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a b s t r a c t

General solutions are derived to the two-dimensional Eshelby’s problem of an inclusion of arbitrary
shape embedded in one of two imperfectly bonded anisotropic piezoelectric half-planes. The inclusion
undergoes uniform eigenstrains and eigenelectric fields. In this work four different kinds of imperfect
interface models with vanishing thickness are considered: (i) a compliant and weakly conducting inter-
face, (ii) a stiff and highly conducting interface, (iii) a compliant and highly conducting interface, and (iv)
a stiff and weakly conducting interface. Furthermore the obtained general solutions are illustrated in
detail through an example of an elliptical inclusion near the imperfect interface. It is observed that the
full-field expressions of the three analytic function vectors characterizing the electroelastic field in the
two piezoelectric half-planes including the elliptical inclusion can be elegantly and concisely presented
through the introduction of an integral function. We also present the tractions and normal electric dis-
placement along a compliant and weakly conducting imperfect interface induced by the elliptical inclu-
sion. It is found that the imperfection of the interface has no influence on the leading term in the far-field
asymptotic expansion of the tractions and normal electric displacement along the compliant and weakly
conducting interface induced by an arbitrary shaped inclusion. The far-field expansions of the analytic
function vectors in the two imperfectly bonded half-planes for an arbitrary shaped inclusion are also
derived. Some new identities and structures of the matrices Ni and Nð�1Þ

i for anisotropic piezoelectric
materials are obtained.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Eshelby’s problem of an inclusion with eigenstrains (or
transformation strains) has been a topic in micromechanics for
more than fifty years (Eshelby, 1957; Mura, 1987). When address-
ing the three-dimensional Eshelby’s problem, the Green’s function
approach is prevalent (Eshelby, 1957; Mura, 1987; Nozaki and
Taya, 2001). However when discussing two-dimensional (2D)
Eshelby’s problem in isotropic or anisotropic solids, the complex
variable method is more effective (see for example Jaswon and
Bhargava, 1961; Bhargava and Radhakrishna, 1964; Willis, 1964;
Yang and Chou, 1976, 1977; Ru, 2000, 2001; Pan, 2004; Jiang and
Pan, 2004; Wang et al., 2007). It has been found in recent years that
studies on Eshelby’s problem are essential in understanding the
behaviors of quantum dots and quantum wires in nanocomposite
solids (see recent reviews by Ovid’ko and Sheinerman, 2005 and
Malanganti and Sharma, 2005).

When addressing the inclusion problems in a two-phase infinite
medium (say with a flat interface), it is found that the perfect inter-

face assumption was adopted in the majority of the previous studies
(see for example, Zhang and Chou, 1985. Yu and Sanday, 1991; Jiang
and Pan, 2004). In a recent study, Wang et al. (2007) considered a 2D
thermal inclusion of arbitrary shape embedded in one of two imper-
fectly bonded isotropic elastic half-planes by using Muskhelishvili’s
complex variable method (Muskhelishvili, 1963). The imperfect
interface in that study was simulated by using the linear spring layer
with vanishing thickness. However, the corresponding Eshelby’s
problem for two imperfectly bonded dissimilar anisotropic piezo-
electric half-planes still remains a challenging problem.

It is of interest to point out also that so far various interface mod-
els have been proposed to simulate an interphase layer with finite
thickness (Needleman, 1990; Benveniste and Miloh, 2001; Benven-
iste and Baum, 2007; Bertoldi et al., 2007a,b; Benveniste, 2006,
2009), to account for damage (for example, micro-cracks and mi-
cro-voids) occurring on the interface (Fan and Sze, 2001), and to
study their influence on the effective properties of the composites
(Lu and Lin, 2003; Wang and Pan, 2007) and on the interfacial wave
propagation (Melkumyan and Mai, 2008). Nondistructive evalua-
tion methods were also proposed to detect and characterize the
interface imperfection (Nagy, 1992; Hu and Nagy, 1998). It was
reported that the effect of interfacial stress, defects, impurities,

0020-7683/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2009.09.021

* Corresponding author. Tel.: +1 302 831 0378.
E-mail address: xuwang_sun@hotmail.com (X. Wang).

International Journal of Solids and Structures 47 (2010) 148–160

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r



Author's personal copy

and electrodes on the variation of polarization in ferroelectric thin
films could be significant (Lu and Cao, 2002). However, as expected
that if the piezoelectricity of an interphase layer is taken into consid-
eration (Benveniste, 2009), the scenarios of the imperfect interface
will become more complex in view of the fact that now the interface
has imperfection in both elasticity and dielectricity.

In this work we consider the 2D problem of an Eshelby inclu-
sion of arbitrary shape with uniform eigenstrains and eigenelectric
fields embedded in one of two bonded anisotropic piezoelectric
half-planes by means of the Stroh formalism (Suo et al., 1992;
Suo, 1993; Wang, 1994; Chung and Ting, 1996; Ru, 2000, 2001).
In extending previous works (Ru, 2001; Pan, 2004; Jiang and Pan,
2004; Wang et al., 2008), the two anisotropic piezoelectric half-
planes are now bonded through a thin anisotropic piezoelectric
layer. It is found that closed-form solutions can be derived when
the middle piezoelectric layer is replaced by an imperfect interface
with vanishing thickness. The imperfect interface models dis-
cussed in this work can be classified into the following four differ-
ent kinds:

(i) Compliant and weakly conducting interface. This imperfect
interface is based on the assumption that tractions and
normal electric displacement are continuous across the inter-
face, whereas the elastic displacements and electric potential
undergo jumps on the interface which are proportional to the
interface tractions and normal electric displacement.

(ii) Stiff and highly conducting interface. This imperfect inter-
face is based on the assumption that displacements and
electric potential are continuous across the interface,
whereas tractions and normal electric displacement undergo
jumps on the interface which are proportional to certain sur-
face differential operators of the interface displacements and
electric potential.

(iii) Compliant and highly conducting interface. This imperfect
interface is based on the assumption that tractions and tan-
gential electric field are continuous across the interface,
whereas the elastic displacements and charge potential
undergo jumps on the interface which are proportional to
the interface tractions and tangential electric field.

(iv) Stiff and weakly conducting interface. This imperfect interface
is based on the assumption that displacements and charge
potential are continuous across the interface, whereas trac-
tions and tangential electric field undergo jumps on the inter-
face which are proportional to certain surface differential
operators of the interface displacements and charge potential.

Our theoretical development demonstrates that the parameters
in all the four kinds of imperfect interface models can be explicitly
expressed in terms of the electroelastic moduli and the thickness of
the piezoelectric layer.

2. The Stroh formalism for anisotropic piezoelectric materials

In the following we will present two different schemes of the
Stroh formalism. Scheme 1 of the Stroh formalism will be adopted
in the analyses of a compliant and weakly conducting interface
(Section 3), and a stiff and highly conducting interface (Section
4). Scheme 2 will be adopted in the analyses of a compliant and
highly conducting interface (Section 5), and a stiff and weakly con-
ducting interface (Section 6).

2.1. Scheme 1 of the Stroh formalism

The basic equations for an anisotropic piezoelectric material can
be expressed in a fixed rectangular coordinate system xiði ¼ 1;2;3Þ
as

rij ¼ Cijkluk;l þ ekij/;k; Dk ¼ ekijui;j � �kl/;l;

rij;j ¼ 0; Di;i ¼ 0;
ð1Þ

where repeated indices mean summation, a comma follows by
i ði ¼ 1; 2; 3Þ stands for the derivative with respect to the ith spatial
coordinate; ui and / are the elastic displacement and electric poten-
tial; rij and Di are the stress and electric displacement; Cijkl; �ij and
eijk are the elastic, dielectric and piezoelectric coefficients,
respectively.

For 2D problems in which all quantities depend only on x1 and
x2, the general solutions can be expressed as (Suo et al., 1992;
Wang, 1994; Ting, 1996)

u ¼ u1 u2 u3 /½ �T ¼ AfðzÞ þ AfðzÞ;
U ¼ U1 U2 U3 u½ �T ¼ BfðzÞ þ BfðzÞ;

ð2Þ

where

A ¼ a1 a2 a3 a4½ �; B ¼ b1 b2 b3 b4½ �;
fðzÞ ¼ f1ðz1Þ f2ðz2Þ f3ðz3Þ f4ðz4Þ½ �T ;
zi ¼ x1 þ pix2; Imfpig > 0; ði ¼ 1� 4Þ;

ð3Þ

with

N1 N2

N3 NT
1

� �
ai

bi

� �
¼ pi

ai

bi

� �
; ði ¼ 1� 4Þ ð4Þ

N1 ¼ �T�1RT ; N2 ¼ T�1; N3 ¼ RT�1RT � Q ; ð5Þ

and

Q ¼ Q E e11

eT
11 ��11

" #
; R ¼ RE e21

eT
12 ��12

" #
; T ¼ TE e22

eT
22 ��22

" #
; ð6Þ

ðQ EÞik ¼ Ci1k1; ðREÞik ¼ Ci1k2; ðTEÞik ¼ Ci2k2; ðeijÞm ¼ eijm: ð7Þ

In addition the extended stress function vector U is defined, in
terms of the stresses and electric displacements, as follows:

ri1 ¼ �Ui;2; ri2 ¼ Ui;1; ði ¼ 1� 3Þ
D1 ¼ �u;2; D2 ¼ u;1:

ð8Þ

Here we can call u a charge potential (Suo, 1993). Due to the fact
that the two matrices A and B satisfy the following normalized
orthogonal relationship:

BT AT

BT AT

" #
A A
B B

" #
¼ I; ð9Þ

then three real Barnett–Lothe tensors S, H and L can be introduced

S ¼ ið2ABT � IÞ; H ¼ 2iAAT
; L ¼ �2iBBT : ð10Þ

During this investigation, the following identities will also be
utilized:

2AhpaiA
T ¼ N2 � iðN1Hþ N2STÞ;

2AhpaiB
T ¼ N1 þ iðN2L � N1SÞ;

2BhpaiB
T ¼ N3 þ iðNT

1L � N3SÞ;
ð11Þ

where h�i is a 4�4 diagonal matrix in which each component is var-
ied according to the Greek index a (from 1 to 4).

It can also be easily checked that

Nð�1Þ
1 Nð�1Þ

2

Nð�1Þ
3 Nð�1ÞT

1

" #
ai

bi

� �
¼ 1

pi

ai

bi

� �
; ði ¼ 1� 4Þ ð12Þ

where

Nð�1Þ
1 ¼ �Q�1R; Nð�1Þ

2 ¼ �Q�1; Nð�1Þ
3 ¼ T� RT Q�1R: ð13Þ

The detailed structures and identities of Ni and Nð�1Þ
i ði ¼ 1; 2; 3Þ for

Scheme 1 can be found in Appendix A.
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2.2. Scheme 2 of the Stroh formalism

In this scheme, the constitutive equations can be written into
(Suo, 1993)

rij ¼ Cijkluk;l þ hkijDk; Ek ¼ hkijui;j þ bklDl; ð14Þ

where Ei is the electric field; Cijkl; bij and hijk are the elastic, dielec-
tric and piezoelectric coefficients.

For 2D problems in which all quantities depend only on x1 and
x2, the general solutions can be expressed as (Suo, 1993; Wang,
1994)

u ¼ u1 u2 u3 u½ �T ¼ AfðzÞ þ AfðzÞ;
U ¼ U1 U2 U3 /½ �T ¼ BfðzÞ þ BfðzÞ;

ð15Þ

where the functions Ui ði ¼ 1� 3Þ and u have been defined in Eq.
(8), and

A ¼ a1 a2 a3 a4½ �; B ¼ b1 b2 b3 b4½ �;
fðzÞ ¼ f1ðz1Þ f2ðz2Þ f3ðz3Þ f4ðz4Þ½ �T ;
zi ¼ x1 þ pix2; Im pif g > 0; ði ¼ 1� 4Þ;

ð16Þ

with

N1 N2

N3 NT
1

� �
ai

bi

� �
¼ pi

ai

bi

� �
; ði ¼ 1� 4Þ ð17Þ

N1 ¼ �T�1RT ; N2 ¼ T�1; N3 ¼ RT�1RT � Q ; ð18Þ

and

Q ¼ Q E h21

hT
21 b22

" #
; R ¼ RE �h11

hT
22 �b12

" #
; T ¼ TE �h12

�hT
12 b11

" #
; ð19Þ

ðQ EÞik ¼ Ci1k1; ðREÞik ¼ Ci1k2; ðTEÞik ¼ Ci2k2; ðhijÞm ¼ hijm: ð20Þ

The identities in Eqs. (9)–(13) are also valid in this scheme. It is
stressed that in this scheme, both the two 4�4 symmetric matrices
Q and T are positive definite. The structures and identities of Ni and
Nð�1Þ

i ði ¼ 1;2;3Þ for Scheme 2 can be found in Appendix B. We add
that the formulations for Scheme 2 presented here are somewhat
different than those presented by Suo (1993) in view of the fact that
u ¼ �n with n defined in Eq. (B1) by Suo (1993).

3. The Eshelby’s problem for two bonded piezoelectric half-
planes with a compliant and weakly conducting interface

3.1. The general solution

Now we consider two dissimilar anisotropic piezoelectric half-
planes imperfectly bonded along the real axis x2 ¼ 0, as shown in
Fig. 1. Here we assume that the upper half-plane contains a subdo-
main of arbitrary shape which has the same elastic, piezoelectric
and dielectric constants as the upper half-plane and undergoes
uniform eigenstrains ðe�11; e�12; e�22; e�31; e�32Þ and eigenelectric fields
ðE�1; E�2Þ. Let S0 and S1 denote the subdomain and its supplement
to the upper half-plane, C the perfect interface separating S0 and
S1; S2 the lower half-plane. In this research all quantities in
S0; S1 and S2 will be attached with the subscripts 0, 1 and 2 or
the superscripts (0), (1) and (2). For example the three analytic
functions f0ðzÞ; f1ðzÞ and f2ðzÞ are defined respectively in S0; S1

and S2. In the analysis carried out in this section, we will adopt
Scheme 1 of the Stroh formalism.

The interface conditions along the perfect interface C can be ex-
pressed as (Ru, 2001)

u1 ¼ u0 þ u�; U1 ¼ U0 on C; ð21Þ

where u� is the additional displacements and electric potential
within the Eshelby’s inclusion S0 due to uniform eigenstrains and
eigenelectric fields

u� ¼

e�11x1 þ e�12x2

e�12x1 þ e�22x2

2ðe�31x1 þ e�32x2Þ
�ðE�1x1 þ E�2x2Þ

0BBB@
1CCCA within S0 ð22Þ

In view of Eq. (21), we introduce the following auxiliary function
vector g(z):

gðzÞ ¼
f0ðzÞ þ hzaicþ < PaðzaÞ > d
f1ðzÞ � hDaðzaÞ � PaðzaÞid

�
; ð23Þ

where �za ¼ DaðzaÞ along the interface C (Ru, 2001). In addition
DaðzaÞ ¼ PaðzaÞ þ oð1Þ as jzaj ! 1. The two complex vectors c
and d appearing in Eq. (23) are related to the uniform eigenstrains
and eigenelectric fields as

c ¼ �pa
�pa�pa

D E
BT

1

e�11

e�12

2e�31

�E�1

26664
37775� 1

�pa�pa

D E
BT

1

e�12

e�22

2e�32

�E�2

26664
37775;

d ¼ 1
�pa�pa

D E
BT

1

e�12

e�22

2e�32

�E�2

26664
37775� pa

�pa�pa

D E
BT

1

e�11

e�12

2e�31

�E�1

26664
37775;

ð24Þ

where the Stroh eigenvalues pkðk ¼ 1� 4Þ are those pertaining to
the upper half-plane within which the Eshelby inclusion is embed-
ded. Our analysis (suppressed here) demonstrates that g(z) is ana-
lytic, continuous and single-valued everywhere in the whole upper
half-plane S0 þ S1 including the point at infinity. We observe from
Eq. (23) that f1ðzÞ � gðzÞ þ hðzÞ where hðzÞ ¼ hDaðzaÞ � PaðzaÞid is
the singular part while g(z) is the regular part of f1ðzÞ if we extend
the definition region of f1ðzÞ to the whole upper half-plane includ-
ing the domain S0.

In addition the boundary conditions on the compliant and
weakly conducting imperfect interface x2 ¼ 0 separating the two
piezoelectric half-planes can be expressed as

rð1Þ12 ¼ rð2Þ12 ; rð1Þ22 ¼ rð2Þ22 ; rð1Þ32 ¼ rð2Þ32 ; Dð1Þ2 ¼ Dð2Þ2 ;

uð1Þ1 � uð2Þ1

uð1Þ2 � uð2Þ2

uð1Þ3 � uð2Þ3

/ð1Þ � /ð2Þ

266664
377775 ¼ K

rð2Þ12

rð2Þ22

rð2Þ32

Dð2Þ2

2666664

3777775; x2 ¼ 0; ð25Þ

where the 4 � 4 real and symmetric matrix K is explicitly given by

K ¼ KT ¼

a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44

26664
37775; ð26Þ

where
a11 a12 a13

a12 a22 a23

a13 a23 a33

24 35 is positive definite whereas a44 < 0. Eq.

(25) states that tractions and normal electric displacement are con-
tinuous across the interface, whereas the elastic displacements and
electric potential undergo jumps on the interface which are propor-
tional to the interface tractions and normal electric displacement. A
detailed derivation of the above imperfect interface model in Eqs.
(25) and (26) can be found in Appendix C.

The above imperfect boundary conditions in Eq. (25) can also be
conveniently expressed in terms of f1ðzÞ and f2ðzÞ as
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B1fþ1 ðx1Þ þ B1
�f�1 ðx1Þ ¼ B2f�2 ðx1Þ þ B2

�fþ2 ðx1Þ;
A1fþ1 ðx1Þ þ A1

�f�1 ðx1Þ � A2f�2 ðx1Þ � A2
�fþ2 ðx1Þ

¼ K½B2f 0�2 ðx1Þ þ B2
�f 0þ2 ðx1Þ�;

x2 ¼ 0 ð27Þ

It follows from Eq. (27)1 that

f1ðzÞ ¼ B�1
1 B2

�f2ðzÞ þ hðzÞ � B�1
1 B1

�hðzÞ;
�f1ðzÞ ¼ B�1

1 B2f2ðzÞ � B�1
1 B1hðzÞ þ �hðzÞ:

ð28Þ

In writing Eq. (28), we have implicitly replaced the complex vari-
ables zk; ðk ¼ 1� 4Þ by the common complex variable z ¼ x1 þ ix2

in view of the fact that z1 ¼ z2 ¼ z3 ¼ z4 ¼ z on the interface
x2 ¼ 0. After the analysis is finished, we will change z back to the
corresponding complex variables. Substituting Eq. (28) into Eq.
(27)2, we obtain

NB2
�fþ2 ðx1Þ � iKB2

�f 0þ2 ðx1Þ � 2L�1
1 B1

�hðx1Þ

¼ NB2f�2 ðx1Þ þ iKB2f 0�2 ðx1Þ � 2L�1
1 B1hðx1Þ; x2 ¼ 0; ð29Þ

where M�1
k ; ðk ¼ 1;2Þ and N are 4 � 4 Hermitian matrices given by

(Suo et al., 1992; Wang, 1994)

N ¼M�1
1 þM�1

2 ¼ L�1
1 þ L�1

2 þ iðS1L�1
1 � S2L�1

2 Þ;
M�1

k ¼ iAkB�1
k ¼ ðI� iSkÞL�1

k ; ðk ¼ 1;2Þ:
ð30Þ

We add that M�1
k ; ðk ¼ 1;2Þ and N are not positive definite (Lothe

and Barnett, 1975; Suo et al., 1992). It is apparent that the left hand
side of Eq. (29) is analytic in the upper half-plane, while the right
hand side of Eq. (29) is analytic in the lower half-plane. Conse-
quently the continuity condition in Eq. (29) implies that the left
and right sides of Eq. (29) are identically zero in the upper and low-
er half-planes, respectively. It follows that:

NB2f2ðzÞ þ iKB2f 02ðzÞ ¼ 2L�1
1 B1hðzÞ; Imfzg < 0 ð31Þ

In order to solve the coupled set of first-order differential equations
in Eq. (31), we first consider the following eigenvalue problem:

ðN� kKÞv ¼ 0: ð32Þ

There exist four eigenvalues to the above eigenvalue problem
(the four eigenvalues are not necessarily real in view of the fact
that both N and K are not positive definite). If k is an eigenvalue,
then its conjugate �k is also an eigenvalue. In addition Refkg > 0.
Let that ki; ði ¼ 1� 4Þ be the four distinct roots and vi the associ-
ated eigenvectors, then the following orthogonal relationship can
be easily proved:

JWT NW ¼ K1K2; JWTKW ¼ K2; ð33Þ

where K2 is a 4 � 4 diagonal matrix, and

W ¼ v1 v2 v3 v4½ �; ð34Þ
K1 ¼ diag k1 k2 k3 k4½ �: ð35Þ

In addition the 4 � 4 real and symmetric matrix J appearing in Eq.
(33) is dependent on the nature of the four eigenvalues
ki; ði ¼ 1� 4Þ. A detailed classification is given below.

(i) Four real eigenvalues (i.e., k1; k2; k3; k4 > 0Þ:

J ¼ diag 1 1 1 1½ �; ð36Þ

(ii) Two real and two complex conjugate eigenvalues (i.e.,
k1; k2 > 0; k3 ¼ �k4Þ:

J ¼

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

26664
37775; ð37Þ

1S

x1

x2

 Imperfect interface 

Γ

Lower anisotropic piezoelectric half-plane 2S

Eshelby inclusion 0S

),,,,,,( *
2

*
1

*
32

*
31

*
12

*
22

*
11 EEεεεεε

Fig. 1. Eshelby’s problem for two imperfectly bonded anisotropic piezoelectric half-planes with an inclusion of arbitrary shape.

X. Wang, E. Pan / International Journal of Solids and Structures 47 (2010) 148–160 151



Author's personal copy

(iii) Four complex eigenvalues (i.e., k1 ¼ �k2; k3 ¼ �k4Þ:

J ¼

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

26664
37775: ð38Þ

Next we introduce an analytic function vector XðzÞ such that

B2f2ðzÞ ¼ WXðzÞ: ð39Þ

Employing the orthogonal relationship in Eq. (33), then Eq. (31) can
be decoupled into

�iK1XðzÞ þX0ðzÞ ¼ �2iK�1
2 JWT L�1

1 B1hDaðzÞ � PaðzÞid; Imfzg < 0

ð40Þ

The general solution to the above set of decoupled differential equa-
tions can be conveniently expressed as (Yoon et al., 2006; Wang
et al., 2007)

XðzÞ ¼ � 2i
X4

k¼1

hexpðikazÞi
Z z

�1i
½DkðnÞ � PkðnÞ�

� hexpð�ikanÞidnK�1
2 JWT L�1

1 B1Ikd; Imfzg < 0; ð41Þ

where

I1 ¼ diag 1 0 0 0½ �; I2 ¼ diag 0 1 0 0½ �;
I3 ¼ diag 0 0 1 0½ �; I4 ¼ diag 0 0 0 1½ �:

ð42Þ

Once X(z) has been obtained, it is easy to arrived at f0ðzÞ; f1ðzÞ
and f2ðzÞ by using Eqs. (23), (28) and (39). Before ending this sub-
section, it is of interest to look into in more detail the four eigen-
values ki; ði ¼ 1� 4Þ determined by Eq. (32) through a specific
case. Here we assume that the two piezoelectric half-planes and
the middle piezoelectric interphase layer are orthotropic (Pan,
2001). In addition the two half-planes have the same material
property except that the poling direction of the upper half-plane
is in the positive x2-direction while that of the lower one is in
the negative x2-direction, and the interphase is poled in the x1-
direction. Consequently the complex Hermitian matrix N (Suo
et al., 1992; Ru, 1999) and the real and symmetric matrix K can
be explicitly given by

N ¼ 2

1
CL

0 0 �ib

0 1
CT

0 0

0 0 1ffiffiffiffiffiffiffiffiffiffiffi
C44C55

p 0

ib 0 0 � 1
�

2666664

3777775; ðCL; CT 2 > 0; b < 0Þ ð43Þ

and

K ¼

q11 0 0 q14

0 q22 0 0
0 0 q33 0

q14 0 0 �q44

26664
37775; ð44Þ

where

q11 ¼
h�ðcÞ

22

CðcÞ66�
ðcÞ
22þeðcÞ226

> 0; q22 ¼ h
CðcÞ22

> 0; q33 ¼ h
CðcÞ44

> 0;

q44 ¼
hCðcÞ66

CðcÞ66�
ðcÞ
22þeðcÞ226

> 0; q14 ¼
heðcÞ26

CðcÞ66�
ðcÞ
22þeðcÞ226

:

ð45Þ

Now that the four eigenvalues to Eq. (32) can be given by

k1 ¼
2

q22CT
> 0; k2 ¼

2
q33

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44C55
p > 0; ð46Þ

and

k3;4 ¼
q11
� þ

q44
CL
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q11
� þ

q44
CL

� �2
� 4 1

�CL
þ b2

� �
ðq11q44 þ q2

14Þ
r

q11q44 þ q2
14

> 0;

ð47Þ
when 1

�

ffiffiffiffiffiffi
q11
q44

q
� 1

CL

ffiffiffiffiffiffi
q44
q11

q��� ��� P 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ q2

14
q11q44

1
�CL
þ b2

� �r
; or

k3;4 ¼
q11
� þ

q44
CL
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 1

�CL
þ b2

� �
ðq11q44 þ q2

14Þ �
q11
� þ

q44
CL

� �2
r

q11q44 þ q2
14

;

Refk3g ¼ Refk4g > 0 ð48Þ

when 1
�

ffiffiffiffiffiffi
q11
q44

q
� 1

CL

ffiffiffiffiffiffi
q44
q11

q��� ��� < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ q2

14
q11q44

1
�CL
þ b2

� �r
. Among the above

four eigenvalues, k2 belongs to the decoupled anti-plane
deformation.

3.2. An example of elliptical inclusion

In the following we illustrate the obtained general solution
through an example of an elliptical inclusion with semi-major
and semi-minor axes a and b. We further assume that the major
axis is parallel to the x1-axis and the center of the ellipse is located
at x1 ¼ 0 and x2 ¼ dðd > bÞ. In this case DkðzÞ; PkðzÞ and DkðzÞ � PkðzÞ
can be explicitly determined as!

DkðzÞ ¼
a2 þ jpkj

2b2

a2 þ p2
k b2 ðz� pkdÞ þ �pkdþ

iðpk � �pkÞab

a2 þ p2
kb2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� pkdÞ

2 � ða2 þ p2
kb2Þ

q
; ð49Þ

PkðzÞ ¼
a� i�pkb
a� ipkb

z� aðpk � �pkÞ
a� ipkb

d; ð50Þ

DkðzÞ � PkðzÞ ¼
ið�pk � pkÞab

z� pkdþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� pkdÞ

2 � ða2 þ p2
k b2Þ

q : ð51Þ

Consequently the analytic function vector X(z) can be explicitly
determined as

XðzÞ ¼ ab
X4

k¼1

ðpk � �pkÞ exp ikaðz� pkdÞ½ �Y ikaðz� pkdÞ;½h

ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

kb2
q �	

K�1
2 JWT L�1

1 B1Ikd; Imfzg < 0; ð52Þ

where Yðz; bÞ is an introduced integral function defined by

Yðz; bÞ ¼
Z 1

z

2 expð�nÞ

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ b2

q dn: ð53Þ

Apparently Yðz;0Þ ¼ E1ðzÞ, the exponential integral (Abramovitz and
Stegun, 1972). In view of Eqs. (23), (28), (39) and (52), the three
analytic function vectors f0ðzÞ within the inclusion, f1ðzÞ in the
upper half-plane but outside the inclusion and f2ðzÞ in the lower
half-plane can now be explicitly given by

f0ðzÞ ¼ ab
X4

k¼1

ð�pk � pkÞB
�1
1 W



exp½�i�kaðz� �pkdÞ�Y

� �i�kaðz� �pkdÞ; �ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ �p2

k b2
q� �	

K�1
2 JWT L�1

1 B1Ik
�d

� B�1
1 B1

iabð�pa � paÞ

z� �padþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� �padÞ2 � ða2 þ �p2

ab2Þ
q* +

�d

� z cþ a� i�pab
a� ipab


 	
d

� �
; z 2 S0 ð54Þ
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f1ðzÞ ¼ ab
X4

k¼1

ð�pk � pkÞB�1
1 W



exp½�i�kaðz� �pkdÞ�Y

� �i�kaðz� �pkdÞ; �ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ �p2

kb2
q� �	

K�1
2 JWT L�1

1 B1Ik
�d

� B�1
1 B1

iabð�pa � paÞ

z� �padþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� �padÞ2 � ða2 þ �p2

ab2Þ
q* +

�d

þ iabð�pa � paÞ

z� padþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� padÞ

2 � ða2 þ p2
ab2Þ

q* +
d; z 2 S1 ð55Þ

f2ðzÞ ¼ ab
X4

k¼1

ðpk � �pkÞB�1
2 W exp½ikaðz� pkdÞ�h Y

� ikaðz� pkdÞ; ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

k b2
q� �	

K�1
2 JWT L�1

1 B1Ikd; z 2 S2

ð56Þ

It is not difficult to write down the full-field expressions of
f0ðzÞ; f1ðzÞ and f2ðzÞ as follows:

f0ðzÞ ¼ ab
X4

m¼1

X4

k¼1

ð�pk � pkÞ



exp �i�kmðza � �pkdÞ
� �

Y

� �i�kmðza � �pkdÞ; �km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ �p2

k b2
q� �	

B�1
1 WImK�1

2 JWT L�1
1 B1Ik

�d

�
X4

k¼1

iabð�pa � paÞ

za � �padþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðza � �padÞ2 � ða2 þ �p2

ab2Þ
q* +

B�1
1 B1Ik

�d

� hzai cþ a� i�pab
a� ipab


 	
d

� �
; ð57Þ

f1ðzÞ ¼ ab
X4

m¼1

X4

k¼1

ð�pk � pkÞ



exp �i�kmðza � �pkdÞ
� �

Y

� �i�kmðza � �pkdÞ; �km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ �p2

k b2
q� �	

B�1
1 WImK�1

2 JWT L�1
1 B1Ik

�d

�
X4

k¼1

iabð�pa � paÞ

za � �padþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðza � �padÞ2 � ða2 þ �p2

ab2Þ
q* +

B�1
1 B1Ik

�d

þ iabð�pa � paÞ

za � padþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðza � padÞ

2 � ða2 þ p2
ab2Þ

q* +
d; ð58Þ

f2ðzÞ ¼ ab
X4

m¼1

X4

k¼1

ðpk � �pkÞ



exp ikmðz�a � pkdÞ
� �

Y

� ikmðz�a � pkdÞ; km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ p2

k b2
q� �	

B�1
2 WImK�1

2 JWT L�1
1 B1Ikd;

ð59Þ

where the superscript ‘*’ is utilized to distinguish the Stroh eign-
values associated with the lower half-plane ðz�aÞ from those associ-
ated with the upper half-plane ðzaÞ.

It is clearly observed from Eq. (57) that the electroelastic field
inside the elliptical inclusion is intrinsically non-uniform even
when the material properties of the two piezoelectric half-planes
are exactly the same. The tractions and normal electric displace-
ment distributed along the whole imperfect interface x2 ¼ 0 can
also be simply given by

r12

r22

r32

D2

26664
37775¼ 4abRe

X4

k¼1

ðpk��pkÞW
x ikaðx1�pkdÞ;ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þp2

kb2
q� �

�1

x1�pkdþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�pkdÞ

2� a2þp2
kb2

� �r* +8>><>>:
�K�1

2 JWT L�1
1 B1Ikd

o
; x2¼0; ð60Þ

where the function xðz; b) is defined by (Wang et al., 2007)

xðz;bÞ ¼ expðzÞ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2

q� �Z 1

z

expð�nÞ

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ b2

q dn: ð61Þ

The jumps in elastic displacements and electric potential along the
imperfect interface can then be easily obtained by using Eqs. (25)
and (60). By noticing the following far field asymptotic behavior
of xðz; b)

xðz;bÞ ffi 1� 1
z
þ o

1
z2

 �
; jzj ! 1 ð62Þ

then the tractions and normal electric displacement along x2 ¼ 0 at
far field when jx1j ! 1 are

r12

r22

r32

D2

26664
37775 ffi 2ab

x2
1

ImfN�1L�1
1 B1h�pa � paidg þ o

1
x3

1

 �
;

jx1j ! 1; and x2 ¼ 0 ð63Þ

which clearly indicates that the imperfection of the interface has no
influence on the leading 1=x2

1 term in the far-field asymptotic
expansion! Expression (63) can be easily generalized to an arbitrary
shaped inclusion of area A embedded in the upper half-plane such
that

r12

r22

r32

D2

26664
37775ffi A

px2
1

eL
e�12

e�22

2e�32

�E�2

26664
37775� eLL�1

1 ðN
ð1ÞT
1 L1�Nð1Þ3 S1Þ

h0BBB@

�fW L�1
1 Nð1Þ3

i e�11

e�12

2e�31

�E�1

26664
37775
1CCCAþo

1
x3

1

 �
; jx1j !1; and x2 ¼ 0;

ð64Þ

where

eL ¼ ðD�WT D�1WÞ�1
; fW ¼ D�1WeL; ð65Þ

and

D ¼ L�1
1 þ L�1

2 ; W ¼ S1L�1
1 � S2L�1

2 : ð66Þ

During the derivation of the above real form solution, we have
adopted the identities in Eqs. (10) and (11).

3.3. Far-field expansions of the analytic function vectors for an
arbitrary shaped inclusion

It follows from Eqs. (58) and (59) that the far-field asymptotic
expansions of f1ðzÞ and f2ðzÞ for an arbitrary shaped inclusion of
area A embedded in the upper half-plane can be simply derived as

f1ðzÞ ¼
A

2p
hðzaÞ�1iB�1

1 N�1L�1
1 ðNð1ÞT1 L1 � Nð1Þ3 S1

hn
þ iNð1Þ3 Þe�1 � L1e

�
2

i
� iNð1Þ3 e�1

o
þ oðhðzaÞ�2iÞ; ð67Þ
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f2ðzÞ ¼
A

2p
hðz�aÞ

�1iB�1
2 N�1L�1

1 ½ðN
ð1ÞT
1 L1 � Nð1Þ3 S1 � iNð1Þ3 Þe�1

� L1e�2� þ oðhðz�aÞ
�2iÞ; ð68Þ

where

e�1 ¼ e�11 e�12 2e�31 �E�1½ �T ; e�2 ¼ e�12 e�22 2e�32 �E�2½ �T :
ð69Þ

Interestingly the leading terms in the far-field asymptotic
behaviors of f1ðzÞ and f2ðzÞ are independent of the imperfection
of the interface, and they satisfy the perfect boundary conditions
on x2 ¼ 0. The result in Eq. (64) can also be obtained from Eq.
(68) by taking differentiation. When the two piezoelectric half-
planes are exactly the same, it can be easily deduced from Eqs.
(67) and (68) that

f1ðzÞ ¼ f2ðzÞ ¼
A

4p
hðzaÞ�1iB�1

� ½ðNT
1L � N3S� iN3Þe�1 � Le�2� þ oðhðzaÞ�2iÞ: ð70Þ

4. The Eshelby’s problem for two bonded piezoelectric half-
planes with a stiff and highly conducting interface

4.1. The general solution

In this section, we discuss the case in which the interface be-
tween the two piezoelectric half-planes is stiff and highly conduct-
ing. The boundary conditions on the stiff and highly conducting
imperfect interface x2 ¼ 0 can be expressed as

uð1Þ1 ¼ uð2Þ1 ; uð1Þ2 ¼ uð2Þ2 ; uð1Þ3 ¼ uð2Þ3 ; /ð1Þ ¼ /ð2Þ;

rð1Þ12

rð1Þ22

rð1Þ32

Dð1Þ2

2666664

3777775�
rð2Þ12

rð2Þ22

rð2Þ32

Dð2Þ2

2666664

3777775 ¼ �E
@2

@x2
1

uð2Þ1

uð2Þ2

uð2Þ3

/ð2Þ

266664
377775; x2 ¼ 0; ð71Þ

where

E ¼ ET ¼

E11 0 E13 E14

0 0 0 0
E13 0 E33 E34

E14 0 E34 E44

26664
37775; ð72Þ

with E11 > 0; E33 > 0; E11E33 � E2
13 > 0 and E44 < 0. Eq. (71), which

can be termed a generalized ‘‘membrane type interface” (Benven-
iste and Miloh, 2001; Benveniste, 2006; Erdogan and Ozturk,
2008; Guler, 2008), states that displacements and electric potential
are continuous across the interface, whereas tractions and normal
electric displacement undergo jumps on the interface which are
proportional to certain surface differential operators of the interface
displacements and electric potential. It is clearly observed from Eq.
(71) that the normal stress r22 is still continuous across the imper-
fect interface. A detailed derivation of the above imperfect interface
model in Eqs. (71) and (72) can be found in Appendix C. In the anal-
ysis carried out in this section, we will also adopt Scheme 1 of the
Stroh formalism.

The boundary conditions in Eq. (71) can also be concisely writ-
ten in terms of u and U as

u1 ¼ u2; U1 �U2 ¼ �Eu2;1; x2 ¼ 0 ð73Þ

or in terms of the two analytic function vectors f1ðzÞ and f2ðzÞ as

A1fþ1 ðx1Þ þ A1
�f�1 ðx1Þ ¼ A2f�2 ðx1Þ þ A2

�fþ2 ðx1Þ;
B1fþ1 ðx1Þ þ B1

�f�1 ðx1Þ � B2f�2 ðx1Þ � B2
�fþ2 ðx1Þ

¼ �E A2f 0�2 ðx1Þ þ A2
�f 0þ2 ðx1Þ

h i
;

x2 ¼ 0 ð74Þ

It follows from Eq. (74)1 that:

f1ðzÞ ¼ A�1
1 A2

�f2ðzÞ þ hðzÞ � A�1
1 A1

�hðzÞ;
�f1ðzÞ ¼ A�1

1 A2f2ðzÞ � A�1
1 A1hðzÞ þ �hðzÞ:

ð75Þ

Substituting Eq. (75) into Eq. (74)2, we can finally arrive at the
following set of coupled differential equations:

PA2f2ðzÞ þ iEA2f 02ðzÞ ¼ 2H�1
1 A1hðzÞ; Imfzg < 0; ð76Þ

where P is a 4 � 4 Hermitian matrix defined by

P ¼ M1 þM2; ð77Þ
Mk ¼ �iBkA�1

k ¼ H�1
k ðIþ iSkÞ; ðk ¼ 1;2Þ: ð78Þ

In order to solve Eq. (76), we consider the following eigenvalue
problem:

ðE� kPÞv ¼ 0: ð79Þ

It is apparent that: (i) if k is an eigenvalue, then its conjugate �k is
also an eigenvalue; (ii) k ¼ 0 is an eigenvalue, and the real parts of
all the other three non-zero eigenvalues are positive. Let that
k1 ¼ 0 and ki; ði ¼ 2; 3; 4Þ be the four distinct roots and vi the asso-
ciated eigenvectors, then the following orthogonal relationship can
be easily proved:

JWT EW ¼ K1K2; JWTPW ¼ K2; ð80Þ

where K2 is a 4 � 4 diagonal matrix, and

W ¼ v1 v2 v3 v4½ �; ð81Þ
K1 ¼ diag 0 k2 k3 k4½ �: ð82Þ

In addition the 4 � 4 real and symmetric matrix J is dependent on
the nature of the four eigenvalues ki; ði ¼ 1� 4Þ. A detailed classifi-
cation is given below.

(i) Four real eigenvalues (i.e., k2; k3; k4 > 0Þ:

J ¼ diag 1 1 1 1½ �; ð83Þ

(ii) Two real and two complex conjugate eigenvalues (i.e.,
k2 > 0; k3 ¼ �k4Þ:

J ¼

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

26664
37775: ð84Þ

Next we introduce an analytic function vector XðzÞ ¼ X1ðzÞ½
X2ðzÞ X3ðzÞ X4ðzÞ�T such that

A2f2ðzÞ ¼ WXðzÞ: ð85Þ

Employing the orthogonal relationship in Eq. (80), then Eq. (76) can
be decoupled into

XðzÞ þ iK1X
0ðzÞ ¼ 2K�1

2 JWT H�1
1 A1hDaðzÞ � PaðzÞid; Imfzg < 0:

ð86Þ

The general solution to the above set of decoupled differential equa-
tions can be conveniently expressed as

XðzÞ ¼
X4

k¼1

hFk
aðzÞiK

�1
2 JWT H�1

1 A1Ikd; ð87Þ

where the analytic functions Fk
mðzÞ are defined by
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Fk
mðzÞ¼

2½DkðzÞ�PkðzÞ�; m¼1
�2ik�1

m expðik�1
m zÞ

R z
�1i½DkðnÞ�PkðnÞ�expð�ik�1

m nÞdn; m¼2;3;4

�
ð88Þ

Consequently it is not difficult to write down the full-field solutions
of f0ðzÞ; f1ðzÞ and f2ðzÞ as follows:

f0ðzÞ ¼
X4

m¼1

X4

k¼1

Fk
mðzaÞ

� �
A�1

1 WImK�1
2 JWT H�1

1 A1Ik
�d

�
X4

k¼1

hDkðzaÞ � PkðzaÞiA�1
1 A1Ik

�d� hzaic� hPaðzaÞid; ð89Þ

f1ðzÞ ¼
X4

m¼1

X4

k¼1

hFk
mðzaÞiA�1

1 WImK�1
2 JWT H�1

1 A1Ik
�d�

X4

k¼1

hDkðzaÞ

� PkðzaÞiA�1
1 A1Ik

�dþ hDaðzaÞ � PaðzaÞid; ð90Þ

f2ðzÞ ¼
X4

m¼1

X4

k¼1

hFk
mðz�aÞiA

�1
2 WImK�1

2 JWT H�1
1 A1Ikd: ð91Þ

4.2. An example of elliptical inclusion

We illustrate the obtained general solution in Section 4.1
through an example of an elliptical inclusion with semi-major
and semi-minor axes a and b. We further assume that the major
axis is parallel to the x1-axis and the center of the ellipse is located
at x1=0 and x2 ¼ dðd > bÞ. As a result the explicit expressions of
Fk

mðzÞ can be easily given by

Fk
mðzÞ¼

2ið�pk�pkÞab

z�pkdþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz�pkdÞ2�ða2þp2

k
b2 Þ

p ; m¼1;

k�1
m ðpk��pkÞabexp½ik�1

m ðz�pkdÞ�Y ½ik�1
m ðz�pkdÞ;k�1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þp2

k b2
q

�; m¼2;3;4

8><>:
ð92Þ

where the integral function Yðz; bÞ has been defined in Eq. (53).
Apparently Fk

mðzÞ ¼ Fk
1ðzÞ as km ! 0; ðm ¼ 2;3;4Þ.

5. The Eshelby’s problem for two bonded piezoelectric half-
planes with a compliant and highly conducting interface

In this section we consider the case in which the interface be-
tween the two piezoelectric half-planes is compliant and highly
conducting. When we adopt Scheme 2 of the Stroh formalism,
the interface conditions along the perfect interface C can be ex-
pressed as (Ru, 2001)

u1 ¼ u0 þ u�; U1 ¼ U0 þU� on C; ð93Þ

where u� and U� are the additional displacements and electric po-
tential within the Eshelby’s inclusion S0 due to uniform eigenstrains
and eigenelectric fields

u� ¼

e�11x1þ e�12x2

e�12x1þ e�22x2

2ðe�31x1þ e�32x2Þ
0

0BBB@
1CCCA and U� ¼

0
0
0

�ðE�1x1þE�2x2Þ

0BBB@
1CCCA within S0

ð94Þ

In this case we can still introduce the auxiliary function vector g(z)
defined in Eq. (23). However now the vectors c and d are re-defined
by

c¼ �pa
�pa�pa


 	
BT

1

e�11

e�12

2e�31

0

26664
37775�AT

1

0
0
0
E�1

26664
37775

0BBB@
1CCCA� 1

�pa�pa


 	
BT

1

e�12

e�22

2e�32

0

26664
37775�AT

1

0
0
0
E�2

26664
37775

0BBB@
1CCCA;

d¼ 1
�pa�pa


 	
BT

1

e�11

e�12

2e�31

0

26664
37775�AT

1

0
0
0
E�1

26664
37775

0BBB@
1CCCA� pa

�pa�pa


 	
BT

1

e�12

e�22

2e�32

0

26664
37775�AT

1

0
0
0
E�2

26664
37775

0BBB@
1CCCA:
ð95Þ

During the above derivation, we have adopted the normalized
orthogonal relationship in Eq. (9). Similar to the situation in Sec-
tion 3, the introduced g(z) is still analytic, continuous and single-val-
ued everywhere in the whole upper half-plane S0 þ S1 including the
point at infinity.

In addition the boundary conditions on the compliant and
highly conducting imperfect interface x2 ¼ 0 separating the two
piezoelectric half-planes can be expressed as

rð1Þ12 ¼ rð2Þ12 ; rð1Þ22 ¼ rð2Þ22 ; rð1Þ32 ¼ rð2Þ32 ; Eð1Þ1 ¼ Eð2Þ1 ;

uð1Þ1 � uð2Þ1

uð1Þ2 � uð2Þ2

uð1Þ3 � uð2Þ3

uð1Þ �uð2Þ

266664
377775 ¼ K

rð2Þ12

rð2Þ22

rð2Þ32

�Eð2Þ1

2666664

3777775; x2 ¼ 0; ð96Þ

where K is a 4 � 4 positive definite real and symmetric matrix. Eq.
(96) states that tractions and tangential electric field are continuous
across the interface, whereas the elastic displacements and charge
potential undergo jumps on the interface which are proportional
to the interface tractions and tangential electric field. A detailed
derivation of the above imperfect interface model in Eq. (96) can
be found in Appendix D.

Once we have introduced the above, all the rest analysis is sim-
ilar to that in Section 3. In fact the analysis becomes much simpler
because in this case both N defined in Eq. (30) and K are positive
definite (Suo, 1993). Thus we observe that: (i) all the four eigen-
values of Eq. (32) are positive real; and (ii) it is sufficient to treat
J in Eq. (33) as an identity matrix and K2 in Eq. (33) as a 4 � 4 po-
sitive real diagonal matrix.

6. The Eshelby’s problem for bonded two piezoelectric half-
planes with a stiff and weakly conducting interface

In this section we consider the case in which the interface be-
tween the two piezoelectric half-planes is stiff and weakly con-
ducting. We will adopt Scheme 2 of the Stroh formalism in the
following analysis. The boundary conditions on the stiff and
weakly conducting imperfect interface x2 ¼ 0 can be expressed as

uð1Þ1 ¼ uð2Þ1 ; uð1Þ2 ¼ uð2Þ2 ; uð1Þ3 ¼ uð2Þ3 ; uð1Þ ¼ uð2Þ;

rð1Þ12

rð1Þ22

rð1Þ32

�Eð1Þ1

2666664

3777775�
rð2Þ12

rð2Þ22

rð2Þ32

�Eð2Þ1

2666664

3777775 ¼ �E
@2

@x2
1

uð2Þ1

uð2Þ2

uð2Þ3

uð2Þ

266664
377775; x2 ¼ 0; ð97Þ

where E is a positive semidefinite matrix given by

E ¼ ET ¼

E11 0 E13 E14

0 0 0 0
E13 0 E33 E34

E14 0 E34 E44

26664
37775: ð98Þ
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Eq. (97) states that displacements and charge potential are con-
tinuous across the interface, whereas tractions and tangential elec-
tric field undergo jumps on the interface which are proportional to
certain surface differential operators of the interface displacements
and charge potential. It is also clearly observed from Eq. (97) that
the normal stress r22 is still continuous across the imperfect inter-
face. A detailed derivation of the above imperfect interface model
in Eqs. (97) and (98) can be found in Appendix D.

Once we have introduced the above, all the rest analysis is sim-
ilar to that in Section 4. Keep in mind that now the two vectors c
and d have been re-defined in Eq. (95). In fact the analysis becomes
simpler because in this case P defined in Eq. (77) is positive defi-
nite whilst E is positive semidefinite. Thus we observe that: (i)
The nature of the eigenvalues of Eq. (79) is: k1 ¼ 0 and
k2; k3; k4 > 0; and (ii) it is sufficient to treat J in Eq. (80) as an
identity matrix and K2 in Eq. (80) as a 4 � 4 positive real diagonal
matrix.

7. Conclusions

In this research we derived closed-form solutions to the 2D
problem of an Eshelby’s inclusion of arbitrary shape embedded in
one of two imperfectly bonded piezoelectric half-planes. Full-field
solutions for an elliptical inclusion embedded in the upper half-
plane were presented in Eqs. (57)–(59) in terms of the introduced
integral function Yðz; bÞ. A concise expression of the tractions and
normal electric displacement along the interface was given by Eq.
(60) through the introduction of the function xðz; bÞ. The far-field
asymptotic expansions of the tractions and normal electric dis-
placement along the imperfect interface as well as those of the
analytic function vectors in the two half-planes due to an arbitrary
shaped inclusion were also presented. It was observed that the
leading terms in these expansions are in fact independent of the
imperfection of the interface. We then presented in Eqs. (89)–
(91) the full-field general solutions of the Esheby’s problem for
two bonded piezoelectric half-planes with a stiff and highly con-
ducting interface. The obtained general solutions were demon-
strated through the example of an elliptical inclusion. We
discussed in Sections 5 and 6 the Eshelby’s problem in piezoelectric
bimaterials with a compliant and highly conducting interface and
with a stiff and weakly conducting interface. We observed that
the discussions on a compliant and highly conducting interface
or a stiff and weakly conducting interface become simpler in view
of the fact that in these two cases the complex Hermitian matrices
for the piezoelectric bimaterial are positive definite (Suo, 1993)
whilst the real and symmetric matrices for the imperfect interface
are positive definite [see Eq. (96)] or positive semi-definite [see Eq.
(98)]. During the theoretical development, we also derived explicit
expressions of Ni and Nð�1Þ

i for anisotropic piezoelectric materials
in terms of the introduced 28 reduced generalized compliances Sij

(see Appendices A and B).
In this work we only considered the case in which the imperfect

interface is infinitely long. When the imperfection is finite along
the interface, the problem basically reduces to interface bridged
cracks or interface bridged anti-cracks with the imperfect bound-
ary conditions being used as the ‘‘bridging force” for compliant
interface (Ni and Nemat-Nasser, 2000) or ‘‘bridging strain” for stiff
interface (Erdogan and Ozturk, 2008). In this case in principle we
can resort to the interfacial Green’s functions for an extended line
dislocation and an extended line force (Ting, 1996) to construct a
system of Cauchy singular integral equations for the distributed
dislocation density and the distributed line force density whose ex-
plicit solutions can be given in terms of Chebyshev polynomials or
Jacobi polynomials (Erdogan and Gupta, 1972; Ni and Nemat-Nasser,
2000). Particularly when the bridged cracks or anti-cracks are

located in homogeneous materials, a decoupling methodology sim-
ilar to that proposed in this research can still be conveniently
adopted to arrive at a decoupled set of singular integral equations,
with each equation in a form similar to Eq. (5.1) by Erdogan and
Gupta (1972).
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Appendix A. The structures of Ni and N
ð�1Þ
i for Scheme 1

First we discuss the structures of Ni ði ¼ 1; 2; 3Þ. It has been
proved that (Ting, 1996)

N1 ¼

� �1 � �
� 0 � �
� 0 � �
� 0 � �

26664
37775; N3 ¼

� 0 � �
0 0 0 0
� 0 � �
� 0 � �

26664
37775; ðA1Þ

where � denotes a possibly nonzero element.
We then introduce Sij; ði; j ¼ 1� 8 and i; j – 3Þ such that

C11 C12 C14 C15 C16 e11 e21

C12 C22 C24 C25 C26 e12 e22

C14 C24 C44 C45 C46 e14 e24

C15 C25 C45 C55 C56 e15 e25

C16 C26 C46 C56 C66 e16 e26

e11 e12 e14 e15 e16 ��11 ��12

e21 e22 e24 e25 e26 ��12 ��22

2666666666664

3777777777775

�

S11 S12 S14 S15 S16 S17 S18

S12 S22 S24 S25 S26 S27 S28

S14 S24 S44 S45 S46 S47 S48

S15 S25 S45 S55 S56 S57 S58

S16 S26 S46 S56 S66 S67 S68

S17 S27 S47 S57 S67 S77 S78

S18 S28 S48 S58 S68 S78 S88

2666666666664

3777777777775
¼ I: ðA2Þ

Our task below is to present the expressions of N1; N2 and N3 in
terms of Sij. After arranging the columns and rows, Eq. (A2) can be
equivalently written into the following:

C11 C15 e11 C16 C12 C14 e21

C15 C55 e15 C56 C25 C45 e25

e11 e15 ��11 e16 e12 e14 ��12

C16 C56 e16 C66 C26 C46 e26

C12 C25 e12 C26 C22 C24 e22

C14 C45 e14 C46 C24 C44 e24

e21 e25 ��12 e26 e22 e24 ��22

2666666666664

3777777777775

�

S11 S15 S17 S16 S12 S14 S18

S15 S55 S57 S56 S25 S45 S58

S17 S57 S77 S67 S27 S47 S78

S16 S56 S67 S66 S26 S46 S68

S12 S25 S27 S26 S22 S24 S28

S14 S45 S47 S46 S24 S44 S48

S18 S58 S78 S68 S28 S48 S88

2666666666664

3777777777775
¼ I; ðA3Þ
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or

C11 C16 C15 e11 C16 C12 C14 e21

C16 C66 C56 e16 C66 C26 C46 e26

C15 C56 C55 e15 C56 C25 C45 e25

e11 e16 e15 ��11 e16 e12 e14 ��12

C16 C66 C56 e16 C66 C26 C46 e26

C12 C26 C25 e12 C26 C22 C24 e22

C14 C46 C45 e14 C46 C24 C44 e24

e21 e26 e25 ��12 e26 e22 e24 ��22

266666666666664

377777777777775

�

S11 0 S15 S17 S16 S12 S14 S18

0 0 0 0 0 0 0 0
S15 0 S55 S57 S56 S25 S45 S58

S17 0 S57 S77 S67 S27 S47 S78

S16 0 S56 S67 S66 S26 S46 S68

S12 0 S25 S27 S26 S22 S24 S28

S14 0 S45 S47 S46 S24 S44 S48

S18 0 S58 S78 S68 S28 S48 S88

266666666666664

377777777777775

¼

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

266666666666664

377777777777775
: ðA4Þ

Eq. (A4) can be more concisely written into

Q R
RT T

� �
q2 r2

rT
2 t

� �
¼ I� I2 IT

12

0 I

" #
; ðA5Þ

where

q2 ¼

S11 0 S15 S17

0 0 0 0
S15 0 S55 S57

S17 0 S57 S77

26664
37775; r2 ¼

S16 S12 S14 S18

0 0 0 0
S56 S25 S45 S58

S67 S27 S47 S78

26664
37775;

t ¼

S66 S26 S46 S68

S26 S22 S24 S28

S46 S24 S44 S48

S68 S28 S48 S88

26664
37775; ðA6Þ

and

I12 ¼

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

26664
37775; I2 ¼ diag 0 1 0 0½ �: ðA7Þ

After carrying out a procedure similar to that by Ting (1996), we fi-
nally obtain:

N3¼�q�1
2 ¼

�1
D

S55S77�S2
57 0 S17S57�S15S77 S15S57�S17S55

0 0 0 0
S17S57�S15S77 0 S11S77�S2

17 S15S17�S11S57

S15S57�S17S55 0 S15S17�S11S57 S11S55�S2
15

266664
377775;

ðA8Þ

N1 ¼ rT
2q�1

2 � I12 ¼

r6 �1 s6 t6

r2 0 s2 t2

r4 0 s4 t4

r8 0 s8 t8

26664
37775; ðA9Þ

N2 ¼ t� rT
2q�1

2 r2 ¼

j66 j26 j46 j68

j26 j22 j24 j28

j46 j24 j44 j48

j68 j28 j48 j88

26664
37775; ðA10Þ

where q�1
2 is the pseudo inverse of q2, and

D ¼
S11 S15 S17

S15 S55 S57

S17 S57 S77

�������
�������; ðA11Þ

ra ¼
1
D

S1a S5a S7a

S15 S55 S57

S17 S57 S77

�������
�������; sa ¼

1
D

S11 S15 S17

S1a S5a S7a

S17 S57 S77

�������
�������;

ta ¼
1
D

S11 S15 S17

S15 S55 S57

S1a S5a S7a

�������
�������; ða ¼ 6;2;4;8Þ ðA12Þ

jab ¼
1
D

S11 S1a S15 S17

S1b Sab S5b S7b

S15 S5a S55 S57

S17 S7a S57 S77

���������

���������; ða;b ¼ 6;2;4;8Þ ðA13Þ

In view of Eq. (A2), we have S11 > 0; S55 > 0; S11S55 � S2
15 > 0 and

S77 < 0. Consequently, if we write N3 into the following form:

N3 ¼ �

N11 0 N13 N14

0 0 0 0
N13 0 N33 N34

N14 0 N34 N44

26664
37775; ðA14Þ

then N11 > 0; N33 > 0; N11N33 � N2
13 > 0 and N44 < 0.

In the following we discuss the structures of Nð�1Þ
i ði ¼ 1; 2; 3Þ. It

can be easily checked that:

Nð�1Þ
1 ¼

0 � � �
�1 � � �
0 � � �
0 � � �

26664
37775; Nð�1Þ

3 ¼

0 0 0 0
0 � � �
0 � � �
0 � � �

26664
37775: ðA15Þ

In addition the following identity establishes:

Q R
RT T

� �
q r1

rT
1 t1

� �
¼

I 0
I12 I� I1

� �
; ðA16Þ

where

q ¼

S11 S16 S15 S17

S16 S66 S56 S67

S15 S56 S55 S57

S17 S67 S57 S77

26664
37775; r1 ¼

0 S12 S14 S18

0 S26 S46 S68

0 S25 S45 S58

0 S27 S47 S78

26664
37775;

t1 ¼

0 0 0 0
0 S22 S24 S28

0 S24 S44 S48

0 S28 S48 S88

26664
37775; ðA17Þ

and

I1 ¼ diag 1 0 0 0½ �: ðA18Þ
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We can finally arrive at

Nð�1Þ
3 ¼ t�1

1 ¼
1
D0

0 0 0 0
0 S44S88�S2

48 S28S48�S24S88 S24S48�S28S44

0 S28S48�S24S88 S22S88�S2
28 S24S28�S22S48

0 S24S48�S28S44 S24S28�S22S48 S22S44�S2
24

266664
377775;

ðA19Þ

Nð�1Þ
1 ¼ r1t�1

1 � IT
12 ¼

0 r01 s01 t01
�1 r06 s06 t06
0 r05 s05 t05
0 r07 s07 t07

26664
37775; ðA20Þ

Nð�1Þ
2 ¼ �qþ r1t�1

1 rT
1 ¼ �

j011 j016 j015 j017

j016 j066 j056 j067

j015 j056 j055 j057

j017 j067 j057 j077

26664
37775; ðA21Þ

where

D0 ¼
S22 S24 S28

S24 S44 S48

S28 S48 S88

�������
�������; ðA22Þ

r0a ¼
1
D

0 S2a S4a S8a

S24 S44 S48

S28 S48 S88

�������
�������; s0a ¼

1
D0

S22 S24 S28

S2a S4a S8a

S28 S48 S88

�������
�������;

t0a ¼
1
D0

S22 S24 S28

S24 S44 S48

S2a S4a S8a

�������
�������; ða ¼ 1;6;5;7Þ ðA23Þ

j0ab ¼
1
D0

Sab S2b S4b S8b

S2a S22 S24 S28

S4a S24 S44 S48

S8a S28 S48 S88

���������

���������; ða; b ¼ 1;6;5;7Þ ðA24Þ

In view of Eq. (A2), we have S22 > 0; S44 > 0; S22S44 � S2
24 > 0 and

S88 < 0. Consequently, if we write Nð�1Þ
3 into the following form:

Nð�1Þ
3 ¼

0 0 0 0
0 H22 H23 H24

0 H23 H33 H34

0 H24 H34 H44

26664
37775; ðA25Þ

then H22 > 0; H33 > 0; H22H33 �H2
23 > 0 and H44 < 0.

It is of interest to point out that the expressions of N3 and Nð�1Þ
3

for anisotropic elastic materials in terms of the reduced elastic
compliances s0ab were first obtained by Stroh (1958) and those of
N1 and Nð�1Þ

1 were first obtained by Ting (1988). Here we present
the explicit expressions of Ni and Nð�1Þ

i for anisotropic piezoelectric
materials in terms of the introduced Sij. Thus Sij can be considered
as the reduced generalized compliances for piezoelectric materials.

Appendix B. The structures of Ni and N
ð�1Þ
i for Scheme 2

In Scheme 2 of the Stroh formalism, the following identity is
still valid:

Q I2 ¼ RI1; R2K ¼ T1K ; ðI; K ¼ 1;2;3;4Þ ðB1Þ

Thus the structures in Eq. (A1) for Scheme 1 are still valid for
Scheme 2.

Next we introduce Sij; ði; j ¼ 1� 8 and i; j – 3Þ such that

C11 C12 C14 C15 C16 h21 �h11

C12 C22 C24 C25 C26 h22 �h12

C14 C24 C44 C45 C46 h24 �h14

C15 C25 C45 C55 C56 h25 �h15

C16 C26 C46 C56 C66 h26 �h16

h21 h22 h24 h25 h26 b22 �b12

�h11 �h12 �h14 �h15 �h16 �b12 b11

2666666666664

3777777777775

�

S11 S12 S14 S15 S16 S17 S18

S12 S22 S24 S25 S26 S27 S28

S14 S24 S44 S45 S46 S47 S48

S15 S25 S45 S55 S56 S57 S58

S16 S26 S46 S56 S66 S67 S68

S17 S27 S47 S57 S67 S77 S78

S18 S28 S48 S58 S68 S78 S88

2666666666664

3777777777775
¼ I; ðB2Þ

which can also be obtained from Eq. (A2) by using the following
substitutions:

e1j ! h2j; e2j ! �h1j; ðj ¼ 1;2Þ
�11 ! �b22; �12 ! b12; �22 ! �b11:

ðB3Þ

It is observed from Eq. (B2) that the 7 � 7 real and symmetric
matrix formed by Sij is positive definite in view of the fact that
the introduced energy density function w is convex (Suo, 1993).
Once we introduce Eq. (B2), all the rest development is very similar
to that in Appendix A. The only difference lies in that in scheme 2
both the two 4 � 4 matrices �N3 and Nð�1Þ

3 are positive semidefi-
nite, and both the two 4 � 4 matrices N2 and �Nð�1Þ

2 are positive
definite. This situation is similar to that for anisotropic elastic
materials.

Appendix C. The imperfect interface models used in Sections 3
and 4

The constitutive equations for a piezoelectric interphase of con-
stant thickness h between the upper semi-infinite anisotropic pie-
zoelectric solid 1 and the lower semi-infinite anisotropic
piezoelectric solid 2 can be equivalently written into

r1 ¼ Q cu;1 þ Rcu;2;

r2 ¼ RT
c u;1 þ Tcu;2;

ðC1Þ

where r1 ¼ r11 r21 r31 D1½ �T ; r2 ¼ r12 r22 r32 D2½ �T ,
and the subscript c is used to identify the quantities associated with
the interphase. All the rest notations in Eq. (C1) are the same as
those adopted in Section 2.1 for Scheme 1 of the Stroh formalism.

(i) If we assume that CðcÞijkl << Cð1Þijkl; Cð2Þijkl; eðcÞijk << eð1Þijk ; eð2Þijk and
�ðcÞij << �ð1Þij ; �

ð2Þ
ij (or the so-called compliant and weakly con-

ducting interphase) and that the interphase is also very thin,
then it follows from (C1)2 that

r
ð1Þ
2 ¼ r

ð2Þ
2 ¼

Tc

h
ðu1 � u2Þ; x2 ¼ 0 ðC2Þ

which is equivalent to Eq. (25). As a result K in Eq. (25) is related to
the electroelastic properties and the thickness of the interphase
through the following:

K ¼ hT�1
c ¼ hNðcÞ2 ; ðC3Þ

which clearly indicates that the property of K is exactly the same as

that of T�1
c ¼ NðcÞ2 [or equivalently that of Tc defined in Eq. (6)]. In

view of the fact that TE is positive definite and �22 > 0, then we
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arrive at the conclusion that
a11 a12 a13

a12 a22 a23

a13 a23 a33

24 35 is positive definite

whereas a44 < 0.
(ii) If we assume that CðcÞijkl 	 Cð1Þijkl; Cð2Þijkl and �ðcÞij 	 �ð1Þij ; �

ð2Þ
ij (or

the so-called stiff and highly conducting interphase, it is of
interest to notice that here there is no restriction on the pie-
zoelectric constants of the interphase), then it follows from
Eq. (C1)2 that

u;2 ¼ �T�1
c RT

c u;1: ðC4Þ

Substituting the above into Eq. (C1)1, we arrive at the following
expression:

r1 ¼ ðQ c � RcT�1
c RT

c Þu;1: ðC5Þ

By taking the derivative of both sides of Eq. (C5) with respect to x1,
and by noticing the 2D equilibrium equations r1;1 þ r2;2 ¼ 0, we can
finally obtain

r2;2 ¼ �ðQ c � RcT�1
c RT

c Þu;11: ðC6Þ

If we further assume that the interphase is very thin, then we arrive
at

r
ð1Þ
2 � r

ð2Þ
2 ¼ �Eu;11; x2 ¼ 0; ðC7Þ

where the real and symmetric matrix E is related to the electroelas-
tic properties and the thickness of the interphase through the
following:

E ¼ hðQ c � RcT�1
c RT

c Þ ¼ �hNðcÞ3 : ðC8Þ

In view of Eq. (A14), it is then apparent that E can be expressed into
Eq. (72) and that E11 > 0; E33 > 0; E11E33 � E2

13 > 0 and E44 < 0.

Appendix D. The imperfect interface models used in Sections 5
and 6

The constitutive equations for a piezoelectric interphase of con-
stant thickness h between the upper semi-infinite anisotropic pie-
zoelectric solid 1 and the lower semi-infinite anisotropic
piezoelectric solid 2 can be equivalently written into

r1 ¼ Q cu;1 þ Rcu;2;

r2 ¼ RT
c u;1 þ Tcu;2;

; ðD1Þ

where r1 ¼ r11 r21 r31 E2½ �T ; r2 ¼ r12 r22 r32 �E1½ �T ,
and the subscript c is used to identify the quantities associated with
the interphase. All the rest notations in Eq. (D1) are the same as
those adopted in Section 2.2 for Scheme 2 of the Stroh formalism.

(i) If we assume that CðcÞijkl 
 Cð1Þijkl; Cð2Þijkl; hðcÞijk 
 hð1Þijk ; hð2Þijk and
bðcÞij 
 bð1Þij ; bð2Þij (or the so-called compliant and highly con-
ducting interphase) and that the interphase is also very thin,
then it follows that:

u1 � u2 ¼ Kr
ð1Þ
2 ¼ Kr

ð2Þ
2 ; x2 ¼ 0; ðD2Þ

where K ¼ hT�1
c ¼ hNðcÞ2 is positive definite in view of the fact that T

is positive definite.
(ii) If we assume that CðcÞijkl 	 Cð1Þijkl; Cð2Þijkl and bðcÞij 	 bð1Þij ; bð2Þij (or

the so-called stiff and weakly conducting interphase), then
the following interface model establishes:

r
ð1Þ
2 � r

ð2Þ
2 ¼ �Eu;11; x2 ¼ 0; ðD3Þ

where

E ¼ hðQ c � RcT�1
c RT

c Þ ¼ �hNðcÞ3 : ðD4Þ

It is apparent that E is positive semidefinite in view of the fact
that – N3 is positive semidefinite.
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