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Abstract By means of the extended version of the Stroh formalism for uncoupled thermo-anisotropic elasticity,
two-dimensional Green’s function solutions in terms of exponential integrals are derived for the thermoelastic
problem of a line heat source and a temperature dislocation near an imperfect interface between two different
anisotropic half-planes with different thermo-mechanical properties. The imperfect interface investigated here
is modeled as a generalized spring layer with vanishing thickness: (1) the normal heat flux is continuous at
the interface, whereas the temperature field undergoes a discontinuity which is proportional to the normal heat
flux; (2) the tractions are continuous across the interface, whereas the displacements undergo jumps which
are proportional to the interface tractions. This kind of imperfect interface can be termed a thermally weakly
conducting and mechanically compliant interface. In the Appendix we also present the isothermal Green’s
functions in anisotropic bimaterials with an elastically stiff interface to demonstrate the basic ingredients in
the analyses of a stiff interface.

1 Introduction

Up to now various imperfect interface models with vanishing thickness have been proposed to account for
the thin interphase layer with finite thickness between two different phases [1–7]. There are mainly two
types of imperfect interfaces in the context of heat conduction [1–3], namely the weakly conducting interface
(or the well known Kapitza thermal contact resistance model) and the highly conducting interface. At a weakly
conducting interface, the normal heat flux is continuous across the interface but the temperature undergoes a
jump which is proportional to the normal heat flux. On the other hand, at a highly conducting interface, the
temperature is continuous across the interface, and the normal heat flux exhibits a discontinuity proportional to
a surface differential operator of the temperature. Similarly there are also mainly two types of imperfect inter-
face in the context of elasticity [1,4–7], namely the compliant spring-type interface and the stiff interface (or
the generalized Young-Laplace model [1]). At a compliant spring-type interface, the tractions are continuous
across the interface, whereas the displacements undergo jumps which are proportional to the interface tractions.
At a stiff interface, the displacements are continuous across the interface, whereas the tractions undergo jumps
which are proportional to certain surface differential operators of the interface displacements.

In this work, we investigate the two-dimensional temperature and the thermoelastic fields induced by a
steady line heat source and a temperature dislocation interacting with a planar imperfect interface between two
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anisotropic half-planes by means of the extended version of the Stroh formalism for two-dimensional problems
in uncoupled thermoelasticity [8,9]. Recently Kattis et al. [9] discussed the thermal Green’s functions in aniso-
tropic bimaterials with a perfect interface across which the temperature, normal heat flux, displacements and
tractions are all continuous (see Eqs. (67), (72) in [9]). Here we confine our attention to a thermally weakly
conducting and mechanically compliant imperfect interface [1,7]. Full-field solutions of the two analytic func-
tions and the two analytic function vectors characterizing the temperature and the thermoelastic fields in the
two half-planes are derived in terms of the exponential integrals [10]. The obtained thermal Green’s functions
together with the isothermal Green’s functions for a line force and a line dislocation can be further employed to
study cracks interacting with the spring-type imperfect interface under thermo-mechanical loadings [9,11,12].

2 Basic formulations

The basic equations for thermo-anisotropic elasticity, which include the stress-strain laws, the equilibrium
equations, the heat conduction equation and the balance of energy, are [8]

σi j = Ci jkluk,l − βi j T,

σi j, j = 0, (1)

hi = −ki j T, j , hi,i = 0,

where repeated indices mean summation, a comma followed by i (i = 1, 2, 3) stands for the derivative with
respect to the i th spatial coordinate; ui , σi j , hi , and T are, respectively, the displacement, stress, heat flux and
temperature; Ci jkl and βi j are, respectively, the elastic and stress-temperature coefficients; ki j = k ji is the
heat conduction coefficient. For two-dimensional problems in which all quantities depend only on x1 and x2,
the general solutions can be expressed as [8,9]

T = g′(z0) + g′(z0),

� = iγ
[
g′(z0) − g′(z0)

]
,

u = [
u1 u2 u3

]T = Af(z) + Āf(z) + cg(z0) + c̄g(z0),

� = [
�1 �2 �3

]T = Bf(z) + B̄f(z) + dg(z0) + d̄g(z0),

(2)

where the prime denotes differentiation with respect to the complex variable, and

z0 = x1 + p0x2, p0 = −k12 + iγ

k22
, γ =

√
k11k22 − k2

12 > 0,

A = [
a1 a2 a3

]
, B = [

b1 b2 b3
]
,

f(z) = [
f1(z1) f2(z2) f3(z3)

]T
,

zi = x1 + pi x2, Im {pi } > 0, (i = 1–3),

(3)

with
[

N1 N2

N3 NT
1

] [
ai
bi

]
= pi

[
ai
bi

]
, (i = 1–3),

[
N1 N2

N3 NT
1

] [
c
d

]
= p0

[
c
d

]
−

[
0 N2

I NT
1

] [
β1
β2

]
,

(4)

N1 = −T−1RT , N2 = T−1, N3 = RT−1RT − Q, (5)

β1 = [
β11 β21 β31

]T
, β2 = [

β12 β22 β32
]T

, (6)

and

Qik = Ci1k1, Rik = Ci1k2, Tik = Ci2k2. (7)
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p0 in Eq. (3) can be called the thermal eigenvalue, while pk (k = 1…3) in Eq. (3) are the Stroh eigenvalues
[8]. The above general solution is valid provided that p0 �= p1 �= p2 �= p3. In addition the heat flux function
� is defined in terms of the heat fluxes h1 and h2 as

h1 = �,2, h2 = −�,1, (8)

and the stress function vector � is defined, in terms of the stresses, as follows:

σi1 = −�i,2, σi2 = �i,1, (i = 1–3). (9)

Due to the fact that the two matrices A and B satisfy the following normalized orthogonal relationship [8][
BT AT

B̄T ĀT

] [
A Ā
B B̄

]
= I, (10)

then three real Barnett-Lothe tensors S, H and L can be introduced [8]

S = i(2ABT − I), H = 2iAAT , L = −2iBBT . (11)

Furthermore, the two matrices H and L are symmetric, while SH, LS, H−1S, SL−1 are anti-symmetric.

3 Thermal Green’s functions for anisotropic bimaterials with imperfect interface

3.1 Problem description

Two jointed semi-infinite anisotropic thermoelastic solids consist of solid 1 in the upper half-plane (x2 > 0)
and solid 2 in the lower half-plane (x2 < 0). Assume that a line heat source of strength Q0 and a temperature
dislocation of discontinuity T0 are both located at

[
x̂1, x̂2

]
, (x̂2 > 0) in the upper half-plane of the anisotropic

bimaterial. Throughout this paper, the subscripts 1 and 2 (or the superscripts 1, 2) are used to identify the
respective quantities in the upper and lower half-planes, respectively.

In this research, the two half-planes are assumed to be bonded imperfectly through the real axis x2 = 0.
Using the weakly conducting and compliant imperfect interface model described in the Introduction, the
boundary conditions on the imperfect interface x2 = 0 take the following form:

h(1)
2 = h(2)

2 , T1 − T2 = −α0h(2)
2 ,

σ
(1)
12 = σ

(2)
12 , σ

(1)
22 = σ

(2)
22 , σ

(1)
32 = σ

(2)
32 , x2 = 0,

(12)

⎡
⎢⎣

u(1)
1 − u(2)

1

u(1)
2 − u(2)

2

u(1)
3 − u(2)

3

⎤
⎥⎦ = �

⎡
⎢⎣

σ
(2)
12

σ
(2)
22

σ
(2)
32

⎤
⎥⎦ , x2 = 0, (13)

where α0 ≥ 0, and

� =
⎡
⎣

α11 α12 α13
α12 α22 α23
α13 α23 α33

⎤
⎦ (14)

is real, symmetric and positive semidefinite (in the following analysis we treat � as positive definite). In writing
Eq. (13), we have adopted the anisotropic spring-type interface model derived by Benveniste [1, Eq. (6.4)].
When α0 = 0 the interface is thermally perfect, whereas α0 → ∞ stands for adiabatic contact. On the other
hand when � = 0 the interface is mechanically perfect, whereas � → ∞ means that the interface is a
traction-free surface.

In view of Eqs. (8) and (9), the thermo-mechanical boundary conditions in Eqs. (12) and (13) can also be
equivalently expressed in terms of T, �, u and � as

�1 = �2, T1 − T2 = α0�2,1, x2 = 0, (15)

�1 = �2, u1 − u2 = ��2,1, x2 = 0. (16)

Due to the fact that on the interface x2 = 0 we have z0 = z1 = z2 = z3 = z, (z = x1 + ix2), then during
the following analysis we can first replace zk (k = 0, 1, 2, 3) by the common complex variable z [13–15].
After the analysis is finished, we can then change z back to the corresponding complex variables.
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3.2 The temperature field

The thermal boundary conditions on the interface in Eq. (15) can be expressed in terms of g1(z) defined in the
upper half-plane and g2(z) defined in the lower half-plane as

γ1
[
g′+

1 (x1) − ḡ′−
1 (x1)

] = γ2
[
g′−

2 (x1) − ḡ′+
2 (x1)

]
, x2 = 0, (17)

g′+
1 (x1) + ḡ′−

1 (x1) − g′−
2 (x1) − ḡ′+

2 (x1) = iα0γ2
[
g′′−

2 (x1) − ḡ′′+
2 (x1)

]
, x2 = 0. (18)

It follows from Eq. (17) that

g′
1(z) = −�ḡ′

2(z) + g′
0(z) + ḡ′

0(z), (19.1)

ḡ′
1(z) = −�g′

2(z) + g′
0(z) + ḡ′

0(z), (19.2)

where � = γ2/γ1 is a dimensionless two-phase temperature parameter and

g′
0(z) = X0 ln(z − ẑ0), (20)

with X0 = − Q0
4πγ1

− T0
4π

i and ẑ0 = x̂1 + p0 x̂2 is the complex thermal potential in a homogeneous plane
occupied by material 1 [9].

Substituting Eq. (19) into Eq. (18) and eliminating g′+
1 (x1) and ḡ′−

1 (x1), we can obtain the following:

− (1 + �)ḡ′+
2 (x1) + iα0γ2 ḡ′′+

2 (x1)+2ḡ′
0(x1)=(1+�)g′−

2 (x1) + iα0γ2g′′−
2 (x1) − 2g′

0(x1), x2 = 0. (21)

It is apparent that the left hand side of Eq. (21) is analytic in the upper half-plane, while the right hand
side of Eq. (21) is analytic in the lower half-plane. Consequently the continuity condition in Eq. (21) implies
that the left and right sides of Eq. (21) are identically zero in the upper and lower half-planes, respectively. It
follows that

− iλ0g′
2(z) + g′′

2 (z) = −2iλ0 X0

1 + �
ln(z − ẑ0), Im {z} < 0, (22)

where λ0 = 1+�
α0γ2

≥ 0 with its dimension 1/length is the interface thermal contact resistance parameter for the
temperature field.

The solution to Eq. (22) can be easily obtained as

g′′
2 (z) = 2iλ0 X0

1 + �
exp

[
iλ0(z − ẑ0)

]
E1

[
iλ0(z − ẑ0)

]
, (23)

where E1(z) is the exponential integral [10] defined by

E1(z) =
∞∫

z

e−t

t
dt . (24)

Consequently g′′
1 (z) can be obtained by substituting Eq. (23) into Eq. (19.1) as follows:

g′′
1 (z) = −�ḡ′′

2 (z) + g′′
0 (z) + ḡ′′

0 (z)

= 2i�λ0 X̄0

1 + �
exp

[
−iλ0(z − ¯̂z0)

]
E1

[
−iλ0(z − ¯̂z0)

]
+ X0

z − ẑ0
+ X̄0

z − ¯̂z0
.

(25)

In addition it is not difficult to write down the full field expressions as follows:

g′′
1 (z0) = 2i�λ0 X̄0

1 + �
exp

[
−iλ0(z0 − ¯̂z0)

]
E1

[
−iλ0(z0 − ¯̂z0)

]
+ X̄0

z0 − ¯̂z0

+ X0

z0 − ẑ0
, z0 = x1 + p0x2, (26)

g′′
2 (z∗

0) = 2iλ0 X0

1 + �
exp

[
iλ0(z

∗
0 − ẑ0)

]
E1

[
iλ0(z

∗
0 − ẑ0)

]
, z∗

0 = x1 + p∗
0 x2, (27)
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where the superscript ‘*’ is utilized to distinguish the thermal eigenvalue p∗
0 associated with the lower

half-plane with p0 associated with the upper half-plane. Integration of Eqs. (26) and (27) will yield the
following expressions of g′

1(z0) and g′
2(z

∗
0):

g′
1(z0)=−2� X̄0

1 + �
exp

[
−iλ0(z0 − ¯̂z0)

]
E1

[
−iλ0(z0−¯̂z0)

]
+X0 ln(z0 − ẑ0)+ 1 − �

1 + �
X̄0 ln(z0 − ¯̂z0), (28)

g′
2(z

∗
0) = 2X0

1 + �
exp

[
iλ0(z

∗
0 − ẑ0)

]
E1

[
iλ0(z

∗
0 − ẑ0)

] + 2X0

1 + �
ln(z∗

0 − ẑ0). (29)

3.3 The thermoelastic field

The mechanical boundary conditions on the interface in Eq. (16) can be expressed in terms of the two analytic
function vectors f1(z) defined in the upper half-plane and f2(z) defined in the lower half-plane as

B1f+
1 (x1) + B̄1f̄−

1 (x1) + d1g+
1 (x1) + d̄1ḡ−

1 (x1)

= B2f−
2 (x1) + B̄2 f̄+

2 (x1) + d2g−
2 (x1) + d̄2ḡ+

2 (x1), x2 = 0, (30)

A1f+
1 (x1) + Ā1f̄−

1 (x1) + c1g+
1 (x1) + c̄1ḡ−

1 (x1) − A2f−
2 (x1) − Ā2 f̄+

2 (x1) − c2g−
2 (x1) − c̄2 ḡ+

2 (x1)

= �
[
B2f ′−

2 (x1) + B̄2 f̄ ′+
2 (x1) + d2g′−

2 (x1) + d̄2ḡ′+
2 (x1)

]
, x2 = 0. (31)

It follows from Eqs. (30) and (19) that

f1(z) = B−1
1 B̄2 f̄2(z) + f0(z) − B−1

1 B̄1f̄0(z) + B−1
1 (�d1 + d̄2)ḡ2(z) − B−1

1 (d1 + d̄1)ḡ0(z),

f̄1(z) = B̄−1
1 B2f2(z) − B̄−1

1 B1f0(z) + f̄0(z) + B̄−1
1 (�d̄1 + d2)g2(z) − B̄−1

1 (d1 + d̄1)g0(z),
(32)

where f0(z) is the analytic function vector in a homogeneous plane occupied by material 1 given by [9]

f0(z) = 〈(z − ẑα) ln(z − ẑα)〉e, (33)

with e = −2iAT
1 Im {d1 X0} − 2iBT

1 Im {c1 X0} , ẑα = x̂1 + pα x̂2 and <∗> being a 3×3 diagonal matrix in
which each component is varied according to the Greek index α (from 1 to 3).

Substituting Eq. (32) into Eq. (31), we finally obtain the following:

NB2 f̄+
2 (x1) − i�B̄2 f̄ ′+

2 (x1) − 2L−1
1 B̄1f̄0(x1) − i�d̄2 ḡ′

2(x1)

+
[
−i(�c1 + c̄2) + M−1

1 (�d1 + d̄2)
]

ḡ2(x1) +
[
i(c1 + c̄1) − M−1

1 (d1 + d̄1)
]

ḡ0(x1)

= NB2f−
2 (x1) + i�B2f ′−

2 (x1) − 2L−1
1 B1f0(x1) + i�d2g′

2(x1)

+
[
i(�c̄1 + c2) + M̄−1

1 (�d̄1 + d2)
]

g2(x1) −
[
i(c1 + c̄1) + M̄−1

1 (d1 + d̄1)
]

g0(x1), x2 = 0,

(34)

where M−1
k (k = 1, 2) and N are 3 × 3 positive definite Hermitian matrices given by [8]

N = M̄−1
1 + M−1

2 = L−1
1 + L−1

2 + i(S1L−1
1 − S2L−1

2 ),

M−1
k = iAkB−1

k = (I − iSk)L
−1
k , (k = 1, 2).

(35)

It is apparent that the left hand side of Eq. (34) is analytic in the upper half-plane, while the right hand
side of Eq. (34) is analytic in the lower half-plane. Consequently the continuity condition in Eq. (34) implies
that the left and right sides of Eq. (34) are identically zero in the upper and lower half-planes, respectively. It
follows that

NB2f2(z) + i�B2f ′
2(z) = 2L−1

1 B1f0(z) − i�d2g′
2(z)

−
[
i(�c̄1 + c2) + M̄−1

1 (�d̄1 + d2)
]

g2(z) +
[
i(c1 + c̄1) + M̄−1

1 (d1 + d̄1)
]

g0(z), Im {z} < 0, (36)
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or equivalently and more explicitly

NB2f ′
2(z) + i�B2f ′′

2 (z) = 2L−1
1 B1〈ln(z − ẑα) + 1〉e − X0 ln(z − ẑ0)G1

− 2X0

1 + �
exp

[
iλ0(z − ẑ0)

]
E1

[
iλ0(z − ẑ0)

] [
i(�c̄1 + c2) + M̄−1

1 (�d̄1 + d2) − λ0�d2

]
,

(37)

where the vector G1 is defined as

G1 = 2

1 + �
(ic2 + M̄−1

1 d2) + � − 1

1 + �
(ic̄1 + M̄−1

1 d̄1) − ic1 − M̄−1
1 d1. (38)

If we introduce a new analytic function vector h(z) such that

f ′
2(z) = h(z) + 2B−1

2 N−1L−1
1 B1〈ln(z − ẑα) + 1〉e − X0 ln(z − ẑ0)B

−1
2 N−1G1

− 2X0

1+�
exp

[
iλ0(z − ẑ0)

]
E1

[
iλ0(z − ẑ0)

]
B−1

2 (N − λ0�)−1
[
i(�c̄1+c2)+M̄−1

1 (�d̄1+d2)−λ0�d2

]
,

(39)

then Eq. (37) can be expressed in terms of the new function vector h(z) as

NB2h(z) + i�B2h′(z) = −2i�N−1L−1
1 B1

〈
1

z − ẑα

〉
e − iX0G

z − ẑ0
, (40)

where the vector G is defined by

G = 2

1 + �
�(N − λ0�)−1

[
i(�c̄1 + c2) + M̄−1

1 (�d̄1 + d2) − λ0�d2

]
− �N−1G1. (41)

It is observed that Eq. (40) only contains known first-order poles on its right-hand side. In order to solve
the coupled set of differential equations in Eq. (40), we first consider the eigenvalue problem

(N − λ�)v = 0. (42)

It is observed that Eq. (42) has three real and non-negative eigenvalues for λ (see Appendix A for a
strict proof). Let λi (i = 1–3) be the three distinct roots and vi the associated eigenvectors, then the following
orthogonal relationship can be easily proved (also see Appendix A for a strict proof):

�̄
T

N� = �1�2, �̄
T
�� = �2, (43)

where �2 is a 3 × 3 real diagonal matrix, and

� = [
v1 v2 v3

]
, (44)

�1 = diag
[
λ1 λ2 λ3

]
. (45)

Here λi (i = 1–3) with their unit 1/length can be considered as three interface rigidities for the elastic field
(our definition of the dimensional interface rigidity is a little bit different than the dimensionless one in [6]).
Note that in writing Eq. (39) we have assumed that the interface thermal contact resistance parameter for the
thermal field is not equal to any one of the three interface rigidities for the elastic field, i.e., λ0 �= λ1 �= λ2 �= λ3.
A discussion on the degenerate case in which the interface thermal contact resistance parameter for the thermal
field is equal to one of the three interface rigidities for the elastic field is presented in the next section.

Next we introduce an analytic function vector �(z) such that

B2h(z) = ��(z). (46)

Employing the orthogonal relationship in Eq. (43), then Eq. (40) can be decoupled into

− i�1�(z) + �′(z) = −2�−1
2 �̄

T
�N−1L−1

1 B1

〈
1

z − ẑα

〉
e − X0�

−1
2 �̄

T
G

z − ẑ0
, (47)
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whose solution can be easily obtained as

�(z) = 2
3∑

k=1

〈
exp

[
iλα(z − ẑk)

]
E1

[
iλα(z − ẑk)

]〉
�−1

2 �̄
T
�N−1L−1

1 B1Ike

+ 〈
exp

[
iλα(z − ẑ0)

]
E1

[
iλα(z − ẑ0)

]〉
X0�

−1
2 �̄

T
G, (48)

where

I1 = diag
[

1 0 0
]
, I2 = diag

[
0 1 0

]
, I3 = diag

[
0 0 1

]
. (49)

In view of Eqs. (46) and (48), the function vector h(z) can then be obtained as

h(z) = 2B−1
2 �

3∑
k=1

〈
exp

[
iλα(z − ẑk)

]
E1

[
iλα(z − ẑk)

]〉
�−1

2 �̄
T
�N−1L−1

1 B1Ike

+X0B−1
2 �

〈
exp

[
iλα(z − ẑ0)

]
E1

[
iλα(z − ẑ0)

]〉
�−1

2 �̄
T

G. (50)

Consequently in view of Eqs. (32) and (39), we can obtain the expressions of f ′
2(z) and f ′

1(z) as

f ′
2(z) = 2B−1

2 N−1L−1
1 B1〈ln(z − ẑα) + 1〉e − ln(z − ẑ0)X0B−1

2 N−1G1

+ 2B−1
2 �

3∑
k=1

〈
exp

[
iλα(z − ẑk)

]
E1

[
iλα(z − ẑk)

]〉
�−1

2 �̄
T
�N−1L−1

1 B1Ike

+ X0B−1
2 �

〈
exp

[
iλα(z − ẑ0)

]
E1

[
iλα(z − ẑ0)

]〉
�−1

2 �̄
T

G

− X0 exp
[
iλ0(z − ẑ0)

]
E1

[
iλ0(z − ẑ0)

]
B−1

2 (�−1G + N−1G1), (51)

f ′
1(z) = 〈ln(z − ẑα) + 1〉e+B−1

1 N̄−1(M̄−1
1 −M̄−1

2 )B̄1〈ln(z − ¯̂zα) + 1〉ē − ln(z − ¯̂z0)X̄0B−1
1 N̄−1Ḡ2

+ 2B−1
1 �̄

3∑
k=1

〈
exp

[
−iλα(z − ¯̂zk)

]
E1

[
−iλα(z − ¯̂zk)

]〉
�−1

2 �T �N̄
−1

L−1
1 B̄1Ik ē

+ X̄0B−1
1 �̄

〈
exp

[
−iλα(z − ¯̂z0)

]
E1

[
−iλα(z − ¯̂z0)

]〉
�−1

2 �T Ḡ

− exp
[
−iλ0(z − ¯̂z0)

]
E1

[
−iλ0(z − ¯̂z0)

]
X̄0B−1

1 (�−1Ḡ + N̄−1Ḡ2 − d1 − d̄1), (52)

where the vector G2 is defined as

G2 = 2

1 + �
(ic2 − M−1

2 d2) + � − 1

1 + �
(ic̄1 − M−1

2 d̄1) − ic1 + M−1
2 d1. (53)

It is not difficult to write down the full field expressions of f ′
1(z) and f ′

2(z) as follows:

f ′
1(z) = 〈ln(zα − ẑα) + 1〉e +

3∑
k=1

〈ln(zα − ¯̂zk) + 1〉B−1
1 N̄−1(M̄−1

1 − M̄−1
2 )B̄1Ik ē

−〈ln(zα − ¯̂z0)〉X̄0B−1
1 N̄−1Ḡ2

+ 2
3∑

m=1

3∑
k=1

〈
exp

[
−iλm(zα − ¯̂zk)

]
E1

[
−iλm(zα − ¯̂zk)

]〉
B−1

1 �̄Im�−1
2 �T �N̄

−1
L−1

1 B̄1Ik ē

+
3∑

k=1

〈
exp

[
−iλk(zα − ¯̂z0)

]
E1

[
−iλk(zα − ¯̂z0)

]〉
X̄0B−1

1 �̄Ik�
−1
2 �T Ḡ

−
〈
exp

[
−iλ0(zα − ¯̂z0)

]
E1

[
−iλ0(zα − ¯̂z0)

]〉
X̄0B−1

1 (�−1Ḡ + N̄−1Ḡ2 − d1 − d̄1), (54)
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f ′
2(z) = 2

3∑
k=1

〈
ln(z∗

α − ẑk) + 1
〉
B−1

2 N−1L−1
1 B1Ike − 〈ln(z∗

α − ẑ0)〉X0B−1
2 N−1G1

+ 2
3∑

m=1

3∑
k=1

〈
exp

[
iλm(z∗

α − ẑk)
]

E1
[
iλm(z∗

α − ẑk)
]〉

B−1
2 �Im�−1

2 �̄
T
�N−1L−1

1 B1Ike

+
3∑

k=1

〈
exp

[
iλk(z

∗
α − ẑ0)

]
E1

[
iλk(z

∗
α − ẑ0)

]〉
X0B−1

2 �Ik�
−1
2 �̄

T
G

− 〈
exp

[
iλ0(z

∗
α − ẑ0)

]
E1

[
iλ0(z

∗
α − ẑ0)

]〉
X0B−1

2 (�−1G + N−1G1), (55)

where once again the superscript ‘*’ is utilized to distinguish the Stroh eigenvalues associated with the lower
half-plane (z∗

α) from those associated with the upper half-plane (zα).
Now that f ′

1(z) and f ′
2(z) in Eqs. (54) and (55) together with g′

1(z0) and g′
2(z

∗
0) in Eqs. (28) and (29) can

be utilized to uniquely determine the thermal stress field. It is observed that the first term in Eq. (50) is the
logarithmic singular term in f ′

1(z) induced by the heat source and thermal dislocation. Consequently the stresses
and strains will exhibit logarithmic singular behavior at the location

[
x̂1, x̂2

]
(x̂2 > 0) of the heat source and

the thermal dislocation.

4 Special and degenerate cases

In this section two special cases for the interface and the degenerate case in which the interface thermal contact
resistance parameter for the thermal field is equal to one of the three interface rigidities for the elastic field
will be discussed to illustrate and also to verify the obtained solutions.

4.1 A thermally imperfect and mechanically perfect interface

When the interface is mechanically perfect, � = 0. In this case Eq. (36) reduces to

B2f ′
2(z) = 2N−1L−1

1 B1f ′
0(z) − N−1

[
i(�c̄1 + c2) + M̄−1

1 (�d̄1 + d2)
]

g′
2(z)

+ N−1
[
i(c1 + c̄1) + M̄−1

1 (d1 + d̄1)
]

g′
0(z), (56)

and consequently it follows from Eq. (32) that

B1f ′
1(z) = B1f ′

0(z) + N̄−1(M̄−1
1 − M̄−1

2 )B̄1f̄ ′
0(z)

+ N̄−1
[
i(�c1 + c̄2) + M̄−1

2 (�d1 + d̄2)
]

ḡ′
2(z) − N̄−1

[
i(c1 + c̄1) + M̄−1

2 (d1 + d̄1)
]

ḡ′
0(z).

(57)

Furthermore when the interface is also thermally perfect (i.e., the interface is perfect), we have α0 = 0 (or
equivalently λ0 → ∞). Then it follows from Eq. (29) that

g′
2(z) = 2

1 + �
g′

0(z). (58)

As a result Eqs. (56) and (57) reduce to

B2f ′
2(z) = 2N−1L−1

1 B1f ′
0(z) − N−1G1g′

0(z) (59)

and

B1f ′
1(z) = B1f ′

0(z) + N̄−1(M̄−1
1 − M̄−1

2 )B̄1f̄ ′
0(z) − N̄−1Ḡ2 ḡ′

0(z). (60)

It is observed that Eqs. (59) and (60) are in agreement with those derived by Kattis et al. [9] (notice that
in the last term in Eq. (91) of [9], GR, which corresponds to G2 in our definition, should read ḠR). In fact
Eqs. (56) and (57) can also be directly obtained from Eqs. (51) and (52) by letting λ1, λ2, λ3 → ∞ for a
mechanically perfect interface, and Eqs. (59) and (60) can also be directly obtained from Eqs. (51) and (52)
by letting λ0, λ1, λ2, λ3 → ∞ for a thermally and mechanically perfect interface.
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4.2 A thermally perfect and mechanically imperfect interface

When the interface is thermally perfect, we have α0 = 0 (or equivalently λ0 → ∞). In this case Eqs. (28) and
(29) reduce to

g′
1(z0) = g′

0(z0) + 1 − �

1 + �
ḡ′

0(z0), (61)

g′
2(z

∗
0) = 2

1 + �
g′

0(z
∗
0), (62)

which are just those derived in [9].
As a result Eq. (36) will reduce to

NB2f2(z) + i�B2f ′
2(z) = 2L−1

1 B1f0(z) − 2i�d2

1 + �
g′

0(z) − G1g0(z), Im {z} < 0, (63)

or equivalently and more explicitly

NB2f ′
2(z) + i�B2f ′′

2 (z) = 2L−1
1 B1e + 2L−1

1 B1
〈
ln(z − ẑα)

〉
e − ln(z − ẑ0)X0G1 − 2iX0�d2

1 + �

1

z − ẑ0
,

Im {z} < 0, (64)

whose solution can be similarly given by

B2f ′
2(z) = 2N−1L−1

1 B1
〈
ln(z − ẑα) + 1

〉
e − X0 ln(z − ẑ0)N−1G1

+ 2


3∑
k=1

〈
exp

[
iλα(z − ẑk)

]
E1

[
iλα(z − ẑk)

]〉
�−1

2 �̄
T
�N−1L−1

1 B1Ike

+ X0�
〈
exp

[
iλα(z − ẑ0)

]
E1

[
iλα(z − ẑ0)

]〉
�−1

2 �̄
T
�

(
2d2

1 + �
− N−1G1

)
, (65)

and consequently we obtain

B1f ′
1(z) = B1

〈
ln(z − ẑα) + 1

〉
e + N̄−1(M̄−1

1 − M̄−1
2 )B̄1

〈
ln(z − ¯̂zα) + 1

〉
ē − ln(z − ¯̂z0)X̄0N̄−1Ḡ2

+ 2�̄

3∑
k=1

〈
exp

[
−iλα(z − ¯̂zk)

]
E1

[
−iλα(z − ¯̂zk)

]〉
�−1

2 �T �N̄
−1

L−1
1 B̄1Ik ē

+ X̄0�̄
〈
exp

[
−iλα(z − ¯̂z0)

]
E1

[
−iλα(z − ¯̂z0)

]〉
�−1

2 �T �

(
2d̄2

1 + �
− N̄−1Ḡ1

)
. (66)

Equations (65) and (66) can also be directly obtained from Eqs. (51) and (52) by letting λ0 → ∞ for a
thermally perfect interface. It is also observed from the above discussions in Sects. 4.1 and 4.2 that our solution
procedure is consistent in itself and that the derived solutions Eqs. (51) and (52) can be reduced to known
ones [9].

4.3 The degenerate case: λ0 = λ1 �= λ2 �= λ3

Equations (51) and (52) can be equivalently written into the following forms:

f ′
2(z) = 2B−1

2 N−1L−1
1 B1〈ln(z − ẑα) + 1〉e − ln(z − ẑ0)X0B−1

2 N−1G1

+ 2B−1
2 �

3∑
k=1

〈
exp

[
iλα(z − ẑk)

]
E1

[
iλα(z − ẑk)

]〉
�−1

2 �̄
T
�N−1L−1

1 B1Ike

+ 2X0

1 + �
B−1

2 �〈Yα(z)〉�−1
2 �̄

T
[
i(�c̄1 + c2) + M̄−1

1 (�d̄1 + d2) − λ0�d2

]

− X0B−1
2 �

〈
exp

[
iλα(z − ẑ0)

]
E1

[
iλα(z − ẑ0)

]〉
�−1

2 �̄
T
�N−1G1, (67)
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f ′
1(z)= 〈

ln(z − ẑα) + 1
〉
e + B−1

1 N̄−1(M̄−1
1 − M̄−1

2 )B̄1

〈
ln(z − ¯̂zα)+1

〉
ē−ln(z − ¯̂z0)X̄0B−1

1 N̄−1Ḡ2

+ 2B−1
1 �̄

3∑
k=1

〈
exp

[
−iλα(z − ¯̂zk)

]
E1

[
−iλα(z − ¯̂zk)

]〉
�−1

2 �T �N̄
−1

L−1
1 B̄1Ik ē

+ 2X̄0

1 + �
B−1

1 �̄
〈
Ȳα(z)

〉
�−1

2 �T
[
−i(�c1 + c̄2) + M−1

1 (�d1 + d̄2) − λ0�d̄2

]

− X̄0B−1
1 �̄

〈
exp

[
−iλα(z − ¯̂z0)

]
E1

[
−iλα(z − ¯̂z0)

]〉
�−1

2 �T �N̄
−1

Ḡ1

+ 2X̄0

1 + �
exp

[
−iλ0(z − ¯̂z0)

]
E1

[
−iλ0(z − ¯̂z0)

]
B−1

1 (�d1 + d̄2), (68)

where the analytic functions Yi (z), (i=1–3) are defined as

Y1(z) = exp
[
iλ1(z − ẑ0)

]
E1

[
iλ1(z − ẑ0)

] − exp
[
iλ0(z − ẑ0)

]
E1

[
iλ0(z − ẑ0)

]

λ1 − λ0
, (69.1)

Y2(z) = exp
[
iλ2(z − ẑ0)

]
E1

[
iλ2(z − ẑ0)

] − exp
[
iλ0(z − ẑ0)

]
E1

[
iλ0(z − ẑ0)

]

λ2 − λ0
, (69.2)

Y3(z) = exp
[
iλ3(z − ẑ0)

]
E1

[
iλ3(z − ẑ0)

] − exp
[
iλ0(z − ẑ0)

]
E1

[
iλ0(z − ẑ0)

]

λ3 − λ0
. (69.3)

When λ0 = λ1 �= λ2 �= λ3, the right hand side of Eq. (69.1) will become a 0/0 type. Applying the
L’Hôpital’s rule to the right hand side of Eq. (69.1) when λ1 → λ0 yields

Y1(z) = iλ0(z − ẑ0) exp
[
iλ0(z − ẑ0)

]
E1

[
iλ0(z − ẑ0)

] − 1

λ0
, (70)

which approaches zero as z → ∞. The other degenerate cases λ0 = λ2 �= λ1 �= λ3 and λ0 = λ3 �= λ1 �= λ2
can be similarly discussed.

5 Conclusions

We have derived the two-dimensional thermal Green’s functions for a steady line heat source and a temperature
dislocation located in the upper half-plane of an anisotropic bimaterial with a weakly conducting and compliant
planar imperfect interface. The full-field solutions of f ′

1(z) and f ′
2(z) in Eqs. (54) and (55) are expressed in terms

of the exponential integral E1(z). The solutions for the non-degenerate case in which λ0 �= λ1 �= λ2 �= λ3 and
for the degenerate case in which λ0 = λ1 �= λ2 �= λ3 were all derived. Two special cases for the interface; (1) a
thermally imperfect and mechanically perfect interface, and (2) a thermally perfect and mechanically imperfect
interface, were also discussed to illustrate and also to verify the obtained solutions. The corresponding thermal
Green’s functions for an anisotropic bimaterial with a highly conducting and compliant (or even stiff) interface
can be derived similarly. In Appendix B we present the isothermal Green’s functions in anisotropic bimaterials
with an elastically stiff interface to demonstrate the basic ingredients in the analyses of a stiff interface.

Acknowledgments The authors are greatly indebted to a referee for his/her very helpful comments and suggestions. This work
is supported by the Army Research Laboratory through the Composite Materials Research Program.

Appendix A: Proof of the properties of the eigenvalue problem Eq. (42)

We consider the eigenvalue problem

Nv = λ�v. (A.1)

Premultiplication of Eq. (A.1) by v̄T yields

v̄T Nv = λv̄T �v, (A.2)
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or equivalently

1

λ
= v̄T �v

v̄T Nv
, (A.3)

which indicates that the eigenvalue λ must be real and non-negative because v̄T Nv > 0 (N is positive definite)
and v̄T �v ≥ 0 (� is positive semidefinite).

Let λ1 and λ2 be the two distinct eigenvalues of Eq. (A.1) and v1 and v2 be the associated eigenvectors of
Eq. (A.1), we then have

Nv1 = λ1�v1. (A.4)

Pre-multiplying Eq. (A.4) by v̄T
2 , we obtain

v̄T
2 Nv1 = λ1v̄T

2 �v1. (A.5)

Meanwhile the following relation is also valid

Nv2 = λ2�v2. (A.6)

Taking the conjugate transpose of Eq. (A.6), and then post-multiplying both sides by v1, we finally obtain

v̄T
2 Nv1 = λ2v̄T

2 �v1. (A.7)

Subtracting Eq. (A.5) from Eq. (A.7) we have

(λ1 − λ2)v̄T
2 �v1 = 0. (A.8)

Due to the fact that λ1 �= λ2, then the following orthogonal relation with respect to the real and symmetric
matrix � holds:

v̄T
2 �v1 = 0. (A.9)

In view of Eqs. (A.5) and (A.9), the following orthogonal relation with respect to the Hermitian matrix N
is also established:

v̄T
2 Nv1 = 0. (A.10)

Appendix B: Isothermal Green’s functions in an anisotropic bimaterial with a stiff interface

In order to illustrate the discussion of the stiff interface more clearly, we will ignore the thermal effect in the
following discussions. More specifically we consider a line force f̂ and a line dislocation of Burgers vector b̂
located at

[
x̂1, x̂2

]
, (x̂2 > 0) in the upper half-plane of the anisotropic bimaterial. We will first develop the

boundary conditions on the stiff interface.
The constitutive equations for an interphase of constant thickness h between the upper semi-infinite aniso-

tropic solid 1 and the lower semi-infinite anisotropic solid 2 can be equivalently written into

σ 1 = Q0u,1 + R0u,2, (B.1.1)

σ 2 = RT
0 u,1 + T0u,2, (B.1.2)

where σ 1 = [
σ11 σ21 σ31

]T
, σ 2 = [

σ12 σ22 σ32
]T

, and the subscript 0 is used to identify the quantities
associated with the interphase.

Taking the derivative of the two sides of Eq. (B.1.1) with respect to x1 and making use of the equilibrium
equations σ1,1 + σ2,2 = 0, we obtain

σ 2,2 = −Q0u,11 − R0u,12. (B.2)
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If we assume that the elastic constants (Ci jkl)0 of the interphase are of the same order of magnitude and
that (Ci jkl)0 >> (Ci jkl)1, (Ci jkl)2 (the stiff interphase) [1], then we can obtain from Eq. (B.1.2) the following
connection

u,2 = −T−1
0 RT

0 u,1. (B.3)

Substitution of the above into Eq. (B.2) yields

σ 2,2 = −(Q0 − R0T−1
0 RT

0 )u,11, (B.4)

When the interphase is also very thin, then the above can be approximated by

(σ 2)1 − (σ 2)2 = −Eu,11, x2 = 0, (B.5)

where E is a positive semi-definite symmetric matrix given by

E = h(Q0 − R0T−1
0 RT

0 ). (B.6)

It is easily checked that Eq. (B.5) is in agreement with Eq. (6.5) in [1]. According to Ting [8], we can
further write E into the form

E =
⎡
⎣

E11 0 E13
0 0 0
E13 0 E33

⎤
⎦ , (B.7)

where E11 > 0, E33 > 0, E11 E33 − E2
13 > 0.

The boundary conditions in Eq. (B.5) can also be written in terms of u and � as

u1 = u2, �1 − �2 = −Eu2,1, x2 = 0, (B.8)

or in terms of the two analytic function vectors f1(z) and f2(z) as

A1f+
1 (x1) + Ā1f̄−

1 (x1) = A2f−
2 (x1) + Ā2 f̄+

2 (x1), x2 = 0, (B.9)

B1f+
1 (x1) + B̄1f̄−

1 (x1) − B2f−
2 (x1) − B̄2 f̄+

2 (x1) = −E
[
A2f ′−

2 (x1) + Ā2 f̄ ′+
2 (x1)

]
, x2 = 0. (B.10)

It follows from Eq. (B.9) that

f1(z) = A−1
1 Ā2 f̄2(z) + f0(z) − A−1

1 Ā1f̄0(z), (B.11.1)

f̄1(z) = Ā−1
1 A2f2(z) − Ā−1

1 A1f0(z) + f̄0(z), (B.11.2)

where f0(z) is the analytic function vector for a line force f̂ and a line dislocation of Burgers vector b̂ in a
homogeneous plane occupied by material 1:

f0(z) = 1

2π i

〈
ln(z − ẑα)

〉
(AT

1 f̂ + BT
1 b̂). (B.12)

Substituting Eq. (B.11) into Eq. (B.10) and applying the Liouville’s theorem, we can finally arrive at the
following set of differential equations

�A2f2(z) + iEA2f ′
2(z) = 2H−1

1 A1f0(z), Im {z} < 0, (B.13)

where � is a positive definite Hermitian matrix defined by [8]

� =
⎡
⎣

�11 �12 �13
�̄12 �22 �23
�̄13 �̄23 �33

⎤
⎦ = M̄1 + M2, (B.14)

Mk = −iBkA−1
k = H−1

k (I + iSk), (k = 1, 2). (B.15)

In order to solve Eq. (B.13), we consider the eigenvalue problem

(E − λ�)v = 0. (B.16)



Thermal Green’s functions in plane anisotropic bimaterials 127

The three real eigenvalues λi (i = 1–3) to Eq. (B.16) can be explicitly determined as

λ1 =
a1 +

√
a2

1 − 4a0a2

2a2
> 0,

λ2 =
a1 −

√
a2

1 − 4a0a2

2a2
> 0, (B.17)

λ3 = 0,

where

a2 = |�| , a1 = E11
�

�11 + E33
�

�33 + 2E13Re
{

�

�13

}
, a0 = �22

�

E22, (B.18)

with
�

�i j and
�

Ei j denoting the cofactors of the matrices � and E, respectively. In addition the following
orthogonal relationship can be easily proved:

�̄
T

E� = �1�2, �̄
T
�� = �2, (B.19)

where �2 is a 3 × 3 positive real diagonal matrix and

� = [
v1 v2 v3

]
, (B.20)

�1 = diag
[
λ1 λ2 0

]
. (B.21)

Next we introduce an analytic function vector �(z) such that

A2f2(z) = ��(z). (B.22)

Employing the orthogonal relationship in Eq. (B.19), then Eq. (B.13) can be decoupled into

�(z) + i�1�
′(z) = 2�−1

2 �̄
T

H−1
1 A1f0(z), Im {z} < 0, (B.23)

whose solution can be easily obtained as

�′(z) = 1

π

3∑
k=1

〈
Fα(z, ẑk)

〉
�−1

2 �̄
T

H−1
1 A1Ik(AT

1 f̂ + BT
1 b̂), (B.24)

where

F1(z, ẑk) = λ−1
1 exp

[
iλ−1

1 (z − ẑk)
]

E1

[
iλ−1

1 (z − ẑk)
]
,

F2(z, ẑk) = λ−1
2 exp

[
iλ−1

2 (z − ẑk)
]

E1

[
iλ−1

2 (z − ẑk)
]
, (B.25)

F3(z, ẑk) = 1

i(z − ẑk)
.

Consequently it follows from Eqs. (B.22), (B.24) and (B.11.1) that

f ′
2(z) = 1

π
A−1

2 �

3∑
k=1

〈
Fα(z, ẑk)

〉
�−1

2 �̄
T

H−1
1 A1Ik(AT

1 f̂ + BT
1 b̂), (B.26)

f ′
1(z) = 1

π
A−1

1 �̄

3∑
k=1

〈
F̄α(z, ẑk)

〉
�−1

2 �T H−1
1 Ā1Ik(ĀT

1 f̂ + B̄T
1 b̂)

+ 1

2π i

〈
1

z − ẑα

〉
(AT

1 f̂ + BT
1 b̂) + 1

2π i
A−1

1 Ā1

〈
1

z − ¯̂zα

〉
(ĀT

1 f̂ + B̄T
1 b̂). (B.27)
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