 (Fig. 2) in the upper half-plane which
is bonded to a lower half-plane through a Kelvin-type viscoelastic
interface described by Eq. (9). The coordinates of the four corners
of the rectangular inclusion are: the upper left corner:
x1 = a1,x2 = b2; the upper right corner: x1 = a2,x2 = b2; the lower
right corner: x1 = a2,x2 = b1; and the lower left corner:
x1 = a1,x2 = b1. Both the upper and the lower half-planes are aniso-
tropic materials having the symmetry plane at x3 = 0.

According to Mura (1987), the total displacement w induced by
the uniform eigenstrains imposed on the rectangular inclusion can
be expressed as

w ¼ 2ðCð1Þ55 e�31 þ Cð1Þ45 e�32Þ
Z
@X

Gðx; x0Þn1 dlþ 2ðCð1Þ45 e�31 þ Cð1Þ44 e�32Þ

�
Z
@X

Gðx;x0Þn2 dl; ð35Þ

where @X is the boundary of the inclusion X and ni is the outward
normal on the boundary of the inclusion. The elastic displacement
u = w outside the inclusion and u ¼ w� 2e�31x1 � 2e�32x2 inside the

inclusion. The integration in Eq. (35) is with respect to the source
point x

0
of the Green’s function G(x,x

0
) for a line force obtained in

the previous section. The above expression indicates that once the
Green’s function for the problem is derived, the induced displace-
ment can be found by simply carrying out the line integrals in (35).

Making use of these derivatives of the Green’s functions for an
antiplane force and carrying out the line integrals in (35), it is final-
ly found that the two analytic functions for the corresponding rect-
angular inclusion problem are given by

f 01ðzp1; tÞ ¼
iðCð1Þ44 e�32 þ Cð1Þ45 e�31Þ

pl1

X4

j¼1

ð�1Þj lnðzp1 � zjÞ þ ð1� CÞ
�

� lnðzp1 � �zjÞ � C exp �ivðzp1 � �zjÞ
� �

E1 �ivðzp1 � �zjÞ
� ��

� E1 �ivðzp1 � �zj þ it=cÞ
� ���

þ iðCð1Þ55 e�31 þ Cð1Þ45 e�32Þ
pl1

�
X4

j¼1

ð�1Þj lnðzp1 � zjÞ
p1

þ 1� C
�p1

lnðzp1 � �zjÞ
�

� C
�p1

exp �ivðzp1 � �zjÞ
� �

E1 �ivðzp1 � �zjÞ
� ��

� E1 �ivðzp1 � �zj þ it=cÞ
� ���

ðx2 P 0Þ ð36Þ

f 02ðzp2; tÞ ¼
2i ðCð1Þ55 þ p1Cð1Þ45 Þe�31 þ ðC

ð1Þ
45 þ p1Cð1Þ44 Þe�32

h i
pp1ðl1 þ l2Þ

�
X4

j¼1

ð�1Þj lnðzp2 � zjÞ þ exp ivðzp2 � zjÞ
� ��

� E1 ivðzp2 � zjÞ
� �

� E1 ivðzp2 � zj � it=cÞ
� �� ��

ðx2 6 0Þ
ð37Þ

where zj (j = 1 � 4) are defined by

z1 ¼ a1 þ p1b2; z2 ¼ a2 þ p1b2; z3 ¼ a2 þ p1b1; z4 ¼ a1 þ p1b1:

ð38Þ

It can be easily checked that the above expressions of f 01(zp1,0)
and f 02(zp2,0) are just those for a perfect interface, whilst those of
f 01(zp1,1) and f 02(zp2,1) are for a spring-type imperfect interface.
Particularly when the interface is a viscous one with k = 0, the
two analytic functions for the corresponding rectangular inclusion
problem are given by

f 01ðzp1; tÞ ¼
iðCð1Þ44 e�32 þ Cð1Þ45 e�31Þ

pl1

X4

j¼1

ð�1Þj lnðzp1 � zjÞ
�

þ lnðzp1 � �zjÞ � C lnðzp1 � �zj þ it=cÞ
�
þ iðCð1Þ55 e�31 þ Cð1Þ45 e�32Þ

pl1

�
X4

j¼1

ð�1Þj lnðzp1 � zjÞ
p1

þ 1
�p1

lnðzp1 � �zjÞ



� C
�p1

lnðzp1 � �zj þ it=cÞ
�
ðx2 P 0Þ ð39Þ

f 02ðzp2; tÞ ¼
2i ðCð1Þ55 þ p1Cð1Þ45 Þe�31 þ ðC

ð1Þ
45 þ p1Cð1Þ44 Þe�32

h i
pp1ðl1 þ l2Þ

�
X4

j¼1

ð�1Þj lnðzp2 � zj � it=cÞ ðx2 6 0Þ ð40Þ

It shall be mentioned that the above expressions (36) and (39)
for f 01(zp1, t) in the upper half-plane are valid both inside and out-
side the rectangular inclusion. The multi-valued logarithmic func-
tion term hðzp1Þ ¼

P4
j¼1ð�1Þj lnðzp1 � zjÞ in f 01(zp1, t) is chosen in

such a way that when e�31–0; e�32 ¼ 0; hðzp1Þ has one cut along the

3728 X. Wang et al. / International Journal of Solids and Structures 46 (2009) 3725–3733



Author's personal copy

line segment connecting zp1 = z1 and zp1 = z2, and has another cut
along the line segment connecting zp1 = z3 and zp1 = z4. When
e�31 ¼ 0; e�32–0; hðzp1Þ has one cut along the line segment connect-
ing zp1 = z1 and zp1 = z4, and has another cut along the line segment
connecting zp1 = z2 and zp1 = z3. In doing so it can be verified from
Eqs. (36) and (39) that when crossing the two interfaces
x2 = b1,a1 < x1 < a2 and x2 = b2,a1 < x1 < a2 the stress component
r31 undergoes the following jump

rinclusion
31 � rmatrix

31 ¼ �2l2
1

Cð1Þ44

e�31: ð41Þ

Similarly when crossing the two interfaces x1 = a1,b1 < x2 < b2 and
x1 = a2,b1 < x2 < b2 the stress component r32 undergoes the follow-
ing jump

rinclusion
32 � rmatrix

32 ¼ �2l2
1

Cð1Þ55

e�32: ð42Þ

The above jump properties can also be deduced from the linear
constitutive equation (1). In general, the stress field in the aniso-
tropic bimaterial can be obtained by using Eqs. (6), (36) and (37)
[or Eqs. (39) and (40) for a viscous interface]. Furthermore, for
the general eigenstrain case where e�31–0; e�32–0, one can utilize
the method of superposition to find the corresponding stress field.

It is easily observed from Eq. (36) that in general the stresses ex-
hibit logarithmic singularity at the four corners of the rectangular
inclusion. Particularly when one side of the rectangular inclusion
lies on the viscoelastic interface, i.e., b1 = 0, it is observed from
Eq. (36) or Eq. (37) that the traction r32 for t > 0 along the interface
is still regular by noticing the fact that E1(z) = �lnz � c + o(z) when
z ? 0 with c � 0.577 being the Euler-Mascheroni constant. Physi-
cally in our viscoelastic interface model (9) the interface traction
is connected to the displacement jump and the velocity jump on
the interface. Due to the fact that the displacement jump and the
velocity jump on the interface must be finite, consequently the
interface traction should also be finite.

In order to demonstrate the obtained solutions, we consider a
rectangular inclusion in the upper S-Glass Epoxy half-plane which
is bonded to the lower AS4/8552 half-plane through a viscoelastic
interface. The material constants of S-Glass Epoxy are
C44 = 4.8 GPa, C55 = 5.5 GPa and C45 = 0, and those of AS4/8552 are
C44 = 10.5628 GPa, C55 = 7.17055 GPa and C45 = 0. In addition the
rectangular inclusion has the dimension 2a � a with a1 = �a,
a2 = a and b1 = 0,b2 = a. This configuration represents the extreme
case where the lower side of the inclusion just lies on the viscoelas-
tic interface separating the two half-planes. Here we are particu-
larly interested in the interfacial stresses caused by the inclusion
due to the fact that the interface is the weakest part of the compos-
ite. In addition we will consider the eigenstrains e�31–0; e�32 ¼ 0.

Figs. 3–5 demonstrate the distributions of the interface traction
rð1Þ32 ¼ rð2Þ32 ¼ r32 and the interface stresses rð1Þ31 ;r

ð2Þ
31 on the interface

x2 = 0 caused by nonzero e�31 at four different normalized times
~t ¼ tv=c ¼ 0;0:05;0:2;1with av = 0.5. Here rð1Þ31 within the section
�a 6 x1 6 a should be understood as the stress component within
the rectangular inclusion. It is observed from Fig. 3 that r32 at time
t = 0 for a perfect interface is singular at the two corners x1 = ±a,
which is in agreement with our previous observation (Wang and
Pan, 2008b). When t > 0 the traction r32 along the interface be-
comes regular, as predicted above. Furthermore the magnitude of
r32 is a monotonically decreasing function of the time. It is ob-
served from Figs. 4 and 5 that rð1Þ31 has the same negative sign both
inside and outside the inclusion along the interface whilst rð2Þ31

changes its sign along the interface. The maximum magnitude of
rð1Þ31 at any time always occurs at x1 = 0, whilst the location of the
maximum magnitude of rð2Þ31 depends on the time. In this example
when ~t < 0:10 the maximum magnitude of rð2Þ31 occurs in the vicin-
ity of the two corners, namely around points x1 = ±da with 0 < d < 1;
on the other hand when ~t P 0:10 the maximum magnitude of rð2Þ31

always occurs at x1 = 0, the center of the lower side of the inclusion.
Before ending this section we add that the problem of an arbi-

trary shaped polygonal inclusion (Pan, 2004; Jiang and Pan,
2004) can also be solved by carrying out the line integrals in Eq.

Rectangular Inclusion Ω
( *

32
*
31,εε )

Upper Anisotropic Half-Plane
( )1(

55
)1(

45
)1(

44 ,, CCC )

Lower Anisotropic Half-Plane
( )2(

55
)2(

45
)2(

44 ,, CCC )

Viscoelastic Interface

z4: (a1, b1) z3: (a2, b1)

z1: (a1, b2) z2: (a2, b2)

x1

x2

Fig. 2. A rectangular inclusion with uniform antiplane eigenstrains embedded in the upper anisotropic half-plane which is bonded to a lower anisotropic half-plane through a
viscoelastic interface.
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(35). As expected the resulting expressions for an arbitrary shaped
polygonal inclusion will become more complicated than those for a
rectangular inclusion obtained in this section. Alternatively, for
inclusions with rounded corners (for example elliptical inclusions),
Ru’s method of analytical continuation (Ru, 2000, 2001; Wang
et al., 2007) can be employed. In Appendix A, we present an analyt-
ical treatment of inclusions with rounded corners interacting with
a viscoelastic interface.

5. A finite Griffith crack normal to the viscoelastic interface

In this section we consider a finite Griffith crack along the
x2-axis in the upper half-plane, as illustrated in Fig. 6. The two tips
of the crack are located at (0,y1) and (0,y2), (y2 > y1 > 0),
respectively. On the crack surface the following constant traction
condition is imposed

rð1Þ31 ¼ �r0 ðx1 ¼ 0; y1 < x2 < y2Þ: ð43Þ

In order to solve this crack problem we can resort to the ob-
tained Green’s function for a screw dislocation. Furthermore in or-
der to simplify the analysis involved we assume that the upper
half-plane is orthotropic such that p1 = id with d being a positive
real value. The resulting singular integral equation can be finally
obtained as

1
p

Z y2

y1

Bðn;~tÞ
n� y

dnþ 1
p

Z y2

y1

kðn; y;~tÞBðn;~tÞdn ¼ �2r0

l1
ðy1 6 y 6 y2Þ;

ð44Þ

where Bðn;~tÞ is the unknown time-dependent dislocation density
in the crack site, and the time-dependent kernel kðn; y;~tÞ is given
by

Fig. 3. Distribution of the interfacial traction rð1Þ32 ¼ rð2Þ32 ¼ r32 (on x2 = 0) caused by eigenstrain e�31 at four different normalized times ~t ¼ tv=c ¼ 0;0:05; 0:2;1 with a1 = �a,
a2 = a, b1 = 0, b2 = a and av = 0.5.

Fig. 4. Distribution of the interfacial stress rð1Þ31 on the upper side of the interface x2 = 0 caused by eigenstrain e�31 at four different normalized times ~t ¼ tv=c ¼ 0; 0:05;0:2;1
with a1 = �a, a2 = a, b1 = 0, b2 = a and av = 0.5.
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kðn; y;~tÞ ¼ 1
nþ y

� C expð�~tÞ
nþ yþ ~t=v0

þ v0C exp v0ðnþ yÞ½ � E1 v0ðnþ yÞ þ ~t
� �

� E1 v0ðnþ yÞ½ �
� �

;

ð45Þ

with v0 ¼ dv; c0 ¼ dc;~t ¼ tv=c.
In addition the following single valuedness condition for the

displacement must be imposed for a Griffith crackZ y2

y1

Bðn;~tÞdn ¼ 0: ð46Þ

Eqs. (45) and (46) are solved numerically using the method
developed by Erdogan and Gupta (1972). First the limits of integra-
tion are changed to (�1,1) by the substitution

y ¼ y2 � y1

2
sþ y2 þ y1

2
; n ¼ y2 � y1

2
qþ y2 þ y1

2
: ð47Þ

Then, assuming square root singularities at both ends of the
crack, the unknown dislocation density can be expressed as

Bðq;~tÞ ¼ Fðq;~tÞð1� q2Þ�1=2; ð48Þ

where Fðq;~tÞ is regular in the interval (�1,1).

Finally Eqs. (45) and (46) are discretized, and the resulting sys-
tem of linear simultaneous equations is solved to obtain gðq;~tÞ at
selected collocation points in the interval (�1,1).

Once Eqs. (45) and (46) are solved for the unknown dislocation
density Bðn;~tÞ, the time-dependent Mode-III stress intensity factors
(SIFs) are calculated from the expressions given by Erdogan (1983)
as

KL
IIIð~tÞ ¼

l1

2
lim
n!y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn� y1Þ

p
Bðn;~tÞ ¼ l1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 � y1Þ=2

p
Fð�1;~tÞ;

KU
IIIð~tÞ ¼ �

l1

2
lim
n!y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðy2 � nÞ

p
Bðn;~tÞ ¼ �l1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 � y1Þ=2

p
Fð1;~tÞ;

ð49Þ

where the superscripts L and U represent the lower and upper crack
tips, respectively.

In the following numerical example we assume that y2 = 6y1,
v
0
y1 = 0.5 and C = 1.5. Fig. 7 demonstrates the variations of the nor-

malized SIFs KLð~tÞ ¼ KL
IIIð~tÞ

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2�y1Þ=2
p and KUð~tÞ ¼ KU

IIIð~tÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2�y1Þ=2
p as a

function of the normalized time ~t ¼ tv=c. It can be observed
from Fig. 7 that: (i) at the initial time when the interface is
perfect, KL(0) < KU(0) < 1; (ii) as time evolves both the two SIFs

Fig. 5. Distribution of the interfacial stress rð2Þ31 on the lower side of the interface x2 = 0 caused by eigenstrain e�31 at four different normalized times ~t ¼ tv=c ¼ 0; 0:05;0:2;1
with a1 = �a, a2 = a, b1 = 0, b2 = a and av = 0.5.
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Fig. 6. A finite crack along the x2-axis in the upper half-plane of the anisotropic bimaterial.
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monotonically increase with time, while KLð~tÞ increases much fas-
ter than KUð~tÞ and consequently at the time ~t ¼ 0:4767; KLð~tÞ ¼
KUð~tÞ ¼ 0:9868; (iii) when ~t > 0:4767; KLð~tÞ > KUð~tÞ; (iv) when
~t P 5, the SIFs approach the steady state values for a crack inter-
acting with a linear spring interface.

6. Conclusions

We first derived explicit expressions of the Green’s function for
an anisotropic elastic half-plane subjected to an antiplane force q
and a screw dislocation with the magnitude b. The time-dependent
stresses induced by the force and dislocation and the image force
acting on the screw dislocation were also obtained. It is observed
that the image force is totally controlled by the two-phase mis-
match parameter C (0 6C 6 2), the interfacial rigidity k and the
relaxation time t0 (see Eq. (31)).

Next the obtained Green’s function for a line force was em-
ployed to investigate a rectangular inclusion with uniform eigen-
strains in the upper half-plane of the two bonded half-planes. It
is observed that the obtained solutions in the complex form are
strikingly concise (see Eqs. (36) and (37)). Contrary to the case of
a perfect interface (Wang and Pan, 2008b), it seems impossible
to write down the real form expressions when the interface is vis-
coelastic due to the existence of the exponential integrals in the
expressions.

Last the obtained Green’s function for a screw dislocation was
employed to construct the singular integral equation (44) for a fi-
nite Griffith crack normal to the viscoelastic interface. The time-
dependent SIFs at the two crack tips can be easily calculated
through the numerical solution of the obtained singular integral
equation. One unique property in the kernel kðn; y;~tÞ of the singular
integral equation is that it is time dependent due to the influence
of the viscoelastic interface.
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Appendix A. Treatment of inclusions with rounded corners

Here we consider an Eshelby’s inclusion (with uniform anti-
plane eigenstrains e�31; e�32Þ of arbitrary shape described by curve
C in the upper half-plane of the anisotropic bimaterial with a vis-
coelastic interface. By employing the method of analytical contin-
uation (Ru, 2000, 2001; Wang et al., 2007), the two analytical
functions f0(z, t) within the inclusion and f1(z, t) outside the inclu-
sion within the upper half-plane can be expressed in terms of
f2(z, t) defined in the lower half-plane as follows

f0ðz; tÞ ¼
l2

l1

�f 2ðz; tÞ � �d �DðzÞ � �PðzÞ
� �

� cz� dPðzÞ;

f1ðz; tÞ ¼
l2

l1

�f 2ðz; tÞ � �d �DðzÞ � �PðzÞ
� �

þ d DðzÞ � PðzÞ½ �;
ðA1Þ

where

c ¼ 2iðe�32 � �p1e�31Þ
p1 � �p1

; d ¼ 2iðp1e�31 � e�32Þ
p1 � �p1

: ðA2Þ

In Eq. (A1), �z ¼ DðzÞ is analytic in the exterior of
C1 ¼ ðx1 þ p1x2;where z ¼ x1 þ ix2 2 CÞ, except at infinity where it
has pole of finite degree determined by the asymptotic behavior
D(z) = P(z) + o(1) as jzj?1; P(z) is a polynomial in z of finite degree
(Ru, 2000, 2001); and f2(z, t) satisfies the following partial differen-
tial equation

�ivf2ðz; tÞ þ f 02ðz; tÞ � ic _f 2ðz; tÞ ¼ �
2il1vd
l1 þ l2

DðzÞ � PðzÞ½ �; x2 6 0:

ðA3Þ
According to Eq. (21), it is enough to derive f2(z,0) for a perfect

interface and f2(z,1) for a linear spring interface to arrive at f2(z, t)
for any other time. f2(z,0) for a perfect interface can be simply de-
rived as

f2ðz;0Þ ¼
2l1d

l1 þ l2
DðzÞ � PðzÞ½ �: ðA4Þ

On the other hand f2(z,1) satisfies the following differential
equation

�ivf2ðz;1Þ þ f 02ðz;1Þ ¼ �
2il1vd
l1 þ l2

DðzÞ � PðzÞ½ �; x2 6 0 ðA5Þ

Fig. 7. Variation of the normalized SIFs KLð~tÞ ¼ KL
III ð~tÞ

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2�y1 Þ=2
p and KUð~tÞ ¼ KU

III ð~tÞ
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2�y1Þ=2
p as a function of the normalized time ~t ¼ tv=c with y2 = 6y1, v

0
y1 = 0.5 and C=1.5. The upper

half-plane is orthotropic.
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whose solution can be conveniently expressed as (Wang et al.,
2007)

f2ðz;1Þ¼�
2il1vd
l1þl2

expðivzÞ
Z z

�1i
DðnÞ�PðnÞ½ �expð�ivnÞdn ðx260Þ:

ðA6Þ

Next we illustrate the above solution through an example of an
elliptical inclusion with semi-major and semi-minor axes a and b.
We further assume that the center of the ellipse is located at x1 = 0
and x2 = d(d > 0) and the principal axes are parallel to the coordi-
nate axes. In this case D(z), P(z) and D(z)–P(z) can be explicitly
determined as

DðzÞ ¼ a2 þ jp1j
2b2

a2 þ p2
1b2 ðz� p1dÞ þ �p1dþ

iðp1 � �p1Þab

a2 þ p2
1b2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� p1dÞ

2 � ða2 þ p2
1b2Þ

q
; ðA7Þ

PðzÞ ¼ a� i�p1b
a� ip1b

z� aðp1 � �p1Þ
a� ip1b

d; ðA8Þ

DðzÞ � PðzÞ ¼ ið�p1 � p1Þab

ðz� p1dÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� p1dÞ

2 � ða2 þ p2
1b2Þ

q : ðA9Þ

Consequently it follows from Eqs. (A6) and (A9) that

f2ðz;1Þ ¼
ðp1 � �p1Þabl1vd

l1 þ l2
exp ivðz� p1dÞ½ �

�
Z 1

ivðz�p1dÞ

2 expð�nÞ

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ v2ða2 þ p2

1b2Þ
q dn: ðA10Þ

In the general situation in which a2 þ p2
1b2–0, the integral in Eq.

(A10) can be numerically carried out very easily (Wang et al.,

2007). When p1 = ia/b (or a2 þ p2
1b2 ¼ 0Þ, the integral in Eq. (A10)

reduces to the exponential integral defined by Eq. (17) such that

f2ðz;1Þ ¼
2ia2l1vd
l1 þ l2

exp ivðz� p1dÞ½ �E1 ivðz� p1dÞ½ �: ðA11Þ
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