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Abstract Derived in this work are the time-dependent thermal Green’s function solutions of a steady line heat
source and a steady thermal dislocation near a linear viscous interface between two different anisotropic mag-
neto-electro-thermo-elastic multiferroic half-planes. Our analysis demonstrates that once the thermal Green’s
functions at the initial time for a perfect interface are known, the corresponding time-dependent thermal Green’s
functions at any time can be written down immediately. These solutions are obtained in exact closed form.

1 Introduction

At high homologous temperatures, the thermally activated rate-dependent interfacial sliding becomes impor-
tant and contributes to the plastic deformation in polycrystalline metals and ceramics [1]. Here the thermally
activated interfacial sliding can be described by the Newtonian viscous interface: § = t/n,where § is the sliding
velocity (i.e., the differentiation of the relative sliding with respect to time ¢), T is the interfacial shear stress and
n is the interfacial viscosity [1-4]. Furthermore the Newtonian viscous interface can also be adopted to describe
the microscopically mass diffusion-controlled mechanism along the interface [5—7]. Recently, the isothermal
Green’s functions in anisotropic magneto-electro-elastic multiferroic bimaterials with a linear viscous inter-
face subjected to an extended line force and an extended line dislocation located in the upper half-plane were
obtained [4]. The purpose of this research is to further develop the corresponding thermal Green’s functions of
a line heat source and a temperature dislocation located in anisotropic multiferroic bimaterials with a planar
viscous interface. The thermal Green’s functions to be developed in this research together with the previously
obtained isothermal Green’s functions [4] can be further utilized to solve the magneto-electro-thermo-elastic
problems involving cracks or anti-cracks (rigid line inclusions) in anisotropic multiferroic bimaterials with a
viscous interface [8—10].

This paper is structured as follows. In Sect. 2, the generalized version of the Stroh formalism suitable
for two-dimensional (2D) thermal problems in generally anisotropic multiferroic materials in the presence of
viscous interface is presented. In Sect. 3, the full-field solutions for a thermal dislocation and a line heat source
located in anisotropic multiferroic bimaterials with a planar viscous interface are derived. Conclusions are
drawn in Sect. 4.
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2 Basic formulations

The basic equations for an anisotropic and linearly multiferroic material taking into consideration the thermal
effect are [11]
0ij = Cijrittk, + ekij® .k + qrijo.x — Bij T,
Dy = epijuij — eudi — e, + pr T,
By = qkijuij — b — pkipq + miT,
Uij,j = 0, D,',l' = 0, B,‘ﬁ,‘ = 0,

ey

where repeated indices mean summation, a comma followed by i (i = 1, 2, 3) stands for the derivative with
respect to the ith spatial coordinate, u;, ¢ and ¢ are the elastic displacement, electric potential and magnetic
potential, T is the temperature change, o;;, D; and B; are the stress, electric displacement and magnetic induc-
tion, Cjjxr, &;j and p;; are the elastic, dielectric and magnetic permeability coefficients, respectively; e; jk, gijk
and o;; are the piezoelectric, piezomagnetic and magneto-electric coefficients, respectively; B;;, px and my
are, respectively, the stress-temperature, pyroelectric and pyromagnetic constants. In writing Eq. (1) we have
ignored the inertia effect. In addition the temperature change should satisfy the following differential equation:

kijT;; =0, ()

where k;; is the heat conduction coefficient. In this research it is assumed that k;; = k; is satisfied [12].
For 2D problems in which all quantities depend only on x; and x», the general solutions can be expressed
as [4,10,12]

T = g'(z0) + &' (20),

® =iy [g’(m) —g’(—zo)],

u=[uiwus ¢ 9] =Af(z, 1)+ AF@. 1) + eg(z0) + €8 0),
®=[D Dy b3 Dy ds]" = Bf(z, 1) + BFG, 1) + dg(z0) + dg(20),

where the prime denotes differentiation with respect to the complex variable, and

—kip +iy /
z0 = X1 + pox2, p0=k—, Y = k11k22_k122>0’
22

A=[a1 32333435], B=[b1b2b3b4b5], )

fz.0) = [ fiz1.0) folza. 1) fa(za, 1) falzanD) f3zs. 0],
Zi = X1 + pix2, Im{pi} >0, ((i=1-95),

3)

with
NiNo [fa | |a .
|:N3N1Ti|[bi]_p’|:bi:|’ @=1=5), )
NiN2 |[e|_ c] [ON2 ][
NN ||d|~P0a INT || B, ]
Ny =-T'R”, N,=T"!, N3=RT 'R’ —Q, (6)
B =B B Bt —p1 —m1 ", N
By = [Bi2 B2 B2 —p2 —m2]"
and
Qf e qu RE e q T e qn
Q=|ef, —en —an |, R=|e, —en —aa |, T=|¢e}, —en —an |, (®)

T T T
qp; —%11 —M1 qp —%12 —H12 qyy —022 —HU22
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Q)ik = Citr1, RE)ip = Cika, (TE)ik = Cioka, (€)= €ijms  (@ij)m = Gijm- )

The appearance of the time ¢ in Eq. (3) comes solely from the influence of the viscous interface under
quasi-static deformation. pg in Eq. (4) can be called the thermal eigenvalue, while p; (k = 1 — 5) in Eq. (4)
are the Stroh eigenvalues [12]. In addition the heat flux function ® is defined in terms of the heat fluxes 5
and hy (hj = —k;;T ;) as

hi =0p, hy=-0/7, (10)

and the extended stress function vector @ is defined, in terms of the stresses, electric displacements and
magnetic inductions, as follows:

oil=—®j2, op=®;;, (=1-3),
Dy =—=®42, Dy =Py, (1D
By = —®s55, By=Ps,

Due to the fact that the two matrices A and B satisfy the normalized orthogonal relationship [12]

B” AT [A A
[BT ATHB 1‘;]—" (12)
three real Barnett—Lothe tensors S, H and L can be introduced [12]:
S=i2AB” — 1), H=2iAA”T, L= -2iBB’. (13)

3 Thermal Green’s functions

Now let us assume that the anisotropic multiferroic materials 1 and 2 occupy, respectively, the half-planes
x2 >0 and xp < 0. At the initial moment we introduce at the fixed location [)2])22] (X2 > 0) in the upper
half-plane a steady heat source of strength Q¢ and a steady temperature dislocation of discontinuity 7p. In the
following, the superscripts (1) and (2) (or the subscripts 1 and 2) will be used to identify the quantities in the
upper and lower half-planes, respectively. The two anisotropic multiferroic half-planes are bonded together
through a linear viscous interface at x, = 0.

The boundary conditions on the linear viscous interface are given by

Th=T, ®1 =0,, x» =0 and r >0, (14)
S =P, uyy=uw, x»p=0 and =0, (15)
P =¢, uy -~ =APy;, x2=0and? > 0, (16)

where an overdot denotes the derivative with respect to time ¢, and
A =diag[n;' 093" 00], (17)

with 771 and 13 being the viscous coefficients in the x; and x3 directions, respectively. Equation (14) states that
the temperature and normal heat flux are always continuous across the interface (i.e., the interface is always
thermally perfect); while Eq. (15) implies that at the initial moment the interface is elastically, electrically
and magnetically perfect due to the fact that at t+ = 0 the displacements across the interface have no time
to experience any jump due to the dashpot [4,13]. Due to the fact that on the interface x, = 0 we have
0 =21 =22 =23 =24 = 25 = Z, (z = x1 + ixp), we can first replace zx (k = 0, 1 — 5) by the common
complex variable z during the following analysis [4, 14, 15]. After the analysis is finished, we can then change
z back to the corresponding complex variables.

Through analytical continuation [15], the two analytic functions in the upper and lower half-planes char-
acterizing the temperature field can easily be obtained as [10]

4 / 1-T =/
81(z0) = 8p(20) + ——=8&0(z0), 20 = X1 + pox2,

1+T (18)

2
8 (25) = H-—Fg(/) (). 26 =x1+ pgx2,

where I' = y»/y1 is a dimensionless two-phase temperature parameter, and
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80(z0) = Xo1In(zo — 20), (19)

with Xg = —43—‘;] — 4T—7‘;i and Zg = X1 + poX2 the complex thermal potential in a homogeneous plane occupied

by material 1 [10]. The superscript “*” in Eq. (18) is utilized to distinguish the thermal eigenvalue p associated
with the lower half-plane with pg associated with the upper half-plane. The integration of g((zo) leads to

£0(z0) = Xo [(z0 — Z0) In(z0 — Z0) — (20 — Z0)] - (20)

The magneto-electro-elastic boundary conditions on the interface for >0 in Eq. (16) can be expressed in
terms of the two analytic function vectors f;(z, #) and f5(z, ¢) as

Bif, (x1,0) + Bif; (x1, 1) +digf (x1, 1) +dig; (x1,1)
=Bof;y (x1, 1) + Bofy) (x1, 1) + dagy (x1,1) + dagy (x1,£)  x;=0and? > 0, 1)

At Ger, 1) 4+ AT (e, 1) — Aoy (1, 1) — Aot (xy, 1)
= A [Bofy (x1, 1) + Bofy " (x1, 1) + dogh (x1,1) +dogs (x1,1)]  x2=0and? > 0.

(22)
It follows from Eq. (21) that
Bifi(z.1) = Bofa(2.1) + Bifo(2) — Bifo(2) — dig1(2) + d22(2) + d1g0(2) — d120(2),
Bifi(z, 1) = Bofa(z, 1) — Bifo(2) + Bifo(z) + d2g2(2) — dig1(2) — digo(2) + digo(2), (23)
where fy(z) is the analytic function vector in a homogeneous plane occupied by material 1 given by [10]
fo(z) = ((z — Za) In(z — Za))e, (24)

with e = —2iATIm {d; Xo} — 2iB] Im {¢1 X0}, 2o = X1 + po X2 and (x) being a 5 x 5 diagonal matrix in which
each component is varied according to the Greek index « (from 1 to 5).
In view of Eq. (18), Eq. (23) can be further transformed into

_ _ 2 - T—1 .

Bifi(z, 1) = Bofa(z, 1) + Bifo(z) — Bifo(z d d; —d; ) 50(2),
ifi(z, 1) of2(z, 1) + Bifp(z) 10(z)+(1+r 2+F+11 1)g0(z)

Bifi(z, 1) = Bofa(z, ) — Bifo(z) + Bifo(2) + 2+ —l4 4 ) (25)
111 (2, = b2Ih (%, 110(Z 110(Z ]+F2 F—i—]l 1) 80(2).

Inserting the above result into Eq. (22) and applying the Liouville’s theorem will finally lead to the following
set of partial differential equations:

NBafa(z, 1) +iA [Bafo(z, 1) + dagh(2)] = 0, Im{z} <O, (26)
where N is a 5 x 5 Hermitian matrix given by

N=M'"+M;' =L +L;' +iS| L' = S;Ly D,

1 1 1 (27)
M =iAB ! = A—iSpL;!, k=1,2).

As in [4], the 5 x 5 Hermitian matrix N can be more explicitly written as follows:

1Y11 N1 Ni3 Nig Nis
Ni2 Ny N3 Nog Nos

N=N"=| N3 Nz Nsz Nas Nss |. (28)

Nig Nzg N3y Naa Nys

Nis Nzs N3s Ngs  Nss
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Even though Eq. (26) is a little bit different from its isothermal counterpart [4], the decoupling methodology
adopted in [4] is still valid here. We therefore consider the eigenvalue problem [4]
(A —AN)v =0. (29)

It is observed that in total there exist five eigenvalues to the above eigenvalue problem. Furthermore, these
five eigenvalues A; (i = 1 — 5) can be explicitly determined as

a + ,/alz — 4dapay

M= >0,
2a>
N ai —,/alz—4a0a2 0 30)
2 = > 9
2a>

A3z =A4 = A5 =0,

where
. - Ny» Nys Nos
Ni1 | N33 I |-
ay =|N|, a =n—+n—, ao=ﬁ Na4 Nag Nis|, (1)
! 3 VI3 1 Nps Nus Nss

with N ;j denoting the cofactors of the matrix N.
We specially choose the eigenvectors associated with the three zero eigenvalues A3 = A4 = A5 = 0 as

0 0 0
1 —Noy N24Nys — NosNay
vi=|0], vy=10 , V5= _ 0 , (32)
0 Ny N25N24 — NasNop
0 0 N2y Nag — NogNoy

so that the following orthogonal relationships with respect to the Hermitian matrix N and to the real and
diagonal matrix A hold:

U N = Ag = diag[ 81 52 83 84 85,

L, (33)
U AV = diag [)»131 A282 A363 A4d4 )»535] ,
where §; = V,{va (k = 1 —5) are nonzero real values and
\I’:[Vl V2 V3 V4 V5]. (34)

We now introduce the new analytic function vector 2(z, t) =[Q1(z, 1) Q(z, 1) (2, 1) Qu(z, t) (2, )]
such that

V(z, 1) = Bofa(z, 1) + d2ga(2), (35)
where
\Il=[v1 Vo V3 V4 V5]. (36)
Then Eq. (26) can be decoupled into
Qu(z, 1) +imQ(z, 1) =0, k=1-5, Im{z} <0, (37)
whose solutions can be conveniently written into

Qulz, 1) = Qu(z — i, 0), k=1-5, Im{z} <O, (38)
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which implies that once the initial value 2 (z, 0) is known, it is enough to replace z by z — 1At in Q4 (z, 0)
to arrive at the value Q2 (z, t) at any time.

Due to the fact that at the initial moment ¢+ = 0 the interface is perfect (see Eq. (15)), we can obtain the
following expression [10]:

Bofs(z, 0) + daga(z) = 2N7'L; 'Byfo(2) + ( d, — N_lGl) g0(z), Im {z} <O, (39)

1+T

where

(icz -I-l\_/[l_]dz) + T+l

. - 13 . -1
=1t (1c1+M1 d1) —iey — M7 'dy. (40)

In view of Egs. (38) and (39), the solution of 2(z, ¢) can then be easily obtained as

5
Q. 1) =2 (2 —ihat — ) In(z — kgt — 20)) ¥~ 'NT'LT'Bi e
k=1
: R . . 12 -1
+((z = ihat = 20) [Inz = ihat = Z0) = 1)W1 | {—d2 = N7'G1 ) Xo, (41)

where

I = diag[10000], L =diag[01000], I;3=diag[00100],
L = diag[00010], Is=diag[00001]. (42)

Consequently we can obtain the expressions of f1(z, #) and f2(z, t). It is not difficult to write down the full
field solutions for f(z, ¢) and f2(z, t) as follows:

5 5

. = . ~\p—1.T ==l 1y —1p 1 =

fi(z.)=2 Z((za + it — 25) In(z + iyt — zk)>B1 'L, ¥ NT'L B L@
k=1

—_

m=

5
. = . = ~143 = —1 2
+;<(za + it — Z0) [ln(za Fingt — Z0) — 1]>B] VI (1 —

5
(2 = 2) In(zo — Z))e = > (0 = 2 In(zo — 20 B} By L@

k
+{(a —20) [inGz —Z0) — 1]) XoBy! (E;idl —&1), 43)

5
D (@l — idmt — 20 In(zly — iAmt — 2)) By WL U 'NTILT B  Le

M e

fr(z,t) =2
m=1 k=1
> 2
+ (s — ikt — 20) [Ineg — ikt — Zo) — 1]) By WL ! (1 +Fd2—N1G1)X0
k=1
~ ~ 2Xo -1
— {5 — 20 [In(zg = 20) = 1]} § T8 . (44)

where the superscript “*’ is also utilized to distinguish the Stroh eigenvalues associated with the lower half-
plane (z}) from those associated with the upper half-plane (z,). Once f;(z, t) and f(z, ¢) are known, all the
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field components can be obtained by using Eq. (3). For example the tractions, normal electric displacement
and normal magnetic induction are distributed along the interface x, = 0 as

[012 022 032 D2 Bz]T

5
¥ Y <In(x —ikgt —2) > ¥TINTILT B Ire (45)
=4Re k=1 ;
NI Bie + W < Inry — idet = 20) > ¥ (hrdz - INTIGY) Xo

—00 < X1 < 400,t > 0.

4 Conclusions

By means of the generalized version of the Stroh formalism, we have derived the time-dependent thermal
Green’s functions for a steady line heat source and a temperature dislocation located in the upper half-plane
of an anisotropic multiferroic bimaterial with a planar viscous interface. The original boundary value problem
was finally reduced to a set of partial differential equations (26) whose solutions can easily be obtained by using
a decoupling methodology [4]. The full-field solutions for f;(z, ¢) and f(z, 7) in Egs. (43) and (45), together
with the complex thermal potentials gi (zo) and gé (z3) in Eq. (18) are enough to determine the time-dependent
magneto-electro-thermo-elastic responses in the two multiferroic half-planes induced by the line heat source
and the temperature dislocation.

Acknowledgment X.W. acknowledges the support from the United States Army Research Laboratory through the Composite
Materials Technology cooperative agreement with the Center for Composite Materials at the University of Delaware.
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