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We investigate the effective material properties of a multiferroic fibrous nanocomposite with size
effects along its interface. The closed-form expression of the effective moduli of the nanocomposite
shows that its response with interface effects depends on the size of the embedded fibers in the
composite, a phenomenon different from the result based on the classical theory. We further
demonstrate that the magnetoelectric effect can be substantially enhanced via proper design of the
interface, providing an alternative avenue for controlling and, in particularly, increasing the
magnetoelectric effect. © 2009 American Institute of Physics. �doi:10.1063/1.3257980�

The magnetoelectric �ME� effect in multiferroic compos-
ites, defined as the ratio between the magnetic �electric� field
output over the electric �magnetic� input, is the most critical
factor in device applications based on these composites.1–4 In
terms of energy efficiency, it is most desirable that the ME
effect be as large as possible. While properly graded compo-
sition was shown recently to be capable of enhancing the ME
effect,5 any imperfect �realistic� interface would reduce the
ME effect in terms of the classic composite theory.6 Conse-
quently the ferroelectric and ferromagnetic interface, which
is responsible for transferring the strains from one phase to
another, is critical in achieving a giant ME effect in multi-
ferroic composites. However, recent investigations on the
nonideal �or imperfect� interface in multiferroic composites
were primarily concerned with the soft interface at which
different tangential strains may occur.6–9

Owing to the minimization of components �nanopillars�
in nanostructured multiferroic composites,10,11 the behavior
of interfaces becomes a prominent factor in controlling the
magnetoelectroelastic properties and the ME effect of nano-
structured multiferroic composites due to the increasing ratio
of the interface area to volume. In recent years, therefore, the
surface elasticity theory12 has been developed to account for
the effects of surfaces and interfaces at nanoscales.13–19 In
fact, the surface elasticity theory describes the membrane-
type interface, a kind of stiff interface.18,20 These studies
based on elasticity show that depending upon the interface
design, the effective properties of the nanocomposite can be
either enhanced or reduced. This size-dependent feature in
nanocomposites thus provides an alternative avenue to im-
prove and control material properties in nanocomposites.

Motivated by these exciting works, in this letter, we
study the local and overall responses of the multiferroic fi-
brous nanocomposite by taking into consideration the surface
energy along the interface. More specifically, the interface
investigated here is mechanically stiff and electromagneti-
cally highly conducting. The magnetoelectroelastic fields in a
two-phase composite system composed of a matrix and an
isolated circular fiber are derived by ignoring the interactions

between neighboring fibers. Then the effective moduli of
the multiferroic nanocomposite with a finite fiber concentra-
tion are derived by using the Mori–Tanaka mean-field
method.21–23 Our numerical results show that the effective
stiffness and more importantly the ME effect can be substan-
tially enhanced by properly choosing the interface, providing
an opportunity for controlling the ME effect and other effec-
tive moduli of the nanocomposites. This result is consistent
with a recent observation that nanofiber composites could
exhibit a high ME effect.24

Consider an isolated multiferroic fiber with a circular
cross section �phase 2� of radius R embedded in an infinite
multiferroic matrix �phase 1�, as shown in Fig. 1. Both the
fiber and matrix have 6mm material symmetry about the fiber
axis �the z-axis�. At infinity, the matrix is subjected to uni-
form antiplane shear stresses �zx

� ,�zy
� , in-plane electric dis-

placements Dx
� ,Dy

� and magnetic fluxes Bx
� ,By

�. Thus the
two-phase composite system is in a state of antiplane defor-
mation described by uz=w�x ,y� ; �=��x ,y� ; �=��x ,y�,
where uz denotes the nonzero elastic displacement compo-
nent in z-direction; � and � are the electric and magnetic
potentials.

We now introduce the generalized displacement vector
U= �w � ��T and generalized stress function vector �,
which is related to the stresses, electric displacements, and
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FIG. 1. �Color online� A multiferroic circular cylindrical fiber of radius R
bonded to an infinite multiferroic matrix through an interface. The polariza-
tion and magnetization directions are along the fiber axis.
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magnetic fluxes through the following relations:

��zy Dy By �T = �,x, ��zx Dx Bx �T = − �,y . �1�

Then, it can be shown that the generalized displacement and
stress function vectors can be concisely expressed in terms of
an analytic function vector f�z� of a single complex variable
z=x+iy=r exp�i�� as6

U = Im�f�z��, � = L Re�f�z�� , �2�

where

L = �c44 e15 q15

e15 − �11 − �11

q15 − �11 − �11
� �3�

is the generalized stiffness matrix, which is real and symmet-
ric but not positive definite.

In nanocomposites, the interfacial stress tensor ��	
s is

2
2 symmetric, which is related to the interfacial energy
g���	

s � by13,18

��	
s = �g/���	

s + �0��	, �4�

where ��	
s is the 2
2 interfacial strain tensor, ��	 the Kro-

necker delta, and �0 the residual surface tension. If we further
assume that the interface is taken as elastically isotropic and
that the residual surface tension is ignored, then the interfa-
cial stress tensor can be more specifically expressed as18,19

��	
s = 2�s��	

s + s���
s ��	, �5�

where �s and s are the surface Lamé constants.
For the antiplane shear deformation considered, the elas-

tic continuity conditions on the interface can be expressed
as18

w�1� = w�2�, �zr
�1� − �zr

�2� = − ��z�
s /�r � ��, �r = R� , �6�

where the superscripts �1� and �2� denote the associated
quantities in the matrix �phase 1� and fiber �phase 2�, respec-
tively.

It can be shown that Eq. �6� can be further expressed as

w�1� = w�2�, �zr
�1� − �zr

�2� = − �s�
2w�2�/�r2��2�, �r = R� , �7�

which are equivalent to those for a stiff interface. It is noted
that �s is a nonnegative parameter with �s=0 for the perfect
elastic interface case, and �s=+� for the rigid fiber case.
Meanwhile, similar to the highly conducting thermal inter-
face, we assume that the interface is electrically and mag-
netically highly conducting,25 such that

��1� = ��2�, Dr
�1� − Dr

�2� = ��2��2�/�r2 � �2� ,

�8�
��1� = ��2�, Br

�1� − Br
�2� = ��2��2�/�r2 � �2�, �r = R� ,

where � and � are two nonnegative parameters. It is noted
that �=�=0 corresponds to an electromagnetically perfect
interface, whereas �=�=+� describes an equipotential inter-
face. It is of interest to observe from Eqs. �7� and �8� that
boundary conditions for an elastically stiff interface and
those for a highly conducting interface are very similar ex-
cept for a sign difference.

Using the basic formulations presented above, the inter-
face conditions in Eqs. �7� and �8� �at r=R� can be concisely
expressed in terms of two analytic function vectors, f1�z�
defined in the matrix and f2�z� defined in the fiber as follows:

f2
+�z� − f2

−	R2

z

 = f1

−�z� − f1
+	R2

z

 ,

L1f1
−�z� + L1f1

+	R2

z

 − L2f2

+�z� − L2f2
−	R2

z



= ��zf2�
+�z� +

R2

z
f2�

−	R2

z

�, �z = R� ,

�9�

where

��R� = diag��s,− �,− ��/R �10�

depends not only on the interface property, but also on the
radius of the fiber. Based on the complex analytic function
approach,6 the two analytic functions can be expressed as

f1�z� = �I − 2�L1 + L2 + ��−1L1�L1
−1kR2z−1

+ L1
−1kz, �z � R� , �11�

f2�z� = 2�L1 + L2 + ��−1kz, �z � R� , �12�

where the vector k is related to the remote uniform loading
as

kT = ��zy
� + i�zx

� ,Dy
� + iDx

�,By
� + iBx

�� . �13�

With these two analytic functions, other field distribu-
tions can be subsequently obtained. For example, it is found
that the strains, electric, and magnetic fields are all uniform
but size-dependent �due to the appearance of the radius R in
�� inside the circular fiber. We now assume that the aligned
circular cylindrical multiferroic fibers of the same radius are
randomly distributed on the x-y plane. By employing the
Mori-Tanaka mean field method,21–23 the effective moduli of
the multiferroic fibrous nanocomposite with interface effects
can be finally derived as

Lc = L1��1 + c2�L1 + �1 − c2��L2 + ���−1��1 − c2�L1

+ �1 + c2��L2 + ��� , �14�

where c2 is the volume fraction of the multiferroic fibers. It is
important that, since � contains the radius of the fibers, the
effective moduli of the nanocomposite is size-dependent,26 a
phenomenon different from the classical size-independent
result.27

We point out that our closed-form solution for the effec-
tive moduli �14� contains various previous results as special
cases. For instance, when both the fiber and matrix are
purely elastic, L1 and L2 become diagonal; then the effective
elastic constant c44

�c� of the composite is reduced to the result18

based on the concept of neutral inhomogeneities. On the
other hand when the interface effect is ignored by setting
�=0, Eq. �14� is reduced to that for the perfect interface
case.27

We further observe from Eq. �14� that the effective
moduli of the nanocomposite with interface effects are
equivalent to those of a virtual composite where the circular

fibers with the virtual moduli L̂2=L2+��R� are perfectly
bonded to the matrix. Therefore, we conclude that incorpo-
ration of the interface effect is equivalent to an increase in
the values of the stiffness, dielectric permittivity and mag-
netic permeability of the fibers via the size-dependent inter-
face matrix ��R�.

As a numerical example, we consider the nanostructured
BaTiO3 /CoFe2O4 multiferroic composite: the piezoelectric
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BaTiO3 matrix reinforced by the magnetostrictive CoFe2O4
nanopillars.10,11 Figure 2 shows the ME coefficient �11 as a
function of the CoFe2O4 volume fraction c2 for four different
interfaces: perfect interface ��s=�=�=0�, interface A ��s

=Rc44
�2� , �=�=0�, interface B ��= 1

2R�11
�2� , �s=�=0�, and

interface C ��= 1
2R�11

�2� , �s=�=0�. Interface A represents a
mechanically stiff interface,26 B an electrically highly con-
ducting interface, and C a magnetically highly conducting
interface. Both B and C resemble the thermally highly con-
ducting interface.19,26 It is observed from Fig. 2 that the ME
coefficient for both interfaces A and C is reduced as com-
pared to that for a perfect interface; however, the ME coef-
ficient for interface B is substantially enhanced as compared
to that for a perfect interface.

Figure 3 plots the ME effect for interface B �i.e., for the
electrically highly conducting interface� as a function of the
interface parameter � /R�11

�2� and volume fraction c2. It is in-
teresting that when � /R�11

�2� changes from 0 to 1, the maxi-
mum magnitude of ME effect achieved at c2=0.85 is
doubled �6
10−12 versus 12
10−12�. Most importantly, if
we could design the interface to increase � /R�11

�2� to, for ex-
ample, ten, then the ME effect will be roughly increased ten
times as compared to the classic composite results. This thus
provides an excellent opportunity for enhancing the ME ef-
fect in nanocomposites using the unique size-dependent fea-
ture. This result is consistent with a recent observation where
it was demonstrated that nanofiber composites could exhibit
a high ME effect.24

Our results are for a multiferroic nanocomposite consist-
ing of magnetostrictive fibers reinforced in a piezoelectric
matrix. For a multiferroic nanocomposite consisting of pi-
ezoelectric fibers reinforced in a magnetostrictive matrix,
the opposite conclusion can be drawn. In other words, for
this case, a magnetically highly conducting interface ��
�0, �s=�=0� can be designed to enhance the ME
coefficient.

In conclusion, we show that the nonclassical interface
condition exerts a significant influence on the local and over-
all magnetoelectroelastic responses of the multiferroic com-
posite especially when the fibers are at the nanoscale. We
further demonstrate that it is possible to enhance the ME
coefficient of a multiferroic composite consisting of magne-
tostrictive fibers reinforced in a piezoelectric matrix by de-
signing an electrically highly conducting interface.26 There-
fore, the present analysis on multiferroic nanocomposites
with interface effects28 will provide an alternative opportu-
nity for enhancing the ME effect.
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2R�11
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2R�11
�2� , �s=�=0�. BaTiO3 matrix reinforced by

CoFe2O4 fibers.

FIG. 3. �Color online� Contour of the ME coefficient �11 as a function of the
CoFe2O4 volume fraction c2 and interface imperfection � /R�11

�2� ��s=�=0�.
BaTiO3 matrix reinforced by CoFe2O4 fibers.
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