
Chapter 2

Green’s Functions

Ernian Pan

2.1 Introduction

Coupling between mechanical and electric fields has stimulated interesting
research related to the microelectromechanical system [1, 2]. The major
applications are in sensor and actuator devices by which an electric volt-
age can induce an elastic deformation and vice versa. Because many novel
materials, such as the nitride group semiconductors, are piezoelectric, study
on quantum nanostructures is currently a cutting-edge topic with the strain
energy band engineering in the center [3, 4]. Novel laminated composites (with
adaptive and smart components) are continuously attracting great attention
from mechanical, aerospace, and civil engineering branches [5]. In materials
property study, the Eshelby-based micromechanics theory has been very pop-
ular [6]. In most of these exciting research topics, the fundamental solution of
a given system under a unit concentrated force/charge or simply the Green’s
function solution is required. This motivates the writing of this chapter. In
this chapter, however, only the static case with general anisotropic piezo-
electricity is considered, even though a couple of closely related references
on vibration and/or dynamics (time-harmonic) wave propagation are briefly
reviewed. Furthermore, although emphasis is given to the generalized point
and line forces, the Green’s functions to the corresponding point and line dis-
locations, as well as point and line eigenstrain are also discussed or presented
based on Betti’s reciprocal theorem.
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2.2 Governing Equations

Consider a linear, anisotropic piezoelectric and heterogeneous solid occupying
the domain V bounded by the boundary S. In discussing the Green’s func-
tions, the problem domain and the corresponding boundary conditions are
clearly described later. We also assume that the deformation is static, and
thus the field equations for such a solid consist of [7]:
(a) Equilibrium equations (including Gauss equation):

σji,j + fi = 0 Di,i − q = 0, (2.1)

where σij and Di are the stress and electric displacement, respectively; fi and
q are the body force and electric charge, respectively. In this and the following
sections, summation from 1 to 3 (1 to 4) over repeated lowercase (uppercase)
subscripts is implied. A subscript comma denotes the partial differentiation.
In the Cartesian coordinate system, the equilibrium equations are

∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
+ fx = 0

∂σyx

∂x
+
∂σyy

∂y
+
∂σyz

∂z
+ fy = 0

∂σzx

∂x
+
∂σzy

∂y
+
∂σzz

∂z
+ fz = 0 (2.2a)

∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
− q = 0 . (2.2b)

In the cylindrical coordinate system, the equilibrium equations are

∂σrr

∂r
+
∂σrθ

r∂θ
+
∂σrz

∂z
+
σrr − σθθ

r
+ fr = 0

∂σrθ

∂r
+
∂σθθ

r∂θ
+
∂σθz

∂z
+
2σrθ

r
+ fθ = 0 (2.3a)

∂σrz

∂r
+
∂σθz

r∂θ
+
∂σzz

∂z
+
σrz

r
+ fz = 0

∂Dr

∂r
+
∂Dθ

r∂θ
+
∂Dz

∂z
− q = 0 . (2.3b)

(b) Constitutive relations:

σij = Cijlmγlm − ekjiEk Di = eijkγjk + εijEj , (2.4)

where γ ij is the strain and Ei the electric field; Cijlm, eijk, and ε ij are the
elastic moduli, piezoelectric coefficients, and dielectric constants, respectively.
The uncoupled state (purely elastic and purely electric deformation) can be
obtained by simply setting eijk = 0. For transversely isotropic piezoelectric
materials with the z-axis being the material symmetric (or the poling) axis,
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the constitutive relation in the Cartesian coordinate system is (using the
reduced indices for Cijkl and eijk, with the following correspondence between
the one and two indices: 1 = 11, 2 = 22, 3 = 33, 4 = 23, 5 = 13, 6 = 12)

σxx = C11γxx + C12γyy + C13γzz − e31Ez

σyy = C12γxx + C11γyy + C13γzz − e31Ez

σzz = C13γxx + C13γyy + C33γzz − e33Ez

σyz = 2C44γyz − e15Ey

σxz = 2C44γxz − e15Ex

σxy = 2C66γxy (2.5a)
Dx = 2e15γxz + ε11Ex

Dy = 2e15γyz + ε11Ey

Dz = e31(γxx + γyy) + e33γzz + ε33Ez , (2.5b)

where C66 = (C11 − C12)/2.
Similarly, in the cylindrical coordinate system, the constitutive relation is

σrr = C11γrr + C12γθθ + C13γzz − e31Ez

σθθ = C12γrr + C11γθθ + C13γzz − e31Ez

σzz = C13γrr + C13γθθ + C33γzz − e33Ez

σθz = 2C44γθz − e15Eθ

σrz = 2C44γrz − e15Er

σrθ = 2C66γrθ (2.6a)
Dr = 2e15γrz + ε11Er

Dθ = 2e15γθz + ε11Eθ

Dz = e31(γrr + γθθ) + e33γzz + ε33Ez . (2.6b)

(c) Elastic strain-displacement and electric field-potential relations:

γij =
1
2
(ui,j + uj,i) Ei = −φ,i , (2.7)

whereuiandφare the elastic displacement and electric potential, respectively.
In the Cartesian coordinate system, we have

γxx =
∂ux

∂x
, γyy =

∂uy

∂y
, γzz =

∂uz

∂z
γyz = 0.5

(
∂uy

∂z
+
∂uz

∂y

)

γxz = 0.5
(
∂ux

∂z
+
∂uz

∂x

)
γxy = 0.5

(
∂ux

∂y
+
∂uy

∂x

)
(2.8a)

Ex =− ∂φ

∂x
, Ey = −∂φ

∂y
, Ez = −∂φ

∂z
, (2.8b)
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and in cylindrical coordinate system, we obtain

γrr =
∂ur

∂r
, γθθ =

∂uθ

r∂θ
+
ur

r
, γzz =

∂uz

∂z

γθz = 0.5
(
∂uθ

∂z
+
∂uz

r∂θ

)
γrz = 0.5

(
∂uz

∂r
+
∂ur

∂z

)

γrθ
= 0.5

(
∂ur

r∂θ
+
∂uθ

∂r
− uθ

r

)
(2.9a)

Er =− ∂φ

∂r
, Eθ = − ∂φ

r∂θ
, Ez = −∂φ

∂z
. (2.9b)

The notation introduced by Barnett and Lothe [8] has been shown to be
very convenient for the analysis of piezoelectric problems. With this notation,
the elastic displacement and electric potential, the elastic strain and electric
field, the stress and electric displacement, and the elastic and electric moduli
(or coefficients) can be grouped together as [9]

uI =

{
ui I = i = 1, 2, 3
φ I = 4

(2.10)

γIj =

{
γij I = i = 1, 2, 3
−Ej I = 4

(2.11)

σiJ =

{
σiJ J = j = 1, 2, 3
Di J = 4

(2.12a)

TJ = σiJni =

{
σijni J = j = 1, 2, 3
Dini J = 4

(2.12b)

CiJKl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Cijkl J,K = j, k = 1, 2, 3
elij J = j = 1, 2, 3;K = 4
eikl J = 4;K = k = 1, 2, 3
−εil J,K = 4

. (2.13)

It is noted that we have kept the original symbols instead of introducing
new ones because they can be easily distinguished by the range of their
subscript. In terms of this shorthand notation, the constitutive relations can
be unified into a single equation as

σiJ = CiJKlγKl, (2.14)

where the material property coefficients CiJKl can be location-dependent in
the region.
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Similarly, the equilibrium equations in terms of the extended stresses can
be recast into

σiJ,i + fJ = 0 (2.15)

with the extended force fJ being defined as

fJ =

{
fj J = j = 1, 2, 3
−q J = 4

. (2.16)

For the Green’s function solutions, the body force and electric charge den-
sity are replaced by the following concentrated unit sources (k = 1, 2, 3),

fI =

{
δikδ(x− xx− xx− x0), I = i = 1, 2, 3
δ(x − xx − xx− x0), I = 4.

. (2.17)

It is observed that Equations (2.14) and (2.15) are exactly the same as
their purely elastic counterparts. The only difference is the dimension of the
index of the involved quantities. Therefore, the solution method developed
for anisotropic elasticity can be directly applied to the piezoelectric case. For
ease of reference, in this chapter, we still use displacement to stand for the
elastic displacement and electric potential as defined in Equation (2.10), use
stress for the stress and electric displacement as defined in Equation (2.12a),
and use traction for the elastic traction and normal electric displacement as
defined in Equation (2.12b).

2.3 Relations Among Different Sources and
Their Responses

Relations among different concentrated sources and their responses can be
studied via Betti’s reciprocal theorem, which states that for two systems (1)
and (2) belonging to the same material space, the following relation holds
(i.e., [9])

σ
(1)
iJ u

(2)
J,i = σ

(2)
iJ u

(1)
J,i . (2.18)

From (2.18), one can easily derive the following integral equation for these
two systems∫

S

σ
(1)
iJ u

(2)
J nidS −

∫
V

σ
(1)
iJ,iu

(2)
J dV =

∫
S

σ
(2)
iJ u

(1)
J nidS −

∫
V

σ
(2)
iJ,iu

(1)
J dV.

(2.19)

We let system (1) be the real boundary value problem and (2) be the
corresponding “point-force” Green’s function problem; that is,

σiJ,i = −δJKδ(xf
p − xs

p), (2.20)
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where the field point is at xf
p and the extended point force is applied at xs

p

in the K-direction (with K = 4 corresponding to a negative electric charge).
Then (2.19) can be reduced to a well-known integral representation of the
displacement field:

uK(xs
p) =

∫
S

[σiJ (xf
p )u

fK
J (xs

p;x
f
p) = σfK

iJ (xs
p;x

f
p)uJ(xf

p )]ni(xf
p)dS(x

f
p )

+
∫

V

ufK
J (xs

p;x
f
p )fJ(xf

p )dV (x
f
p ), (2.21)

where in the Green’s function expressions, the first superscript f denotes that
the Green’s function corresponds to an extended point force, and the second
superscript K is the direction of the point force.
Now, we wish to find the displacement response due to a prescribed dis-

location (displacement discontinuity) across a surface Σ embedded in V
(or the dislocation Green’s function). Let ni(= n−i = −n+

i ) be the unit normal
to Σ, bI = u+

I − u−I being the (extended) dislocation. This dislocation along
Σ may have any form provided that the following (extended) traction conti-
nuity condition holds.

σ+
iJn

+
i + σ−iJn

−
i = 0. (2.22)

This type of displacement discontinuity is also called a Somigliana disloca-
tion with the Volterra dislocation (or the dislocation of Volterra–Weingarten)
being its special case [10]. In the latter case,

�uI ≡ u+
I − u−I =

{
Ui +Ωijx

s
j ; I ≤ 3,

U4; I = 4
(2.23)

where UI and Ωij are constants. If, furthermore, Ωij = 0, the dislocation then
reduces to the (extended) Burger’s vector. Assume that the displacement and
stress fields satisfy the same homogeneous boundary condition on the outer
boundary S, and apply Equation (2.21) to the region bounded internally by
Σ and externally by S; we then come to (also omit the volumetric integral
term associated with the body force)

uK(xs
p) =

∫
Σ

σfK
iJ (xs

p;x
f
p )bJ(x

f
p )ni(xf

p)dΣ(x
f
p ). (2.24)

This is the integral expression of the displacement due to a dislocation
along Σ with its density tensor being defined as

D(i, J) ≡ ni(xf
p )bJ(x

f
p )dΣ(x

f
p ). (2.25)

In (elastic) seismology, they are defined as fault elements dΣ with an
outward normal ni (defined with respect to the positive side of the fault)
having a displacement discontinuity �i = bi. It is noted that the kernel
function in Equation (2.24) is the Green’s stress with component (iJ) at the
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field point xf
p due to a point force at xs

p in the Kth direction. Alternatively,
the displacement response due to the dislocation density tensor can also be
expressed by the kernel displacement function due to a point dislocation,
namely,

uK(xf
p ) =

∫
Σ

udiJ
K (xs

p;x
f
p)bJ (x

s
p)ni(xs

p)dΣ(x
s
p), (2.26)

where the superscript d denotes dislocation and (i, J) is the normal direction
of the dislocation plane (i) and the Burger’s vector direction (J). Comparing
Equation (2.26) to (2.24), we immediately obtain the following important
equivalence between the stress due to a point force and the displacement due
to a point dislocation

udiJ
K (xs

p;x
f
p ) = ρfK

iJ (xf
p ;x

s
p). (2.27)

That is, the position of the source and field points in the point-force
Green’s stresses need to be exchanged in order to obtain the point-dislocation
Green’s displacements. This is a most simple and yet very important rela-
tion. Similar results for poroelastic media were derived by Pan [11]. Several
important observations of (2.27) are listed below:
(a) In general, once the point-force Green’s functions are solved, the

corresponding point-dislocation Green’s functions can be obtained through
the relation (2.27). In deriving relation (2.27), we have assumed that the
system is linear piezoelectric, but can be of general anisotropy and hetero-
geneity. In particular, this relation can be used to derive the point-dislocation
Green’s functions in horizontally layered systems, including half-space and bi-
material domains as special cases. For example, the point-dislocation Green’s
functions in horizontally layered media can be derived in both the Fourier
transform or the physical domains using Equation (2.27) and the point force
solutions [12–14].
(b) Direct solution of the point-dislocation Green’s functions is also

possible but the procedure may be very complicated. The way to achieve this
is to derive the equivalent body force of the point dislocation, find the related
discontinuity of the physical quantities, and solve for the unknowns, using the
method as previously employed by Pan [12] for the transversely isotropic and
layered half-space.
(c) For the elastic isotropic or transversely isotropic bimaterial, half-

space, or full-space, each term on the right-hand side of Equation (2.27)
is proportional to various eigenstrains, such as the misfit lattice strain, the
nucleus of strain (or a nucleus of strain multiplied by the elastic constants),
and so on. With Equation (2.27), however, it is unnecessary to add all the
related nuclei of strain together and enforce the boundary or interface
condition to solve the coefficients involved.
(d) In using Equation (2.27), one must be very careful that on the left-

hand side, xs
p and xf

p are the source and field points, respectively; and on
the right-hand side, xf

p and xs
p are the field and source points, respectively.
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Therefore, the Green’s displacements due to a point dislocation can be ob-
tained from the Green’s stresses due to a point force by exchanging the po-
sition of the field and source points and by assigning the suitable meanings
to the associated indexes.
(e) For a homogeneous and infinite domain, expressing the point-

force Green’s stresses by the strain and substituting the result back to
Equation (2.26), we then have the Volterra relation. It is noted that for
this specific case, the point-force Green’s stresses are functions of the relative
vector from the source to field points

(
i.e., xf

p − xs
p

)
, and they satisfy the

following relation,

σfK
iJ (xf

P ;x
s
p) = σfK

iJ (xs
p − xf

p) = −σfK
iJ (xf

p − xs
p) = −σfK

iJ (xs
p;x

f
p ). (2.28)

We therefore have

udiJ
K (xs

p;x
f
p ) = −σfK

iJ (xs
p;x

f
p). (2.29)

It should be emphasized that only for the homogeneous infinite domain,
can the Green’s displacements due to a point dislocation be obtained directly
from the Green’s stresses due to a point force, without exchanging the field
and source positions! For all other situations, the dislocation-induced Green
displacements should be obtained strictly using Equation (2.27).
For a homogeneous and infinite solid of purely elastic isotropy, (2.29) is

reduced to

udij
k (xs

p;x
f
p) = −σfk

ij (x
s
p;x

f
p ) = −λuk

l,lδij − µ(uk
i,j + uk

j,i), (2.30)

where λ and µ are the two Lame’s elastic constants. The derivatives of the
Green’s elastic displacements due to a point force at xs

p in the k-direction are
taken with respect to the field point xf

p .
On the other hand, if we take the derivatives of the point-force Green

displacements with respect to the source point xs
p, we then have

ε ij(xs
p;x

f
p) = λuk

l,lδij + µ(uk
i,j + uk

j,i), (2.31)

which has an opposite sign to that given by (2.30).
The components in (2.31) are called nuclei of strain by Mindlin [15]. The

first term corresponds to the center of compression or dilatation and the
other terms are double forces. Therefore, from the physical point of view,
the point-dislocation Green’s functions can be constructed through super
position of various nuclei of strain (or the derivatives of the point-force
Green’s displacements), with their coefficients being solely related to the
elastic constants. This is a physical explanation for the mathematical and ar-
bitrary equivalent relation (2.29). It is obvious that if the point-force Green’s
functions can be derived in an exact closed-form (or explicit form), the
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corresponding point dislocation solutions will also have the same features
because they are obtained by the superposition of various nuclei of strain.
Detailed analyses can be found in [10, 16, 17] for the isotropic elastic case
and in [18] for the transversely isotropic elastic case. For materials of either
isotropy or transverse isotropy, these exact closed-form nuclei of strain can
also be employed to derive the point-force Green’s functions in a half-space
or a bimaterial space, and to derive the solutions corresponding to various
inclusions.
It is noted that the Green’s function relations between those due to a

point dislocation and those due to a point force are applicable to 3D only.
For the 2D case, the Green’s functions due to the line force and those due to
the line dislocations (open all the way to the half-infinite line) have the same
singularity order. These are clearly observed in the following section on 2D
Green’s functions, and one should pay particular attention to this difference.

2.4 Green’s Functions in Anisotropic Two-Dimensional
Infinite, Half, and Bimaterial Planes

Our two-dimensional (2D) problem is in the x–z plane, and it is under the
assumption that all the field and source quantities are independent of the
y-variable (i.e., ∂()/∂y = 0). Therefore, the Green’s functions presented are
rigorously for the generalized 2D plane strain case. Furthermore, presented
below are only the displacements and tractions (on the z = constant plane)
based on the Stroh formalism in terms of the complex variables. Summation
of the repeated subscript R from 1 to 4 is implied.

2.4.1 Green’s Functions in Anisotropic 2D Infinite
Planes Due to a Line Force and Line Dislocation

The Green’s functions for the displacements and tractions at field point
xxx(x, z) due to a line force at XXX(X,Z) can be expressed as

UKJ(x,Xx,Xx,X) =
1
π
Im{AJR ln(zR − sR)AKR} (2.32a)

TKJ(x,Xx,Xx,X) = − 1
π
Im{BJR

pRn1 − n3

zR − sR
AKR}. (2.32b)

The first subscript K is the component of the line force of unit value
fff = (f1, f2, f3, −Q) and the second subscript J is the component of the
displacement (2.32a) and the traction (2.32b). Also in these equations, “Im”
stands for the imaginary part of the complex value; AIJ and BIJ are two
constant matrices related to the piezoelectric material property; n1 and n3

(functions of xxx) are the unit outward normal components along the x- and
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z-directions; pR (R = 1, 2, 3, 4) are the Stroh eigenvalues; and zR = x + pRz
and sR = X+pRZ are related to the field x(x, z) and sourceXXX(X,Z) points,
respectively. These displacement and traction Green’s functions are required
in the conventional boundary integral equation formulation to solve the gen-
eral boundary value problems in piezoelectric solids. In order to find the
Green’s strain and electric fields, one only needs to take the derivation of the
Green’s displacement (2.32a) with respect to the field point xxx (refer to (2.7)).
The corresponding stress and electric displacements can be obtained thorough
the piezoelectric constitutive relations (2.14).
The Stroh eigenvalues and eigenmatrices involved in (2.32) are obtained

by solving the following eigensystem of equations [19]. First, the eigenvalue
p and the corresponding eigenvector a are solved from the eigenrelation:

[QQQ+ p(RRR+RRRT ) + p2TTT ]aaa = 0, (2.33)

where the superscript T denotes matrix transpose, and

QIK = C1IK1, RIK = C1IK3, TIK = C3IK3, (2.34)

where CiJKl are the elastic and electric moduli (or coefficients) defined
in (2.13).
Then, the eigenvector b is obtained from

bbb = (RRRT + pTTT )aaa = −1
p
(QQQ+ pRRR)aaa. (2.35)

Denoting by pm, aaam, and bbbm (m = 1, 2, . . . , 8) the eigenvalues and the
associated eigenvectors, we then order them in such a way so that

Im pJ > 0, pJ+4 = pJ , aaaJ+4 = aaaJ , bbbJ+4 = bbbJ (J = 1, 2, 3, 4)
AAA = [aaa1,aaa2,aaa3,aaa4], BBB = [bbb1, bbb2, bbb3, bbb4], (2.36)

where an overbar denotes the complex conjugate. We have also assumed
that pJ are distinct and the eigenvectors aaaJ and bbbJ satisfy the normalization
relation [8, 19]

bbbTI aaaJ + aaaT
I bbbJ = δIJ (2.37)

with δIJ being the 4× 4 Kronecker delta (i.e., the 4× 4 identity matrix). We
also remark that repeated eigenvalues pJ can be avoided by using slightly per-
turbed material coefficients with negligible errors [20]. In so doing, the simple
structure of the Green’s function solutions (2.32) can always be employed.
Similarly, the Green’s functions at xxx due to the generalized line disloca-

tions (Burger’s vector and electric potential discontinuity) bbb = (�u1,�u2,
�u3,�φ) of unit value at XXX can be found as

UKJ(x,Xx,Xx,X) =
1
π
Im {AJR ln(zR − sR)BKR} (2.38a)
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TKJ(x,Xx,Xx,X) = − 1
π
Im
{
BJR

pRn1 − n3

zR − sR
BKR

}
. (2.38b)

Comparing (2.32) and (2.38), we notice that the line force and line dislo-
cation Green’s functions are very similar to each other and they both have
the same order of singularity.

2.4.2 Green’s Functions in Anisotropic 2D Half-Planes
Due to a Line Force and Line Dislocation

The half-plane Green’s functions for the displacements and tractions (the
Jth component) with outward normal n1 and n3 (at xxx) due to a line force at
XXX with component K can be expressed as

UKJ(x,Xx,Xx,X) =
1
π
Im

{
AJR ln(zR − sR)AKR +

4∑
v=1

[
AJR ln(zR − sv)Qv

RK

]}

(2.39a)

TKJ(x,Xx,Xx,X) = − 1
π
Im

{
BJR

pRn1 − n3

zR − sR
AKR +

4∑
v=1

[
BJR

pRn1 − n3

zR − sv
Qv

RK

]}
,

(2.39b)

where

Qv
RN = B−1

RSBSP (Iv)PANP (2.40)

with

III1 = diag[1, 0, 0, 0]; III2 = diag[0, 1, 0, 0]
III3 = diag[0, 0, 1, 0]; III4 = diag[0, 0, 0, 1]. (2.41)

Similarly, the half-plane Green’s functions for the displacements and trac-
tions (the Jth component) with outward normal n1 and n3 (at xxx) due to the
line dislocations at XXX with component K can be expressed as

UKJ(x,Xx,Xx,X) =
1
π
Im

{
AJR ln(zR − sR)BKR +

4∑
v=1

[
AJR ln(zR − sv)Qv

RK

]}

(2.42a)

TKJ(x,Xx,Xx,X) = − 1
π
Im

{
BJR

pRn1 − n3

zR − sR
BKR +

4∑
v=1

[
BJR

pRn1 − n3

zR − sv
Qv

RK

]}
,

(2.42b)
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where
Qv

RN = B−1
RSBSP (Iv)PBNP . (2.43)

Similar Green’s function expressions can be obtained for the general
boundary conditions on the surface of the anisotropic elastic and anisotropic
piezoelectric half-plane. The detailed discussions can be found in [21, 22].

2.4.3 Green’s Functions in 2D Anisotropic Bimaterial
Plane Due to a Line Force and Line Dislocation

Depending upon the relative locations of the source and field points, there
are four sets of Green’s functions for the bimaterial case. We assume that
materials 1 and 2 occupy the half-planes z > 0 and z < 0, respectively.
Let us again assume that a line force fff = (f1, f2, f3,−Q) or line dislocation
bbb = (�u1,�u2,�u3,�φ) is applied at the source point (X,Z) in one of
the half-planes. To derive the Green’s functions, it is sufficient to find the
displacement vector uuu and traction vector ttt due to the line force or dislocation
[19], which are presented below for different combinations of the source and
field points.
Assume that the source point (X,Z) is in the half-plane of material

λ(λ = 1 or 2). Then if the field point xxx = (x, z) is in the source plane
(i.e., the half-plane of material λ), the displacement and traction vectors can
be expressed as [23]

uuu(λ)=
1
π
Im
{
AAA(λ)〈ln(z(λ)

∗ −s(λ)
∗ )〉qqq∞,λ

}
+
1
π
Im

4∑
J=1

{
AAA(λ)〈ln(z(λ)

∗ − s
(λ)
J )〉qqq(λ)

J

}

ttt(λ) = − 1
π
Im
{
BBB(λ)

〈
p
(λ)
∗ n1−n3

z
(λ)
∗ −s(λ)∗

〉
qqq∞,λ

}
− 1
π
Im

4∑
J=1

{
BBB(λ)

〈
p
(λ)
∗ n1−n3

z
(λ)
∗ − s

(λ)
∗

〉
qqq
(λ)
J

}
.

(2.44)

If the field point (x, z) is in the other half-plane of material µ(µ �= λ)
(λ, µ = 1 or 2), then the displacement and traction vectors can be expressed as

uuu(µ) =
1
π
Im

4∑
J=1

{
AAA(µ)〈ln(z(µ)

∗ − s
(λ)
J )〉qqq(µ)

J

}

ttt(µ) = − 1
π
Im

4∑
J=1

{
BBB(µ)

〈
p
(µ)
∗ n1 − n3

z
(µ)
∗ − s

(λ)
J

〉
qqq
(µ)
J

}
. (2.45)

In (2.44) and (2.45), the superscripts (λ) and (µ) denote the quantities
associated with the material domains 1 and 2; p(λ)

J ,AAAλ, andBBB(λ) (λ = 1 and 2
for the two half-planes) are the Stroh eigenvalues and the corresponding
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eigenmatrices as given before. Also in (2.44) and (2.45), we defined:

〈ln(z(λ)
∗ − s

(λ)
∗ )〉 = diag[ln(z(λ)

1 − s
(λ)
1 ), ln(z(λ)

2 − s
(λ)
2 ),

ln(z(λ)
3 − s

(λ)
3 ), ln(z(λ)

4 − s
(λ)
4 )]

〈ln(z(λ)
∗ − s

(λ)
∗ )〉 = diag[ln(z(λ)

1 − s
(λ)
J ), ln(z(λ)

2 − s
(λ)
J ),

ln(z(λ)
3 − s

(λ)
J ), ln(z(λ)

4 − λs
(λ)
J )], (2.46)

where zα
J and s(α)

J (α = 1, 2) are complex variables associated with the field
and source points, respectively. They are defined as

z
(α)
J = x+ p

(α)
J z,

s
(α)
J = X + p

(α)
J Z. (2.47)

We further observe that the first term in (2.44) corresponds to the full-
plane Green’s functions in material λ with:

qqq∞,λ = (AAA(λ))Tfff (2.48)

for the line force, and
qqq∞, λ = (BBB(λ))Tbbb (2.49)

for the line dislocation.
The second term in (2.44) and the term in (2.45) are the complemen-

tary parts of the Green’s function solutions. The complex vectors qqq
(λ)
J

(λ = 1, 2; J = 1, 2, 3, 4) in (2.44) and q(µ)
J (µ = 1, 2; J = 1, 2, 3, 4) in (2.45)

are determined using the continuity conditions along the interface of the two
half-planes. Assume that the interface is perfect and after certain algebraic
calculations, these vectors can be obtained as (λ, µ = 1 or 2, but µ �= λ):

qqq
(λ)
J = (AAA(λ))−1(MMM (λ) +MMM

(µ)
)−1(MMM

(µ) −MMM (λ)
)AAA

(λ)
IIIJqqq

∞,λ (2.50)

for (2.44), and

qqq
(µ)
J = (AAA(µ))−1(MMM

(λ)
+MMM (µ))−1(MMM (λ) +MMM

(λ)
)AAA(λ)IIIJqqq

∞,λ (2.51)

for (2.45).
In (2.50) and (2.51), matrixMMM (α) is the impedance tensor defined as

MMM (α) = −iBBB(α)(AAA(α))−1 (α = 1, 2) (2.52)

and the diagonal matrix IIIJ is the same as that defined by (2.41).
We point out that similar Green’s function expressions can be derived

for the bimaterial with general (or imperfect) interface conditions. Detailed
discussion can be found in [24, 25].
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2.5 Green’s Functions in Three-Dimensional Infinite,
Half, and Bimaterial Spaces: Transverse Isotropy

Green’s functions in 3D transversely isotropic piezoelectric infinite, half,
and bimaterial spaces were derived by Ding’s group at Zhejiang University
[26–34] and Dunn’s group at the University of Colorado at Boulder [35–37].
However, results presented below are based on the works by the Zhejiang
University group using the combined potential function and trial-and-error
method (i.e., [32]). To facilitate the discussion, we first present the basic
equations with special parameters associated with transversely isotropic
materials only.
For the transversely isotropic piezoelectric material with its poling direc-

tion along the z-axis, the corresponding constitutive relation is the one given
by (2.5) or (2.6). For this material, the characteristic equation is separated
into two: one corresponds to the antiplane deformation and another to the
in-plane deformation. For the antiplane case, the characteristic root is given by

s0 =
√
c66/c44. (2.53)

For the in-plane case, its three characteristic roots, si(i = 1, 2, 3), are the
solutions of the following characteristic equation

as6 − bs4 + cs2 − d = 0, (2.54)

where

a = c44(e233 + c33ε33)

b = c33[c44ε11 + (e15 + e31)2] + ε33[c11c33 + (c244 − (c13 + c44)2)]
+ e33[2c44e15 + c11e33 − 2(c13 + c44)(e15 + e31)]

c = c44[c11ε33 + (e15 + e31)2] + ε11[c11c33 + (c244 − (c13 + c44)2)]
+ e15[2c11e33 + c44e15 − 2(c13 + c44)(e15 + e31)]

d = c11(e215 + c44ε11). (2.55)

Other parameters used in this section are:

m1 = ε11(c13 + c44) + e15(e15 + e31) m2 = ε33(c13 + c44) + e33(e15 + e31)

m3 = c11ε33 + c44ε11 + (e15 + e31)2 m4 = c11e33 + c44e15 − (c13 + c44)
× (e15 + e31) (2.56)

αi1 =
c11ε11 −m3s

2
i + c44ε33s

4
i

(m1 −m2s2i )si
(for i = 1, 2, 3)

αi2 =
c11e15 −m4s

2
i + c44e33s

4
i

(m1 −m2s2i )si
(2.57)
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ω01 = c44s0; ω02 = e15s0 ωi1 = c44(si + αi1) + e15αi2

ωi2 = e15(si + αi1)− ε11αi2 θi1 = (c33αi1 + e33αi2)si − c13

θi2 = (e33αi1 + ε33αi2)si − e13. (2.58)

We also define the following position-related parameters (for i, j = 0, 1, 2, 3),

zi = siz; hi = sih; z′i = s′iz; zij = zi + hj ;

Rij =
√
x2 + y2 + z2

ij ; zij = zi − hj ; Rij =
√
x2 + y2 + z2

ij ;

z′ij = z′i − hj ; R′ij =
√
x2 + y2 + (z′ij)2. (2.59)

The prime “ ′” here and afterwards denotes parameters or quantities in
the lower half-space z < 0.

2.5.1 Green’s Functions for Infinite Space

For a point charge Q and a point force P in the z-direction, applied at the
source point (0, 0, h), the elastic displacements and electric potential at the
field point (x, y, z) are

u = sign(z − h)
3∑

i=1

Aix

Rii(Rii + si|z − h|)

v = sign(z − h)
3∑

i=1

Aiy

Rii(Rii + si|z − h|)

w =
3∑

i=1

αi1Ai

Rii

;

φ =
3∑

i=1

αi2Ai

Rii

. (2.60)

For a point force T in the x-direction, applied at the source point
(0, 0, h), the elastic displacements and electric potential at the field point
(x, y, z) are

u = −D0

[
1

R00 + s0|z − h| −
y2

R00(R00 + s0|z − h|)2
]

+
3∑

i=1

Di

[
1

Rii + si|z − h| −
x2

Rii(Rii + si|z − h|)2
]
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v =− D0xy

R00(R00) + s0|z − h|)2 − xy

3∑
i=1

Di

Rii(Rii + si|z − h|)2

w =− sign(z − h)x
3∑

i=1

αi1Di

Rii(Rii + si|z − h|)

φ =− sign(z − h)x
3∑

i=1

αi2Di

Rii(Rii + si|z − h|) . (2.61)

In (2.60) and (2.61),

A1 =
[P (θ22 − θ32) +Q(θ21 − θ31)]

b1

A2 =
[P (θ32 − θ12) +Q(θ31 − θ11)]

b1

b1 = 4π[(θ11 − θ31)(θ22 − θ32)− (θ21 − θ31)(θ12 − θ32)]

A3 = −A1 −A2 =
[P (θ12 − θ22) +Q(θ11 − θ21)]

b1
(2.62)

D0 =
−T

(4πc44s0)
D1 =

(α21α32 − α31α22)T
b2

D2 =
(α31α12 − α11α32)T

b2
D3 =

(α11α22 − α21α12)T
b2

b2 = 4πc44[s1(α21α32 − α31α22) + s2(α31α12 − α11α32)
+ s3(α11α22 − α21α12)]. (2.63)

2.5.2 Green’s Functions for Half and
Bimaterial Spaces

We first present the bimaterial space Green’s functions. The Green’s
functions in the corresponding half-space can be reduced from the former
ones. We assume that along the interface z = 0 of the two half-places, the
elastic traction and the z-component of the electric displacement are con-
tinuous across the interface (i.e., perfect interface condition). For a point
charge Q and a point force P in the z-direction, applied at the source
point (0, 0, h > 0), the elastic displacements and electric potential at the
field point (x, y, z > 0) of the upper half-space are

u =
3∑

i=1

⎡
⎣sign(z − h)

Aix

Rii(Rii + si|z − h|) +
3∑

j=1

Aijx

Rij(Rij + zij)

⎤
⎦
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v =
3∑

i=1

⎡
⎣sign(z − h)

Aiy

Rii(Rii + si|z − h|) +
3∑

j=1

Aijy

Rij(Rij + zij)

⎤
⎦

w =
3∑

i=1

αi1

⎡
⎣ Ai

Rii

+
3∑

j=1

Aij

Rij

⎤
⎦ φ =

3∑
i=1

αi2

⎡
⎣ Ai

Rii

+
3∑

j=1

Aij

Rij

⎤
⎦ . (2.64)

At the field point (x, y, z < 0) of the lower half-space, the elastic displace-
ments and electric potential are (the prime “′”is added to quantities in the
lower half-space)

u
′
=

3∑
i=1

3∑
j=1

A
′
ijx

R
′
ij(R

′
ij − z

′
ij)
; v

′
=

3∑
i=1

3∑
j=1

A
′
ijy

R
′
ij(R

′
ij − z

′
ij)

w
′
= −

3∑
i=1

α
′
i1

3∑
j=1

A
′
ij

R
′
ij

; φ
′
= −

3∑
i=1

α
′
i2

3∑
j=1

A
′
ij

R
′
ij

. (2.65)

The coefficients Aij and A′ij in (2.64) and (2.65) are solved from the
following equations (for i = 1, 2, 3;m = 1, 2).

−Ai +
3∑

j=1

Aji =
3∑

j=1

A
′
ji αimAi +

3∑
j=1

αjmAji = −
3∑

j=1

α
′
jmA

′
ji

− ωi1Ai−
3∑

j=1

ωj1Aji=−
3∑

j=1

ω
′
j1A

′
ji θimAi −

3∑
j=1

θjmAji=−
3∑

j=1

θ
′
jmA

′
jm.

(2.66)

For a point force T in the x-direction, applied at the source point
(0, 0, h > 0), the elastic displacements and electric potential at the field point
(x, y, z > 0) of the upper half-space are

u =−D0

[
1

R00 + so|z − h| −
y2

R00(R00 + s0|z − h|)2
]
−D00

[
1

R00 + z0

− y2

R00(R00 + z00)2

]
+

3∑
i=1

⎧⎪⎨
⎪⎩
Di

[
1

Rii+si|z−h| − x2

Rii(Rii+si|z−h|)2
]

+
3∑

j=1

Dij

[
1

Rij+zij
− x2

Rij(Rij+zij)2

]
⎫⎪⎬
⎪⎭

v =− D0xy

R00(R00 + s0|z − h|)2 −
D00xy

R00(R00 + z00)2

− xy

3∑
i=1

⎡
⎣ Di

Rii(Rii + si|z − h|)2 +
3∑

j=1

Dij

Rij(Rij + zij)2

⎤
⎦
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w =− x
3∑

i=1

αi1

⎡
⎣sign(z − h)

Di

Rii(Rii + sii|z − h|) +
3∑

j=1

Dij

Rij(Rij + zij)

⎤
⎦

φ =− x

3∑
i=1

αi2

⎡
⎣sign(z − h)

Di

Rii(Rii + sii|z − h|) +
3∑

j=1

Dij

Rij(Rij + zij)

⎤
⎦ .
(2.67)

The elastic displacements and electric potential at the field point
(x, y, z < 0) of the lower half-space are

u
′
=− L

′
00

[
1

R
′
00 − z

′
00

− y2

R
′
00(R

′
00 − z

′
00)2

]
+

3∑
i=1

3∑
j=1

L
′
ij

[
1

R
′
ij − z

′
ij

− x2

R
′
ij(R

′
ij − z

′
ij)2

]

v
′
=− L

′
00xy

R
′
00(R

′
00 − z

′
00)2

− xy

3∑
i=1

3∑
j=1

L
′
ij

R
′
ij(R

′
ij − z

′
ij)2

w
′
= x

3∑
i=1

α
′
i1

3∑
j=1

L
′
ij

R
′
ij(R

′
ij − z

′
ij)

φ
′
= x

3∑
i=1

α
′
i2

3∑
j=1

L
′
ij

R
′
ij(R

′
ij − z

′
ij)
.

(2.68)

The involved coefficients in (2.67) and (2.68), Dij and L
′
ij , are solved from

the following equations (for i = 1, 2, 3;m = 1, 2).

D0 +D00 = L
′
00 ω01(D00 −D0) = −ω′

01L
′
00

Di +
3∑

j=1

Dji =
3∑

j=1

L
′
ji αimDi −

3∑
j=1

αjmDji =
∑

α
′
jmL

′
ji

−ωi1Di +
3∑

j=1

ωj1Dji = −
3∑

j=1

ω
′
j1L

′
ij θimDi +

3∑
j=1

θjmDji =
3∑

j=1

θ
′
jmL

′
ji.

(2.69)

The half-space Green’s functions with traction-free (i.e., the elastic trac-
tion and the z-component of the electric displacement are zero) on the surface
z = 0 can be directly reduced from the bimaterial space Green’s functions
presented in this section. Actually, assuming that the half-space is in the z > 0
domain and the source is also at z = h(> 0), then the half-space Green’s func-
tions will be exactly the same as the bimaterial case in the source half-space,
except that the involved coefficients are simply given as
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A11 = A1(θ21θ32ω11 − θ22θ31ω11 − θ12θ31ω21

+ θ11θ32ω21 + θ12θ21ω31 − θ11θ22ω31)/da

A21 =
2A1(θ12θ31 − θ11θ32)ω11

da

A31 =
2A1(θ11θ22 − θ12θ21)ω11

da

A12 =
2A2(θ21θ32 − θ22θ31)ω21

da

A22 = A2(θ22θ31ω11 − θ21θ32ω11 + θ12θ31ω21

− θ11θ32ω21 + θ12θ21ω31 − θ11θ22ω31)/da

A32 =
2A2(θ11θ22 − θ12θ21)ω21

da

A13 =
2A3(θ21θ32 − θ22θ21)ω31

da

A23 =
2A3(θ12θ31 − θ11θ32)ω31

da

A33 = A3(θ22θ31ω11 − θ21θ32ω11 − θ12θ31ω21

+ θ11θ32ω21 − θ12θ21ω31 − θ11θ22ω31)/da

da = θ22θ31ω11 − θ21θ32ω11 − θ12θ32ω21

+ θ11θ32ω21 + θ12θ21ω31 − θ11θ22ω31

D00 = D0; Dji =
DiAij

Ai(i, j = 1, 2, 3)
. (2.70)

2.6 Green’s Functions in Three-Dimensional Infinite,
Half, and Bimaterial Spaces: General Anisotropy

When the piezoelectric material is of general anisotropy, the Green’s function
solution becomes complicated even for the infinite space case. Therefore, vari-
ous precise and computationally efficient algorithms have been developed for
the evaluation of the infinite space piezoelectric Green’s functions [38–40].
A more efficient way to evaluate the piezoelectric Green’s function is by
calculating the corresponding eigenvalues and eigenvectors [41, 42], as, for
example, in [43]. In this section, however, the solutions developed by the
author and coworkers are presented. The Green’s functions in the infinite
space were derived by employing the Radon transform [44] and those in
the half and bimaterial spaces were obtained by separating the solution
into two parts: the infinite space Green’s function and the complementary
part. While the infinite space Green’s function is in an exact closed-form, the
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complementary part is expressed by a finite-line integral after utilizing the
double Fourier transform [i.e., 46].

2.6.1 Infinite Space

Following Pan and Tonon [44], the Green’s displacement in the Jth direction
at xxx due to a point force in the Kth direction at the origin can be found as

UJK(x) = − Im
2πr

4∑
m=1

AJK(p+ ζmq)

a9(ζm − ζm)
4∏

k=1
k �=m

(ζm − ζk)(ζm − ζk)
(2.71)

D(p+ ζq) =
8∑

k=0

ak+1ζ
k = a9

4∏
m=1

(ζ − ζm)(ζ − ζm), (2.72)

where AJK(m) is the adjoint matrix of ΓJK(m), and D(m) is the determi-
nant of ΓJK(m), defined as

ΓJK(m) = CiJKqmimq. (2.73)

The vector m is given by

mmm = p+ ζq, (2.74)

where

p =
e× v
|e× v| ; q = e× p; e =

x
|x| , (2.75)

with v being an arbitrary unit vector different from e(v �= e).
There are a couple of features associated with this Green’s function

expression (2.71). First of all, (2.71) is an explicit expression. It is therefore
very accurate and efficient [45]. For a given pair of field and source points,
we need only to solve the eighth-order polynomial equation (2.72) numeri-
cally once to obtain all the components of the Green’s displacement. Secondly,
in obtaining (2.71), we have assumed that all the poles are simple. Should
the poles be multiple, a slight change in the material constants will result in
single poles, with negligible errors in the computed Green’s tensor, as for the
purely elastic case [20]. Thirdly, because ΓJK is symmetric, so is its adjoint
AJK . Therefore, the Green’s displacement GJK is symmetric [39] and one
needs to calculate only 10 out of its 16 elements. The symmetric property
of the extended Green’s tensor can also be considered as a consequence of
the Betti-type reciprocity as presented in Section 3 of this chapter. Finally,
although one can choose the vector v(�= e) arbitrarily, it should be one of
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the base vectors in the space-fixed Cartesian coordinates, that is, (1, 0, 0) or
(0, 1, 0) or (0, 0, 1). The analytical expression for the Green’s displacement
is much simpler using such a vector v than using any other vectors.

2.6.2 Half-Space

For the half-space case (z > 0) with traction-free boundary condition at
z = 0 (i.e., the elastic traction and z-component of the electric displacement
are zero), the Green’s function solutions at the field point xxx (x1, x2, z > 0)
due to a point force at ddd (d1, d2, d > 0) can be obtained first in the Fourier
transformed domain, and then invert back to the physical domain. By so
doing, the final half-space Green’s function in the physical domain, or the
generalized Mindlin solution, can be expressed as a sum of an explicit Kelvin-
type solution and a complementary part in terms of a line integral over [0, 2π].
Furthermore, the latter can be reduced to an integral over [0, π]. For the
half-space displacement tensor (4×4), with its row and column indices being
the components of the field quantity and the direction of the point source,
respectively, it can be expressed as [21]

UUU(x; d)(x; d)(x; d) = UUU∞(x; d)(x; d)(x; d) +
1
2π2

∫ π

0

AAAGGG1AAA
Tdθ, (2.76)

where

(GGG1)IJ =
(BBB
−1
BBB)IJ

−pIz + pJd− [(x1 − d1)cos θ + (x2 − d2)sin θ]
. (2.77)

The first term in (2.76) corresponds to the Green’s displacement tensor in
an anisotropic and piezoelectric full space, which is given by (2.71) [43, 44].
Consequently, the half-space displacement tensor can be expressed as a sum
of an explicit Kelvin tensor and a complementary part in terms of a line
integral over [0, π]. It is emphasized that in (2.76) and (2.77), the eigenvalues
pJ and the eigenmatrices AAA and BBB are functions of θ, with pJ (J = 1, 2, 3, 4)
and AAA = [aaa1,aaa2,aaa3,aaa4] being the eigensolutions of (2.33) for a given θ. In
other words, p and aaa satisfy the same eigenequation (2.33) but with

QIK = CjIKsnjns, RIK = CjIKsnjms,

TIK = CjIKsmjms (2.78)

nnn =

⎡
⎣n1

n2

0

⎤
⎦ =

⎡
⎣cos θsin θ

0

⎤
⎦ , mmm =

⎡
⎣00
1

⎤
⎦ . (2.79)

Matrix BBB is defined by (2.36), with its vector bbbi related to aaai via (2.35).
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Equation (2.76) is the generalized Mindlin solution, or the Green’s
displacement under the traction-free boundary conditions in an anisotropic
and piezoelectric half-space. It is remarked that similar Mindlin solutions
can be presented for many other homogeneous boundary conditions on the
surface z = 0 [21]. We also point out that if the source and field points are
not simultaneously on the surface, then the line integral in (2.76) can be car-
ried out by employing regular numerical quadrature. If, however, z = d = 0,
then the half-space Green’s function is reduced to the special surface Green’s
function, where the involved singular integration needs special numerical
treatment.

2.6.3 Bimaterial Space

The procedure for solving the bimaterial Green’s functions is as follows.
First, we apply the double Fourier transform to the two horizontal vari-
ables (x, y); second, we solve the Green’s function problem in the transformed
domain; third, we apply the inverse Fourier transform to obtain the
physical domain Green’s function. To handle the double infinite integrals
in the inverse space, the polar coordinate transform is applied so that the
infinite integral with respect to the radial variable can be carried out exactly.
Thus, the final bimaterial Green’s functions in the physical domain can be
expressed in terms of a regular line integral over [0, 2π], which can be further
reduced to [0, π] using certain properties of the Stroh eigenvalues and Stroh
matrices.
We assume that the upper half-space (z > 0) is occupied by material 1

and the lower half (z < 0) by material 2. The interface at z = 0 between the
two half-spaces is further assumed to be perfect. In other words, the elastic
traction and the z-component of the electric displacement are continuous
across the interface. We further assume that the point force is in material 1
at ddd (d1, d2, d > 0); then the 4×4 Green’s function tensor at xxx (x1, x2, z > 0)
in material 1, with its first index for the displacement component and the
second for the extended point force direction, is found to be [46]

UUU (1)(x; dx; dx; d) = UUU∞(x;d) +
1
2π2

[∫ π

0

AAA
(1)
GGG(1)

u (AAA(1))Tdθ
]

(2.80)

(GGG(1)
u )IJ =

(GGG1)IJ

−p(1)
I z + p

(1)
J d− [(x1 − d1)cos θ + (x2 − d2)sin θ]

. (2.81)

In (2.80), UUU∞(((x;d) denotes the Green’s function tensor for the
displacements in the full space with the material 1 property (i.e., (2.71)).
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In material 2, the Green’s tensor at xxx (x1, x2, z < 0) is

UUU (2)(xxx;ddd) = − 1
2π2

[∫ π

0

AAA(2)GGG(2)
u (AAA(1))T dθ

]
(2.82)

(GGG(2)
u )IJ =

(GGG2)IJ

−p(2)
I z + p

(1)
J d− [(x1 − d1)cos θ + (x2 − d2)sin θ)]

. (2.83)

In (2.80) to (2.83), the superscripts “(1)” and “(2)” denote quantities in
materials 1 and 2, respectively, and the matrices GGG1 and GGG2 are given by

GGG1 = −(AAA(1)
)−1(MMM

(1)
+MMM (2))−1(MMM (1) −MMM (2))AAA(1)

GGG2 = (AAA(2))−1(MMM
(1)

+MMM (2))−1(MMM (1) −MMM (1)
)AAA(1), (2.84)

whereMMM (α) is the modified impedance tensor defined as

MMMMMMMMM (α) = −iBBB(α)(AAA(α))−1 (α = 1, 2). (2.85)

In summary, in material 1, the bimaterial Green’s function is expressed as
a sum of the explicit full-space Green’s function and a complementary part
in terms of a line integral over [0, π]; In material 2, the bimaterial Green’s
function is expressed in terms of a line integral over [0, π]. With regard
to these physical domain bimaterial Green’s functions ((2.80) and (2.82)),
the following important observations can be made.
(a) For the complementary part of the solution in material 1 and the

solution in material 2, the dependence of the solutions on the field point xxx
and source point ddd appears only through matrices GGG(1)

u and GGG(2)
u defined in

(2.81) and (2.83).
(b) The integrals in (2.80) and (2.82) are regular if z �= 0 or d �= 0, and

thus can be easily carried out by a standard numerical integral method such
as Gaussian quadrature.
(c) If z �= 0 and d = 0, the bimaterial Green’s function is still

mathematically regular although some of its components may not have a
direct and apparent physical meaning (see Pan, [25], for the purely elastic
counterpart).
(d) When the field and source points are both on the interface (i.e., z =

d = 0), the bimaterial Green’s function is then reduced to the interfacial
Green’s function. For this special case, the line integral involved in the Green’s
function expression becomes singular and the resulting finite part integral
needs to be handled with special care [47].
(e) Bimaterial Green’s functions can be solved similarly for other

(imperfect) interface models. To do so, one need only find the modified Stroh
matricesAAA(α) andBBB(α) for the given interface models. For detailed discussion,
one should refer to [25].
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2.7 Green’s Functions in Layered Half-Space

We solve the Green’s functions in layered half-space in terms of two
systems of vector functions combined with the propagator matrix method.
The vector function method is essentially equivalent to the double Fourier
transform or Hankel transform in the horizontal layer plane, but possesses
certain advantages over the latter ones (i.e., [48]). The propagator matrix
method is utilized to propagate the field quantities from one layer to the
other.
We first introduce the two systems of vector functions. The Cartesian

coordinate system of vector functions is defined as [12, 48, 49]

LLL(x, y;α, β) = eeezS(x, y;α, β)
MMM(x, y;α, β) = (eeex∂x + eeey∂y)S(x, y;α, β)
NNN(x, y;α, β) = (eeex∂y − eeey∂x)S(x, y;α, β) (2.86)

with

S(x, y;α, β) =
e−i(ax+βy)

(2π)
, (2.87)

where eeex, eeey, and eeez are the unit vectors along the x-, y-, and z-axes, re-
spectively; x and y are horizontal axes, while z-axis points to the problem
domain; α and β are the transformation variables corresponding to the two
horizontal physical variables x and y.
The corresponding cylindrical system of vector functions is defined as

[12, 48, 49]

LLL(r, θ;λ,m) = ezS(r, θ;λ,m)

MMM(r, θ;λ,m) = (er
∂

∂r
+ eθ

∂

r∂θ
)S(r, θ;λ,m)

NNN(r, θ;λ,m) = (er
∂

r∂θ
− eθ

∂

∂r
)S(r, θ;λ,m) (2.88)

with eeer, eeeθ, and eeez as the unit vectors along the r-, θ-, and z-axes,
respectively, and

S(t, θ;λ,m) =
1√
2π
Jm(λr)eimθ , (2.89)

where Jm(λr) is the Bessel function of order m with m = 0 corresponding to
the axial symmetric deformation.
There are several important features associated with the two systems of

vector functions.
(a) For plane strain deformation in the (x, z)-plane, one needs only to

replace 2π by
√
2π and β by 0, respectively.

(b) While the solution in terms of the LLL &&& MMM vectors is contributed to
the dilatational deformation, that of the NNN vector to the rotational part.
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Corresponding to the dynamic counterparts, the LLL &&& MMM part is related to
the Rayleigh wave and the NNN part to the Love wave. Here, we name the
solution associated with the LLL &&& MMM vectors the LM-type solution and that
associated with the NNN vector the N-type solution.
(c) We remark that the general solution and propagator matrix in the

cylindrical system of vector functions are exactly the same as those in the
Cartesian system. This feature gives certain numerical advantages when
programming these formulations in the two systems of vector functions.
(d) Another advantage is that both 2D and 3D Green’s functions can

be studied uniformly under these systems [12, 48, 49] because the general
solutions in terms of the two systems are the same for both 2D and 3D
deformation.
For the Green’s function problem, we first express the elastic displace-

ment, electric potential, traction, electric displacements, body force, and
negative electric charge density in terms of the cylindrical system of vector
functions,

uuu(r, θ, z) =
∑
m

∫ +∞

0

[UL(z)LLL(r, θ) + UM (z)MMM(r, θ) + UN (z)NNN(r, θ)]λdλ

(2.90)

φ(r, θ, z) =
∑
m

∫ +∞

0

Φ(z)S(r, θ)λdλ (2.91)

ttt(r, θ, z) ≡ σrzeeer + σθzeeeθ + σzzeeez

=
∑
m

∫ +∞

0

[TL(z)LLL(r, θ) + TM (z)MMM(r, θ) + TN(z)NNN(r, θ)]λdλ

(2.92)

DDD(r, θ, z) =
∑
m

∫ +∞

0

[DL(z)LLL(r, θ) +DM (z)MMM(r, θ) +DN (z)NNN(r, θ)]λdλ

(2.93)

fff(r, θ, z) =
∑
m

∫ +∞

0

[FL(z)LLL(r, θ) + FM (z)MMM(r, θ) + FN (z)NNN(r, θ)]λdλ

(2.94)

−q(r, θ, z) =
∑
m

∫ +∞

0

Q(z)S(r, θ)λdλ. (2.95)

In (2.90)–(2.95), the left-hand side variables in lowercase are the unknown
field quantities in the physical domain, and the right-hand side variables
in capitals, such as U , Φ, T, . . . , are the unknown expansion coefficients
in the transformed domain. Making use of corresponding governing equa-
tions presented in Section 2, the layered Green’s function problems can be
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converted into an ordinary differential system of equations for each layer in
the transformed domain so that the unknowns in the transformed domain can
be obtained. Because the Cartesian and cylindrical systems of vector func-
tions are employed, the problem in the transformed domain can be further
separated into two independent problems, which are discussed below.

2.7.1 General N- and LM-Type Solutions
in the Transformed Domain

(a) N-type solution

Based on either the Cartesian or cylindrical system of vector functions, one
can show easily that the N-type solution is independent of the rest, and
furthermore, it is independent of the electric quantities. In other words, it is
purely elastic and its general solution in each layer can be expressed as

[EEEN ] = [ZZZN (z)][KKKN ], (2.96)

where [KKKN ] is a column coefficient matrix of 2 × 1 with its elements to be
determined by the continuity and/or boundary conditions. Also in (2.96),

[EEEN (z)] =
[
UN (z),

TN (z)
λ

]T

, (2.97)

and [ZZZN (z)] is the solution matrix, the same as that for the purely elastic
case [12, 48, 49].

(b) LM-type solution

For this type of deformation, the elastic and piezoelectric fields are coupled
together. The ordinary differential equations in each layer for this type can
be derived as

[EEE]z = λ[WWW ][EEE]. (2.98)

It is remarked that the diagonal elements of [WWW ] are zero and independent
of λ. Also in (2.98),

[EEE] =
[
UL, λUM ,

TL

λ
, TM ,Φ,

DL

λ

]T

. (2.99)

To find the homogeneous solution of (2.98), we assume that

[EEE(z)] = [bbb]eληz. (2.100)
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Substituting (2.100) into (2.98) and noticing that all the diagonal elements
of [WWW ] are zero, we obtain the following six-dimensional eigenequations
for (2.98)

{[WWW ]− η[III]}[bbb] = 0, (2.101)

where [III] is the 6× 6 identity matrix.
It is observed from (2.101) that the eigenvalues and their correspond-

ing eigenvectors are independent of the integral variable λ! Therefore, these
eigenequations need to be solved only once for each layer for the given mate-
rial properties. Let us, therefore, assume that the six eigenvalues are distinct,
and the general solution to (2.98) is then obtained as

[EEE(z)] = [ZZZ(z)][KKK], (2.102)

where [KKK] is a 6× 1 coefficient matrix with its elements to be determined by
the interface and/or boundary conditions, and

[ZZZ(z)] = [BBB]
〈
eλη∗z

〉
(2.103)

with〈
eλη∗z

〉
= diag[eλη1z, eλη2z , eλη3z , e−λη1z, e−λη2z, e−λη3z ]

(2.104)

being associated with the six eigenvalues, and

[BBB] = [bbb1, bbb2, bbb3, bbb4, bbb5, bbb6] (2.105)

associated with the corresponding eigenvectors.

2.7.2 Propagator Matrix Method for Multilayered
Structures

The propagator matrix method is most suitable to layered structures.
Application of this method can help avoid the complicated calculation of
a large matrix and also save significant computation resource. At the core of
this method is the propagator matrix, which relates the N and LM expansion
coefficients [EEEN ] and [EEE] at the top interface to the bottom interface of layer j.
In other words, for layer j, we have[

EEEN (zj−1)
]
= [aaaN ][EEEN (zj)] (2.106)

and
[EEE(zj−1)] = [aaa][EEE(zj)] (2.107)
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where zj−1 and zj (>zj−1) are the depths of the top and bottom interfaces
of layer j, [aaaN ] and [aaa] are the so-called propagator matrix (or layer matrix,
or transfer matrix). Propagating the solution from the surface z = 0 to half-
space bottom z = H , we obtained,

[EEEN (0)] = [aaaN
1 ][aaa

N
2 ]−−− [aaaN

p−1][ZZZ
N
p (h)][KKKp]

[EEE(0)] = [aaa1][aaa2]−−− [aaap−1][ZZZp(h)][KKKp] (2.108a,b)

with the undetermined coefficients having the structure as

[KKKN
p ] = [0, ∗]t [KKKp] = [0, 0, 0, ∗, ∗, ∗]t (2.109a,b)

to satisfy the requirement that the solution vanishes when z approaches +∞.
The symbol “*” denotes an unknown coefficient. These coefficients can be
solved using the traction-free boundary condition on the surface and the
discontinuity condition at the source level due to the point force. After the
unknown coefficients in [KKKN

p ] and [KKKp] are determined through the propaga-
tor matrix method, the expansion coefficients at any depth (e.g., for z ≥ h
in layer j, i.e., zj−1 ≤ z ≤ zj) can be derived exactly as

[EEEN (z)] = [aaaN
j (z − zj−1)][aaaN

j+1]−−− [aaaN
p−1][ZZZ

N
p (H)][KKK

N
p ]

[EEE(z)] = [aaaj(z − zj−1)][aaaj+1]−−− [aaap−1][ZZZp(H)][KKKp]. (2.110a,b)

2.7.3 Physical Domain Solutions

From (2.90)–(2.95), in order to get the field quantities in the physical domain,
numerical integration must be carried out. It is noted that the integrands in
the infinite integrals for the Green’s functions involve Bessel functions that
are oscillatory and go to zero slowly when their variable approaches infinity.
Thus, the common numerical integral methods, such as the trapezoidal rule
or Simpson’s rule, are not suitable for such integrations. On the other hand,
numerical integration of this type of function via adaptive Gauss quadrature
has been found to be very accurate and efficient. In this adaptive quadrature,
we express the infinite integral for each Green’s function as a summation of
partial integration terms:

∫ +∞

0

f(λ, z)Jm(λr)dλ =
N∑

n=1

∫ λn+1

λn

f(λ, z)Jm(λr)dλ. (2.111)

In each subinterval, a starting three-point Gauss rule is applied to approx-
imate the integral. A combined relative–absolute error criterion is used to
check the results. If the error criterion is not satisfied, new Gauss points are
added optimally so that only the new integrand values need to be calculated.
This procedure continues until the selected error criterion is satisfied.
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The methodology presented in this section can also be applied to find
the Green’s function solutions in many different layered material structures.
These include transversely isotropic layered thermoelastic half-space [13],
layered poroelastic half-space [14], transversely isotropic layered piezoelec-
tric half-space [50] and transversely isotropic functionally graded and layered
piezoelectric half-space [51, 52]. Similar approaches have been also developed
to derive the Green’s functions in general anisotropic and layered elastic
spaces [53, 54].

2.8 Conclusions

This chapter presents a review of the Green’s function solutions in piezo-
electric anisotropic solids. It is limited to the static case and with infinite or
semi-infinite domains. Even in this limited case, the author may have missed
some of the references by other experts. For example, one interesting area
that the author intentionally omitted is the circular loading on the surface
of the layered piezoelectric half-space as this can be obtained from the
corresponding point-source Green’s functions by integration over the loading
domain [52]. The Green’s functions in the functionally graded piezoelectric
space are not covered (i.e., [51]). There are also Green’s functions associated
with the finite domain, for example, on the Green’s function-related issues
in layered piezoelectric spheres (i.e., [55–57]), and in layered piezoelectric
cylinders(i.e., [58, 59]). The dynamic and transient Green’s functions are not
reviewed. These include dynamic and transient problems in layered cylinders
[58, 60–62], in layered spheres [63], and in horizontally layered plates
(i.e., [64]). Dynamic Green’s functions in anisotropic infinite space are not
covered either, and contributions to this difficult area can be found, for exam-
ple, in [65, 66]. A recent special issue of Engineering Analysis and Boundary
Elements edited by the author also includes many interesting Green’s func-
tion solutions [67]. Another interesting area that the author hasn’t reviewed
but is extremely attractive is related to the multiferroic materials/structures.
The coupling between the electric and magnetic fields via the induced strain
inside the system has potential applications to many semiconductor devices
using electric and magnetic fields. Various Green’s functions have already
been developed and interested readers should refer to [68–76] for details.
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