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General solutions are derived to the two-dimensional Eshelby’s problem of an inclusion of arbitrary
shape embedded in one of two imperfectly bonded anisotropic piezoelectric half-planes. The inclusion
undergoes uniform eigenstrains and eigenelectric fields. In this work four different kinds of imperfect
interface models with vanishing thickness are considered: (i) a compliant and weakly conducting inter-
face, (ii) a stiff and highly conducting interface, (iii) a compliant and highly conducting interface, and (iv)
a stiff and weakly conducting interface. Furthermore the obtained general solutions are illustrated in
detail through an example of an elliptical inclusion near the imperfect interface. It is observed that the
full-field expressions of the three analytic function vectors characterizing the electroelastic field in the
two piezoelectric half-planes including the elliptical inclusion can be elegantly and concisely presented
through the introduction of an integral function. We also present the tractions and normal electric dis-
placement along a compliant and weakly conducting imperfect interface induced by the elliptical inclu-
sion. It is found that the imperfection of the interface has no influence on the leading term in the far-field
asymptotic expansion of the tractions and normal electric displacement along the compliant and weakly
conducting interface induced by an arbitrary shaped inclusion. The far-field expansions of the analytic
function vectors in the two imperfectly bonded half-planes for an arbitrary shaped inclusion are also
derived. Some new identities and structures of the matrices N; and N,?’” for anisotropic piezoelectric

materials are obtained.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Eshelby’s problem of an inclusion with eigenstrains (or
transformation strains) has been a topic in micromechanics for
more than fifty years (Eshelby, 1957; Mura, 1987). When address-
ing the three-dimensional Eshelby’s problem, the Green’s function
approach is prevalent (Eshelby, 1957; Mura, 1987; Nozaki and
Taya, 2001). However when discussing two-dimensional (2D)
Eshelby’s problem in isotropic or anisotropic solids, the complex
variable method is more effective (see for example Jaswon and
Bhargava, 1961; Bhargava and Radhakrishna, 1964; Willis, 1964;
Yang and Chou, 1976, 1977; Ru, 2000, 2001; Pan, 2004; Jiang and
Pan, 2004; Wang et al., 2007). It has been found in recent years that
studies on Eshelby’s problem are essential in understanding the
behaviors of quantum dots and quantum wires in nanocomposite
solids (see recent reviews by Ovid’ko and Sheinerman, 2005 and
Malanganti and Sharma, 2005).

When addressing the inclusion problems in a two-phase infinite
medium (say with a flat interface), it is found that the perfect inter-

* Corresponding author. Tel.: +1 302 831 0378.
E-mail address: xuwang_sun@hotmail.com (X. Wang).

0020-7683/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2009.09.021

face assumption was adopted in the majority of the previous studies
(see for example, Zhang and Chou, 1985. Yu and Sanday, 1991; Jiang
and Pan, 2004). In a recent study, Wang et al. (2007) considered a 2D
thermal inclusion of arbitrary shape embedded in one of two imper-
fectly bonded isotropic elastic half-planes by using Muskhelishvili’s
complex variable method (Muskhelishvili, 1963). The imperfect
interface in that study was simulated by using the linear spring layer
with vanishing thickness. However, the corresponding Eshelby’s
problem for two imperfectly bonded dissimilar anisotropic piezo-
electric half-planes still remains a challenging problem.

Itis of interest to point out also that so far various interface mod-
els have been proposed to simulate an interphase layer with finite
thickness (Needleman, 1990; Benveniste and Miloh, 2001; Benven-
iste and Baum, 2007; Bertoldi et al., 2007a,b; Benveniste, 2006,
2009), to account for damage (for example, micro-cracks and mi-
cro-voids) occurring on the interface (Fan and Sze, 2001), and to
study their influence on the effective properties of the composites
(Lu and Lin, 2003; Wang and Pan, 2007) and on the interfacial wave
propagation (Melkumyan and Mai, 2008). Nondistructive evalua-
tion methods were also proposed to detect and characterize the
interface imperfection (Nagy, 1992; Hu and Nagy, 1998). It was
reported that the effect of interfacial stress, defects, impurities,
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and electrodes on the variation of polarization in ferroelectric thin
films could be significant (Lu and Cao, 2002). However, as expected
that if the piezoelectricity of an interphase layer is taken into consid-
eration (Benveniste, 2009), the scenarios of the imperfect interface
will become more complex in view of the fact that now the interface
has imperfection in both elasticity and dielectricity.

In this work we consider the 2D problem of an Eshelby inclu-
sion of arbitrary shape with uniform eigenstrains and eigenelectric
fields embedded in one of two bonded anisotropic piezoelectric
half-planes by means of the Stroh formalism (Suo et al., 1992;
Suo, 1993; Wang, 1994; Chung and Ting, 1996; Ru, 2000, 2001).
In extending previous works (Ru, 2001; Pan, 2004; Jiang and Pan,
2004; Wang et al., 2008), the two anisotropic piezoelectric half-
planes are now bonded through a thin anisotropic piezoelectric
layer. It is found that closed-form solutions can be derived when
the middle piezoelectric layer is replaced by an imperfect interface
with vanishing thickness. The imperfect interface models dis-
cussed in this work can be classified into the following four differ-
ent kinds:

(i) Compliant and weakly conducting interface. This imperfect
interface is based on the assumption that tractions and
normal electric displacement are continuous across the inter-
face, whereas the elastic displacements and electric potential
undergo jumps on the interface which are proportional to the
interface tractions and normal electric displacement.

Stiff and highly conducting interface. This imperfect inter-
face is based on the assumption that displacements and
electric potential are continuous across the interface,
whereas tractions and normal electric displacement undergo
jumps on the interface which are proportional to certain sur-
face differential operators of the interface displacements and
electric potential.

(iii) Compliant and highly conducting interface. This imperfect
interface is based on the assumption that tractions and tan-
gential electric field are continuous across the interface,
whereas the elastic displacements and charge potential
undergo jumps on the interface which are proportional to
the interface tractions and tangential electric field.

Stiff and weakly conducting interface. This imperfect interface
is based on the assumption that displacements and charge
potential are continuous across the interface, whereas trac-
tions and tangential electric field undergo jumps on the inter-
face which are proportional to certain surface differential
operators of the interface displacements and charge potential.

—~
—-
=

=

(iv

—

Our theoretical development demonstrates that the parameters
in all the four kinds of imperfect interface models can be explicitly
expressed in terms of the electroelastic moduli and the thickness of
the piezoelectric layer.

2. The Stroh formalism for anisotropic piezoelectric materials

In the following we will present two different schemes of the
Stroh formalism. Scheme 1 of the Stroh formalism will be adopted
in the analyses of a compliant and weakly conducting interface
(Section 3), and a stiff and highly conducting interface (Section
4). Scheme 2 will be adopted in the analyses of a compliant and
highly conducting interface (Section 5), and a stiff and weakly con-
ducting interface (Section 6).

2.1. Scheme 1 of the Stroh formalism
The basic equations for an anisotropic piezoelectric material can

be expressed in a fixed rectangular coordinate system x;(i = 1,2, 3)
as

0ij = Cijially) + €xijd 1,
04; =0, D=0,

Dy = eyjllij — €,

(1)

where repeated indices mean summation, a comma follows by
i (i=1, 2, 3) stands for the derivative with respect to the ith spatial
coordinate; u; and ¢ are the elastic displacement and electric poten-
tial; o and D; are the stress and electric displacement; Cyy, €; and
ey are the elastic, dielectric and piezoelectric coefficients,
respectively.

For 2D problems in which all quantities depend only on x; and
X», the general solutions can be expressed as (Suo et al., 1992;
Wang, 1994; Ting, 1996)

u=[u u, us ¢] =Af(z)+Af2), 2
O=[d b, b3 @] =Bf(z)+Bf(2),
where

A:[a1 d; as 34], B:[bl b2 b3 b4]7

f(2) = [fi(z1) fa(z) fa(2z3) f4(Z4)]T7 3)
Zi =X +pXa, Im{p} >0, (i=1-4),

with

Ny Nojra]  fa .
N w25 ) =19 @
N;=-T'R", N,=T', N;=RT'R"-Q, (5)
and
E e RE e T e
Q—[Q; n R{T i’ } T{T 2 } ©)
€, —€n €, —€n2 €y —€2

QY =Citr. Ry =Cia, (T = Ciiz,  (€5)y = €im- (7)

In addition the extended stress function vector @ is defined, in

terms of the stresses and electric displacements, as follows:
on = —®is, (i=1-3)

Dy = —¢ 5,

op = biq,
8
D2 _ q’y]. ( )

Here we can call ¢ a charge potential (Suo, 1993). Due to the fact
that the two matrices A and B satisfy the following normalized
orthogonal relationship:

B" AT||A A
[BT ATHB E]_I’ ®

then three real Barnett-Lothe tensors S, H and L can be introduced

S=i(2AB" —I), H=2iAA", L= -2iBB". (10)

During this investigation, the following identities will also be
utilized:

2A(p,)A" =N, — i(N;H + N,S"),

2A(p,)B" = N; +i(N,L — N;S), (11)
2B(p,)B" = N; +i(N]L — N;S),

where (x) is a 4 x 4 diagonal matrix in which each component is var-

ied according to the Greek index o (from 1 to 4).
It can also be easily checked that

[N%” N<24> } {a,} 1 |:ai:|, (i=1-4) (12)

UL
where
N"=-Q'R N"=-Q' N7V=T-RQ'R (13)

The detailed structures and identities of N; and N"™" (i = 1, 2, 3) for
Scheme 1 can be found in Appendix A.
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2.2. Scheme 2 of the Stroh formalism

In this scheme, the constitutive equations can be written into
(Suo, 1993)

0 = Gyt + hiDy,  Ex = hyguij + Dy, (14)

where E; is the electric field; Cy, f; and hyy are the elastic, dielec-
tric and piezoelectric coefficients.

For 2D problems in which all quantities depend only on x; and
X,, the general solutions can be expressed as (Suo, 1993; Wang,
1994)

u=[u; u, us o] =Af(z)+Af2),

r (15)
o= [0, & & ¢] —Bf(2)+Bl(2),

where the functions @; (i=1 - 3) and ¢ have been defined in Eq.
(8), and

A:[a1 d, a3 34}7 BI[b] bz b3 b4],

f2) = [fitz) flz) fi(zs) falza)]', (16)
Zj=2X1 +DpiX2, Im{p;} >0, (i=1-4),
with
N: NyJfa a; .
N N ) el o 17
Ni=-T'R", N,=T"' N;=RT'R"-Q, (18)
and

Q" hy RE —hn] [TE _h12:|
- . R= . T= , (19
¢ {h; ﬁzz} {hgz —P12 *lﬂz B ( )

Q)i = Cini, ROy =Cina, (T = Cona, (M), = hym. (20)
The identities in Eqgs. (9)-(13) are also valid in this scheme. It is
stressed that in this scheme, both the two 4 x 4 symmetric matrices
Q and T are positive definite. The structures and identities of N; and
Ng’l) (i=1,2,3) for Scheme 2 can be found in Appendix B. We add
that the formulations for Scheme 2 presented here are somewhat
different than those presented by Suo (1993) in view of the fact that

@ = —¢ with ¢ defined in Eq. (B1) by Suo (1993).

3. The Eshelby’s problem for two bonded piezoelectric half-
planes with a compliant and weakly conducting interface

3.1. The general solution

Now we consider two dissimilar anisotropic piezoelectric half-
planes imperfectly bonded along the real axis x, = 0, as shown in
Fig. 1. Here we assume that the upper half-plane contains a subdo-
main of arbitrary shape which has the same elastic, piezoelectric
and dielectric constants as the upper half-plane and undergoes
uniform eigenstrains (&}, &5, &5, &}, &,) and eigenelectric fields
(E7, E5). Let So and S; denote the subdomain and its supplement
to the upper half-plane, I" the perfect interface separating S, and
S1, S; the lower half-plane. In this research all quantities in
So, S1 and S, will be attached with the subscripts 0, 1 and 2 or
the superscripts (0), (1) and (2). For example the three analytic
functions fy(z), f1(z) and f,(z) are defined respectively in Sp, S;
and S,. In the analysis carried out in this section, we will adopt
Scheme 1 of the Stroh formalism.

The interface conditions along the perfect interface I can be ex-
pressed as (Ru, 2001)

y=uy+u, ® =0 onl, (21)

where u* is the additional displacements and electric potential
within the Eshelby’s inclusion S, due to uniform eigenstrains and
eigenelectric fields
E11X1 + €1X2
. E1,X1 + E,X s

u = 1271 T 52272 within So (22)

2(&51%1 + &5,%2)

7(E;X1 + E;Xz)
In view of Eq. (21), we introduce the following auxiliary function
vector g(z):

[ fo(2) + (Za)et+ < Py(z,) > d
82) = { £1(2) — (Da(22) — Pa(z))d ’

where z, = D,(z,) along the interface I" (Ru, 2001). In addition
D, (z4) = Py(z4) + 0(1) as |z,|] — oo. The two complex vectors ¢
and d appearing in Eq. (23) are related to the uniform eigenstrains
and eigenelectric fields as

(23)

2 €1y
. & &4
_/ b \pT| €12 | _/ 1 T| €22
c_<m—px>Bl 265, <ﬁx—p1>B1 2¢es, |
7Ex 7E*
*1 *2 (24)
€12 &n
d*< 1 >BT € _< D, >BT &1,
" \Pa—Py 1 28;2 Pa—Dy 1 28;1 ’
-k, ~E

where the Stroh eigenvalues p,(k =1 —4) are those pertaining to
the upper half-plane within which the Eshelby inclusion is embed-
ded. Our analysis (suppressed here) demonstrates that g(z) is ana-
lytic, continuous and single-valued everywhere in the whole upper
half-plane Sy + S; including the point at infinity. We observe from
Eq. (23) that f;(z) = g(z) + h(z) where h(z) = (D,(z,) — Py(z,))d is
the singular part while g(z) is the regular part of f;(z) if we extend
the definition region of f;(z) to the whole upper half-plane includ-
ing the domain Sg.

In addition the boundary conditions on the compliant and
weakly conducting imperfect interface x, = 0 separating the two
piezoelectric half-planes can be expressed as
ol -0l ol ~of. ai-af D -Df,

(1) (2) (2)

Uy =1y 01y
(1) (2) (2)
ul) —u o
<21> <22> =A <222> X, =0, (25)
Uz’ — U 03,
1 2 2
¢( ) _ ¢( ) D(z)

where the 4 x 4 real and symmetric matrix A is explicitly given by
Ol %12 13 Olig

X2 G2 023 Olog
A=AT = , (26)
13 O3 033 Ol3g

X14  Og Ol3g  Olgg

|:0511 012 0513j|
where |a;p o 0ps3 | is positive definite whereas a44 < 0. Eq.
013 0Ol23  0l33
(25) states that tractions and normal electric displacement are con-
tinuous across the interface, whereas the elastic displacements and
electric potential undergo jumps on the interface which are propor-
tional to the interface tractions and normal electric displacement. A
detailed derivation of the above imperfect interface model in Egs.
(25) and (26) can be found in Appendix C.

The above imperfect boundary conditions in Eq. (25) can also be
conveniently expressed in terms of f;(z) and f,(z) as
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Eshelby inclusion S,

(811’822’812’831’832’E1 ’EZ)

X2

X1

T

Imperfect interface

Lower anisotropic|piezoelectric half-plane S,

Fig. 1. Eshelby’s problem for two imperfectly bonded anisotropic piezoelectric half-planes with an inclusion of arbitrary shape.

Bif] (x1) + Bif; (x1) = Bof; (x1) + Bof; (x1),

AlfT(m) +7\1f1’ (%1) — Aof; (x1) — Kzf%(?ﬁ) X =0 (27)
= A[Bof; (x1) + Bofy (1)),

It follows from Eq. (27); that

f1(z) = B;'B,f,(2) + h(z) — B;'B;h(2), (28)

f] (Z) = ETlefz (Z) — ET]Blh(Z) + B(Z)
In writing Eq. (28), we have implicitly replaced the complex vari-
ables z;, (k=1 —4) by the common complex variable z = x; + ix,
in view of the fact that z; =z, =z3 =z4 =z on the interface
X, = 0. After the analysis is finished, we will change z back to the
corresponding complex variables. Substituting Eq. (28) into Eq.
(27),, we obtain

NB,f; (x;) — iAB,f5 (x;) — 2L;'Bih(x;)
= NBzf; (X]) + lABzf; (X]) — 2L;1Blh(X1), Xy = O, (29)

where M, (k=1,2) and N are 4 x 4 Hermitian matrices given by
(Suo et al., 1992; Wang, 1994)

N=M;"+M,' =L;' +L,' +i(SiL;' - S,L,"), 30)
M,' =iAB,' = (I-iS)L", (k=1,2).

We add that M;H (k=1,2) and N are not positive definite (Lothe
and Barnett, 1975; Suo et al., 1992). It is apparent that the left hand
side of Eq. (29) is analytic in the upper half-plane, while the right
hand side of Eq. (29) is analytic in the lower half-plane. Conse-
quently the continuity condition in Eq. (29) implies that the left
and right sides of Eq. (29) are identically zero in the upper and low-
er half-planes, respectively. It follows that:

NB.f,(z) + iAB,f)(2) = 2L, 'Bih(z), Im{z} <0 (31)

In order to solve the coupled set of first-order differential equations
in Eq. (31), we first consider the following eigenvalue problem:

(N—JA)V=0. (32)

There exist four eigenvalues to the above eigenvalue problem
(the four eigenvalues are not necessarily real in view of the fact
that both N and A are not positive definite). If / is an eigenvalue,
then its conjugate 4 is also an eigenvalue. In addition Re{/.} > 0.
Let that 4;, (i =1 — 4) be the four distinct roots and v; the associ-
ated eigenvectors, then the following orthogonal relationship can
be easily proved:

JYINY = AjAy, JPTAY = A, (33)

where A; is a 4 x 4 diagonal matrix, and

TZ[V] Vy V3 ‘/4}7 (34)
A]:diag[;q Ay A3 ;,4]. (35)

In addition the 4 x 4 real and symmetric matrix J appearing in Eq.
(33) is dependent on the nature of the four eigenvalues
Ji, (i=1—4). A detailed classification is given below.

(i) Four real eigenvalues (i.e., 11, 42, 43, A4 > 0):

J=diag[1 1 1 1], (36)

(ii) Two real and two complex conjugate eigenvalues (i.e.,
Ay Ay > 0, A3 = 14):

o O O =
o o = O
- O O O
o = O O
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(iii) Four complex eigenvalues (i.e., 21 = /p, 23 = A4):

o o = O
o O O =
- O O O

Next we introduce an analytic function vector ©(z) such that
B.f,(z) = YQ(z2). (39)

Employing the orthogonal relationship in Eq. (33), then Eq. (31) can
be decoupled into

—iA1Q(2) + Q' (z) = —2iA,'J¥'L;'B; (D, (2) — Py(2))d, Im{z} <0

(40)
The general solution to the above set of decoupled differential equa-

tions can be conveniently expressed as (Yoon et al., 2006; Wang
et al., 2007)

4 z
0(z) = ~24_(explizi2)) [ [Du(&) - P

k=1 —ocl

x (exXp(—ity&))dEéA, WL 'BiLid, Im{z} <O, (41)

where

I, =diag[1 0 0 0],
I =diagl0 0 1 0],

I, =diagl0 1 0 0],

42
I, =diagl0 0 0 1] (42)

Once Q(z) has been obtained, it is easy to arrived at fy(z), f;(2)
and f,(z) by using Eqgs. (23), (28) and (39). Before ending this sub-
section, it is of interest to look into in more detail the four eigen-
values /;, (i=1-4) determined by Eq. (32) through a specific
case. Here we assume that the two piezoelectric half-planes and
the middle piezoelectric interphase layer are orthotropic (Pan,
2001). In addition the two half-planes have the same material
property except that the poling direction of the upper half-plane
is in the positive x,-direction while that of the lower one is in
the negative x,-direction, and the interphase is poled in the x;-
direction. Consequently the complex Hermitian matrix N (Suo
et al., 1992; Ru, 1999) and the real and symmetric matrix A can
be explicitly given by

10 0  -ip]

C
0 CLT 0 0
N=2 00 1 0| (C, Cr €>0, p<0) (43)
1/ C4aCss
i 0 0 -1
and
P 0 0 py
0 0 0
A= P , (44)
0 0 py O
Pia 0 0 —pyy
where
he'©
Pu = Cm;i%mz>0 922:%>07 P33:%>07
66 22 22 . 44 (45)
hcl9 he
Pag = W >0, pu= @ +E(c»z
Now that the four eigenvalues to Eq. (32) can be given by
2 2
2 >0, hh=—F+——>0, 46
I A 7S ()

and
2
; %+%i\/<p%+%> _4<%q+ﬁ2)(p11p44+p%4) 0
134 = > U,
P11Paa + P34
(47)
when |1, /on 1 \/ﬁ +;151;?44 }CL ﬁ);or
Pu oy bas 4 ( L4 g2 ( 2 — (e o)’
; e T4 < P11Pa4 + P1a e Tq
134 = )
P11Pas+ P24
Re{is} =Re{is} >0 (48)
when |1, /o L fhasl < 2\/[3 + ol ECL + /32). Among the above

four eigenvalues o
deformation.

belongs to the decoupled anti-plane

3.2. An example of elliptical inclusion

In the following we illustrate the obtained general solution
through an example of an elliptical inclusion with semi-major
and semi-minor axes a and b. We further assume that the major
axis is parallel to the x;-axis and the center of the ellipse is located
atx; = 0and x, = (5 > b). In this case Dy(z), Px(z) and Di(z) — P (2)
can be explicitly determined as!

@ + |p b i(py — Pi)ab
Diz) =——— 5@ -pd) + Pud+——— 75—
k(2) a + pb? (z — pid) + Py e
x /(2= pd)” - (@ + pib?) (49)
a- lpkb _ (pk pk)
Pk( ) a— lpkb a— lpkb (50)
Di(z) — Px(z) = i(px — py)ab 1

Z2—ps+1/(z-pd)? - (@ + pib?)

Consequently the analytic function vector €2(z) can be explicitly
determined as

4
Q(2) = ab ) (P — Pr)(exp [i4s(Z — py8)]Y [i42(2 — Pyd),
k=1

Jy\/ G2 +pﬁb2} >A2’1]WTL;’Bllkd., Im{z} <0, (52)

where Y(z, ﬁ) is an introduced integral function defined by

2 exp

Y +/5

Apparently Y(z,0) = E;(z), the exponential integral (Abramovitz and
Stegun, 1972). In view of Egs. (23), (28), (39) and (52), the three
analytic function vectors fy(z) within the inclusion, fi(z) in the
upper half-plane but outside the inclusion and f,(z) in the lower
half-plane can now be explicitly given by

Y(z,B) = (53)

4
fo(z) =ab) (b - pk)B;1¢<exp[—iL(z — Do)y

k=1
« {qza(z — Bd) I @ + pgbz] >K;1 J¥'L B, Ld
_ B11§]< iab(p, — p,) >d
z- pud +\/ (2~ pad)? — (@ + B2b)
a—ipyb
fz{c+ <a—ipab>d} z€$So (54)
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4
£1(2) = ab (i~ pB; ¥ expl-s(z - Po)lY
k=1

« {—iﬁw(z _ Bed), Ty + ﬁﬁbz} >X511'1”L;1E Id

S1n iab(p.. — p,
_BllB]< iab(p, — p,) 2>
Z_pa5+\/(z_ﬁa5) —((12+f)§b)

d

. < iab(p, — p,) >d, zeS (55)
2-p,0+1/(2— .0 — (@ +pb?)

4

f:(2)=ab (p,

k=1

X {i)q(z — D), A/ A% + pﬁbz} >AgleTL{1Bllkd, ze$S,

(56)

— Di)B; "W (expliZy(z — pd)]Y

It is not difficult to write down the full-field expressions of
fo(2), f1(z) and f,(z) as follows:

4 4
foz)=abd > (b - pk)<exp [~1/m (22 — Prd)]Y

=1 k=1

m
y [_izm (2o — Bed), dmr /@ 1 ﬁﬁbz} >B;1¢ImX;J‘PTL;‘E Id

_ 24:< iab(p. — p,) >BllBllkd
5 \z, — pus +1/ (22 — 20)° — (@ + B3DY)
—ip,b
—(z) {c+ <Z_;g b>d}, (57)

4 . —
- Z< 1ab(ps — P) >B11§11kfl
k=T \zy — Pad + \/fo p0)” - (a2 + p3b°)
4 < lab(pa _py) >d7 (58)
P02~ P.0) (@ + P2

abii

<exp [iim(z, — Pid)]Y
m=1 k=1

X |idm(Z, — Pid), Amy\/ @ + pﬁbz}>Bgl‘l‘lmAg]]WTLl’lBllkd,

(59)

o

where the superscript ‘* is utilized to distinguish the Stroh eign-
values associated with the lower half-plane (z;) from those associ-
ated with the upper half-plane (z,).

It is clearly observed from Eq. (57) that the electroelastic field
inside the elliptical inclusion is intrinsically non-uniform even
when the material properties of the two piezoelectric half-planes
are exactly the same. The tractions and normal electric displace-
ment distributed along the whole imperfect interface x, = 0 can
also be simply given by

012 .,
. 4 i w{w(m —Pd), A/ @2 +pﬁb2} -1
—4abRe$ > "(p—pi)¥
~Pid+ \/ (x1—ped)’ — (a2 +pib’)

032 k=1
D,
XAy ]WTLl’lB]lkd}, X, =0, (60)

where the function w(z, ) is defined by (Wang et al., 2007)

w(z, B) = exp(2) {z+\/zz+ﬁ2} / : ex\;i 61)
z +

The jumps in elastic displacements and electric potential along the
imperfect interface can then be easily obtained by using Egs. (25)

and (60). By noticing the following far field asymptotic behavior
of w(z, f)

N 1 1
w(z,ﬁ):l—;-i-o 7 ) |z| = o0 (62)

then the tractions and normal electric displacement along x, = 0 at
far field when |x;| — oo are

012
022 2ab 1 1
~—Im{N" 'L} 'B -
7 = ImN L By s — ) o).
D,
[X1] - 00, and x, =0 (63)

which clearly indicates that the imperfection of the interface has no
influence on the leading 1/x3 term in the far-field asymptotic
expansion! Expression (63) can be easily generalized to an arbitrary
shaped inclusion of area A embedded in the upper half-plane such
that

012 8?2
(%) A T 852 - N M
~ A — |LL; (N{V'L; —N§'S
03 X 2¢5, [ (N 3 51)
Dz 7E;
&1
. & 1
1 3} 285, X3
_E’l‘
(64)
where
i:(D—WTD71W)717 \TV:D’1WZ, (65)
and
DoL+L, W=sL' SL' (50)

During the derivation of the above real form solution, we have
adopted the identities in Eqs. (10) and (11).

3.3. Far-field expansions of the analytic function vectors for an
arbitrary shaped inclusion

It follows from Eqgs. (58) and (59) that the far-field asymptotic
expansions of f;(z) and f,(z) for an arbitrary shaped inclusion of
area A embedded in the upper half-plane can be simply derived as

A el [Fo1y -
f1(2) = 5 ((z) "B {N L [N L - NSy
NG — Lagy | — INGes b+ o(((2) 7)), (67)
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A pInly
27 (@) 7By NIL (N1 —

—Ligy] +0((z;) %)), (68)

1 SN(D o
NS, —iN{)e;

where

* * " 1T " " * 1T
g =[&,; &, 28, -EJ, &=[&, & 2&, -E].

(69)

Interestingly the leading terms in the far-field asymptotic
behaviors of f;(z) and f,(z) are independent of the imperfection
of the interface, and they satisfy the perfect boundary conditions
on x; = 0. The result in Eq. (64) can also be obtained from Eq.
(68) by taking differentiation. When the two piezoelectric half-
planes are exactly the same, it can be easily deduced from Egs.
(67) and (68) that

£ =0.0) = 4 ((z2) B
< (INTL = NsS = iNa)e; — Las] +0(((z) ). (70)

4. The Eshelby’s problem for two bonded piezoelectric half-
planes with a stiff and highly conducting interface

4.1. The general solution

In this section, we discuss the case in which the interface be-
tween the two piezoelectric half-planes is stiff and highly conduct-
ing. The boundary conditions on the stiff and highly conducting
imperfect interface x, = 0 can be expressed as

1 2 2 1 2 1 2
W = u® u) =@ u) =@ g = ¢,
(1) (2) (2)
012 01z U
(1) (2) 2 2
0y 0pn | g u?
ml o] _EW o | *=0 (71)
03 03, 1] Us
1 2 2
D(Z) D(Z) (p( )
where
Ell 0 E]3 E14
0 0 O 0
E=E = ) (72)
E13 O E33 E34
Eis 0 Esy Euy

with Eq > 0, E33 > 07 E11E33 — E%B >0 and E4y < 0. Eq (71), which
can be termed a generalized “membrane type interface” (Benven-
iste and Miloh, 2001; Benveniste, 2006; Erdogan and Ozturk,
2008; Guler, 2008), states that displacements and electric potential
are continuous across the interface, whereas tractions and normal
electric displacement undergo jumps on the interface which are
proportional to certain surface differential operators of the interface
displacements and electric potential. It is clearly observed from Eq.
(71) that the normal stress o, is still continuous across the imper-
fect interface. A detailed derivation of the above imperfect interface
model in Eqgs. (71) and (72) can be found in Appendix C. In the anal-
ysis carried out in this section, we will also adopt Scheme 1 of the
Stroh formalism.

The boundary conditions in Eq. (71) can also be concisely writ-
ten in terms of u and ® as

u=u, O -0,=-Eu,;, x=0 (73)

or in terms of the two analytic function vectors f;(z) and f,(z) as

Aif] (x1) + +A, 1(x1) = Aof, (x1) +7\2f;(x1)7

Bif; (x1) + Bif; (x1) — Bof, (1) —Bofj (1) %, =0 (74)
= —E[Aof; (x1) + Aoy ()]

It follows from Eq. (74); that:

fi(z) = "l_\zfz( z) +h( z) - A;'Ah(2), (75)

f1(z) = A;'Asf,(z) — A;'Ajh(z) + h(2).

Substituting Eq. (75) into Eq. (74),, we can finally arrive at the
following set of coupled differential equations:

A, f>(2) + iEAxS, (2) = 2H1’1A1h(z), Im{z} <0, (76)
where IT is a 4 x 4 Hermitian matrix defined by

=M +M,, (77)
M, = —iBA,' =H.'(I+iS), (k=1,2). (78)
In order to solve Eq. (76), we consider the following eigenvalue
problem:

(E—Iv=0. (79)

It is apparent that: (i) if / is an eigenvalue, then its conjugate 7 is
also an eigenvalue; (ii) 4 = 0 is an eigenvalue, and the real parts of
all the other three non-zero eigenvalues are positive. Let that
71 =0and %, (i =2, 3, 4) be the four distinct roots and v; the asso-
ciated eigenvectors, then the following orthogonal relationship can
be easily proved:

JY'EY = A1A,, JY IV = A,, (80)

where A; is a 4 x 4 diagonal matrix, and

‘PZ[V] V; V3 V4]7 (81)
= dlag[O Ay A3 ).4] (82)

In addition the 4 x 4 real and symmetric matrix J is dependent on
the nature of the four eigenvalues 4;, (i =1 —4). A detailed classifi-
cation is given below.

(i) Four real eigenvalues (i.e., 22, /3, 44 > 0):
J=diag[1 1 1 1], (83)

(ii) Two real and two complex conjugate eigenvalues (i.e.,
Ay > 0, A3 = 24):

1 000
0100
= 4
L 0 0 01 (84)
0010
Next we introduce an analytic function vector Q(z) = [Q(2)
Q,(2) Q3(2) Qu(2)]" such that
Axf,(z) = YQ(2). (85)

Employing the orthogonal relationship in Eq. (80), then Eq. (76) can
be decoupled into

Q(z) +iAQ'(z) = 2A,'J¥H; 'A; (D,(z) — P,(2))d, Im{z} <O.

(86)
The general solution to the above set of decoupled differential equa-
tions can be conveniently expressed as

Qz) = i(Fﬁ(z)Mi T¥TH; AL, (87)

k=1

where the analytic functions F’,; (z) are defined by
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P ( )7{2[Dk(z)fl’k(z)], m=1
M\ <21k, exp(id,'z) J7 L [Di(E) — Pi(&)]exp(—i,' &)d¢, m=2,3,4
(88)

Consequently it is not difficult to write down the full-field solutions
of fo(z), f1(z) and f,(z) as follows:

<Fﬁ1 (Zi)>Af]¢ImK£1]‘PTHI]K1 Iid

-
-

fo(z) =
1

3
Il
=~
Il

1

(Di(2,) — Pu(z))A;'AiLd — ()¢ — (P,(z,))d,  (89)

4
k=1

fi(z) = 24: > (Fh(22)A] LA JYH 'ALd — i(ﬁk(za)

1 k=1 k=1

- I_’k(zi))Al’lﬁl Lid + (D, (z,) — Pu(z,))d, (90)
f,(2) = 24: 24:<F§1(ZZ)>A£ "W A, 'J¥TH, A Ld. (91)
m=1 k=1

4.2. An example of elliptical inclusion

We illustrate the obtained general solution in Section 4.1
through an example of an elliptical inclusion with semi-major
and semi-minor axes a and b. We further assume that the major
axis is parallel to the x;-axis and the center of the ellipse is located
at x;=0 and x, = §(6 > b). As a result the explicit expressions of
F’,‘n (z) can be easily given by

2i(p—py)ab m=1,

B @)= 2ot/ (z-pyo)? (ahpibz)7 '
I (= P)abexplizy,' (2= pid)|Y[iZy' (2= Pid). 2 /@2 +Pb], m=2.3,4
(92)

where the integral function Y(z, 8) has been defined in Eq. (53).
Apparently F¥ (z) = F¥(z) as 2n — 0, (m =2,3,4).

5. The Eshelby’s problem for two bonded piezoelectric half-
planes with a compliant and highly conducting interface

In this section we consider the case in which the interface be-
tween the two piezoelectric half-planes is compliant and highly
conducting. When we adopt Scheme 2 of the Stroh formalism,
the interface conditions along the perfect interface I' can be ex-
pressed as (Ru, 2001)
y=u+u, O =0, +d onl, (93)
where u* and ®* are the additional displacements and electric po-
tential within the Eshelby’s inclusion Sy due to uniform eigenstrains
and eigenelectric fields

&1 + 85%2 0
g* x + 8* x O . .
= 12 R and @ = within S
2(851X1 + E3,X2) 0
0 7(E’{X1 +E;X2)
(94)

In this case we can still introduce the auxiliary function vector g(z)
defined in Eq. (23). However now the vectors ¢ and d are re-defined
by

fen ] [0] CANES
_/_DPs r| €| _Ar|0 ]/ 1 r| €| ar|0
°*<pa—p1> Biloe, | M0 <pa—px> Bilge, | M0
L 0 | LE; | L 0 | LE; |
fE] 0] fea ] [0]
& 0 & 0
d={- 1 BT | “12 | _AT _<7 Dy > B'| 2 | _AT
<prpa> ' 2e3 1o Du—Dy/ | 1| 2e3, "o
L 0 | LE; | L 0 | LE; |
(95)

During the above derivation, we have adopted the normalized
orthogonal relationship in Eq. (9). Similar to the situation in Sec-
tion 3, the introduced g(z) is still analytic, continuous and single-val-
ued everywhere in the whole upper half-plane Sy + S; including the
point at infinity.

In addition the boundary conditions on the compliant and
highly conducting imperfect interface x, = 0 separating the two
piezoelectric half-planes can be expressed as

(1) _ ~(2) (1) _ ~(2) 1 _ ~(2) (1) _ g2
O3 =01;, Oyp =0y, 03 =03, E'=E7
1 2 (2)
ul) —ul g
(1) (2) (2)
u,’ —u o
?1) (22) =A (222) X =0, (36)
U3 — u3 032
1 2 (2)
(P( ) (p( ) 751

where A is a 4 x 4 positive definite real and symmetric matrix. Eq.
(96) states that tractions and tangential electric field are continuous
across the interface, whereas the elastic displacements and charge
potential undergo jumps on the interface which are proportional
to the interface tractions and tangential electric field. A detailed
derivation of the above imperfect interface model in Eq. (96) can
be found in Appendix D.

Once we have introduced the above, all the rest analysis is sim-
ilar to that in Section 3. In fact the analysis becomes much simpler
because in this case both N defined in Eq. (30) and A are positive
definite (Suo, 1993). Thus we observe that: (i) all the four eigen-
values of Eq. (32) are positive real; and (ii) it is sufficient to treat
Jin Eq. (33) as an identity matrix and A, in Eq. (33) as a 4 x 4 po-
sitive real diagonal matrix.

6. The Eshelby’s problem for bonded two piezoelectric half-
planes with a stiff and weakly conducting interface

In this section we consider the case in which the interface be-
tween the two piezoelectric half-planes is stiff and weakly con-
ducting. We will adopt Scheme 2 of the Stroh formalism in the
following analysis. The boundary conditions on the stiff and
weakly conducting imperfect interface x, = 0 can be expressed as

m_ @ @ 1) @) y_ @
ul) =ul?) u =uy, u) =ul?, M =@,

(1) (2) 2
01, 01, U% )
(1) (2) 2 2
On | _| %2 | _ g0 uy X, — 0 (97)
oy 52 e | @ 2
32 32 Us
(1) (2) 2
_E1 _E1 (p( )

where E is a positive semidefinite matrix given by

Eiv 0 Ei3 Ey

0 0 O 0
E=E = 98
Eiz 0 Es3 Es (98)

Eiy 0 Esy Ey
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Eq. (97) states that displacements and charge potential are con-
tinuous across the interface, whereas tractions and tangential elec-
tric field undergo jumps on the interface which are proportional to
certain surface differential operators of the interface displacements
and charge potential. It is also clearly observed from Eq. (97) that
the normal stress o, is still continuous across the imperfect inter-
face. A detailed derivation of the above imperfect interface model
in Eqs. (97) and (98) can be found in Appendix D.

Once we have introduced the above, all the rest analysis is sim-
ilar to that in Section 4. Keep in mind that now the two vectors ¢
and d have been re-defined in Eq. (95). In fact the analysis becomes
simpler because in this case IT defined in Eq. (77) is positive defi-
nite whilst E is positive semidefinite. Thus we observe that: (i)
The nature of the eigenvalues of Eq. (79) is: 4, =0 and
J2, 73, 24 > 0; and (ii) it is sufficient to treat J in Eq. (80) as an
identity matrix and A, in Eq. (80) as a 4 x 4 positive real diagonal
matrix.

7. Conclusions

In this research we derived closed-form solutions to the 2D
problem of an Eshelby’s inclusion of arbitrary shape embedded in
one of two imperfectly bonded piezoelectric half-planes. Full-field
solutions for an elliptical inclusion embedded in the upper half-
plane were presented in Eqgs. (57)-(59) in terms of the introduced
integral function Y(z, ). A concise expression of the tractions and
normal electric displacement along the interface was given by Eq.
(60) through the introduction of the function w(z, ). The far-field
asymptotic expansions of the tractions and normal electric dis-
placement along the imperfect interface as well as those of the
analytic function vectors in the two half-planes due to an arbitrary
shaped inclusion were also presented. It was observed that the
leading terms in these expansions are in fact independent of the
imperfection of the interface. We then presented in Eqs. (89)-
(91) the full-field general solutions of the Esheby’s problem for
two bonded piezoelectric half-planes with a stiff and highly con-
ducting interface. The obtained general solutions were demon-
strated through the example of an elliptical inclusion. We
discussed in Sections 5 and 6 the Eshelby’s problem in piezoelectric
bimaterials with a compliant and highly conducting interface and
with a stiff and weakly conducting interface. We observed that
the discussions on a compliant and highly conducting interface
or a stiff and weakly conducting interface become simpler in view
of the fact that in these two cases the complex Hermitian matrices
for the piezoelectric bimaterial are positive definite (Suo, 1993)
whilst the real and symmetric matrices for the imperfect interface
are positive definite [see Eq. (96)] or positive semi-definite [see Eq.
(98)]. During the theoretical development, we also derived explicit
expressions of N; and NE’” for anisotropic piezoelectric materials
in terms of the introduced 28 reduced generalized compliances Sj
(see Appendices A and B).

In this work we only considered the case in which the imperfect
interface is infinitely long. When the imperfection is finite along
the interface, the problem basically reduces to interface bridged
cracks or interface bridged anti-cracks with the imperfect bound-
ary conditions being used as the “bridging force” for compliant
interface (Ni and Nemat-Nasser, 2000) or “bridging strain” for stiff
interface (Erdogan and Ozturk, 2008). In this case in principle we
can resort to the interfacial Green’s functions for an extended line
dislocation and an extended line force (Ting, 1996) to construct a
system of Cauchy singular integral equations for the distributed
dislocation density and the distributed line force density whose ex-
plicit solutions can be given in terms of Chebyshev polynomials or
Jacobi polynomials (Erdogan and Gupta, 1972; Ni and Nemat-Nasser,
2000). Particularly when the bridged cracks or anti-cracks are

located in homogeneous materials, a decoupling methodology sim-
ilar to that proposed in this research can still be conveniently
adopted to arrive at a decoupled set of singular integral equations,
with each equation in a form similar to Eq. (5.1) by Erdogan and
Gupta (1972).
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Appendix A. The structures of N; and N| " for Scheme 1

First we discuss the structures of N; (i =1, 2, 3). It has been
proved that (Ting, 1996)

x =1 * x * 0 % x
* 0 % % 0 00O

Ni = x 0 % x| Ns = « 0 % x| (A1)
x 0 % % x 0 % x

where x denotes a possibly nonzero element.
We then introduce S, (i,j=1-8 and i, j # 3) such that

Ci C2 Gy Cis Cis en €21
Cia Cnn Gy G5 Gy en2 €2
Cia Gy Cag Cys Cys €14 €24
Cis Cps Cgs Css Csg €15 exs
Cis Cis Cas Cs6 Cos €16 €26
€11 € €14 €15 €1 —€n1 —€n2

€21 €2 €4 €335 €5 —€12 —€22]
Sii S12 Sia Sis Sis Si7 Sis]

S17 Sz Saz Ss7 Ser S77 Sus

Our task below is to present the expressions of Ny, N, and N3 in
terms of S;. After arranging the columns and rows, Eq. (A2) can be
equivalently written into the following:

[Ci1 Ci5 en Cis Cip Cia ey
Cis GCss es Csg Cos Cgs €25
€11 €15 —€11 €5 €12 €uu —€n2
Cie Css €5 Cos Cas Cas €26
Cia Cs e Gy Cpn Cu exn
Cia Cus e1s Cy Cua Cas e

€1 € —€1p € € €4 —€2 ]
Sit S5 S17 Sie Siz Sia Sis]
Si5 Sss Ss7 Sse Sas Sas Sss
S17 Ss7 S77 Ser Sa7 Sar Sus
x | Si6 Ss6 Se7 Ses S Sas Ses | =1, (A3)
Siz Sas Sz S Sz Saa Sus
Sia Sas Sz Sas Soa Sas Sag
|S1s Sss S7s Ses Sz Sas Sss |
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or
[Cii Cis Cis e Cig Ciz Cig €21 ]
Cie Ces Css €15 Ces Cos Cas €26
Cis GCss Css €15 Csg Cos Cas €5
€11 €15 €15 —€11 €15 €12 €14 —€12
Ci6 Cos Css €15 Cos Cos Cas €26
Cia G Cos e Gy Cnp Gy e
Cia Ci6 Css ea Cgg Cog Cyg €24
L€ € €5 —€i2 € €2 €2 —€2]
[S11 0 Sis Si7 Si6 Siz Sia Sig]
0O 0 0o 0 0 0 0 o0
Si5 0 Sss Ss7 Sse Sas Sas Sss
y S17. 0 Ss7 S;7 Se7 Saz Saz S
St 0 Sse Se7 Ses Sa6 Sas  Ses
Si2 0 Sy Sz S So2 Saa Sus
Si4 O Sss Sa7 Sss Saa Sas Sas
[S1s O Ssg S7s Ses Szs Sas Sss
m 0 0 0 0 0 0 07
000O0T1TO0O0OTG O
0010O0O0O0OTO
0001UO0O0OTGO
00001000 (Ad)
000O0OT1TTO0OTP
000O0OOT1TO
L0 O OOO OO0 1]
Eq. (A4) can be more concisely written into
Q Rijjq, r I-L, I
{RT THrg t}={ 0 }2] (A5)
where
St 0 Si5 5177 Ste S12 Sia S8
_ 0 0 0 O B 0O 0 0 o
L85 0 S S| 7T S Sis Sus S|’
Si7 0 Ss7 S77 Se7 Sz Saz S8
Ses S26 Sas  Ses
S S2 Saa Sos
" s Su S Swl| (A%)
Ses S8 Saz Sss |
and
0100
I, = g 8 g 8 , LL=diag[0 1 0 O0]. (A7)
0 00O

After carrying out a procedure similar to that by Ting (1996), we fi-
nally obtain:
S55577 75?7 0 S17557 - S15577 515557 - 517555

-1 0 0 0 0
N3:—QE]

S15557 _517555 0 515517 _511557 S11555 _5%5

(A8)
T'e -1 S tg
_ rn 0 s b

Ny =rjq," -1 = re 0 si ta (A9)
s 0 Sg g

:T S17557_515577 0 S11577_5%7 S15517_511557 ’

157
Kes Kz Kas Kos
Ky K2 Ko Kyg
N, =t-rlq;'r; = A10
: 2% T2 K4 Ko4 Kaga Kgg ( )
Kes Kz Kag Kgg
where g, is the pseudo inverse of q,, and
St S5 Si7
A=1S15 Ss5 Ss7, (A11)
S17 Ss7 S7z
1 Sta Ssu Sz 1 S Sis Sy
razx Sis Sss Ss7|, Su =A St Ssu Sz,
S17 Ss7 S77 S17 Ss7 S77
1 S Sis Sz
ty = A S5 Sss Ss7|, (¢=6,2,4,8) (A12)
S]oc SSa 571
St Sie Sis Sz
1S5 Sup Ssp Sy
Kup = — o,f=6,2,4,8 Al13
T A|Sis Ssy Sss Ss7| (@p i ) (A13)
S17 S Ss1 Sm

In view of Eq. (A2), we have S;; > 0, Sss >0, $11Ss5 — S35 > 0 and
S;7 < 0. Consequently, if we write N3 into the following form:

Ein 0 Ei3 B
0 0 O 0
N;=—|_ = = | (A14)
Eiz 0 Es3 Eiy
Eig 0 E3q Ey

then 311 > 0, 533 > O, E]]Egg — 3%3 >0 and E44 < 0.
In the following we discuss the structures of NV (i =1, 2, 3). It
can be easily checked that:

0 *x x = 00O
-1 % % x 0 % =x
(=1 _ (=1 _
N = 0 * * =* N = 0 * % =x (A15)
0 % x = 0 * * =x
In addition the following identity establishes:
Q RI[q 1y I 0
= R Al6
{RT T} [ﬁ t1i| |:112 I*ll] ( )
where
St Sis Sis Sz 0 Sz Sis Sis
q- Sie Ses Sss Se7 i 0 Sxs Sis Ses
Sis Sss Sss S| 0 Sy Sss Sss|’
S17 Ser Ss7 Sy 0 Sz Sa7 Sus
0 0 0 O
0 S» Sa4 Sz
t; = , Al7
"T10 Sy Su Sws (A17)
0 Sy Sis Sss
and
I, =diag[1 0 0 O]. (A18)
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We can finally arrive at
0 0 0 0
NCU g1 l 0 S4sSss — 54243 S28S48 — 524588 S24S48 — S28S44
3 ! A/ 0 S28548 - 524588 S22588 _Sgg 524528 - 522548
0 S24S4s —S28S44 524528 —S22S4s  S22Sa4 — 5%4

(A19)
0 r s
-1 T 1 15 s 15
Nl :rlt] _l12: 0 s t|’ (Azo)
5 S5 s
0 r, s t
Ky Kig Kis Kig
Kl Kgg Ksg K
NCD = —q+nt'r! =— 16 66 56 67 (A21)
2 e Kis Ksg Kss Kiy
K7 Kg Ks; Koy
where
S22 Sa4 Sus
A" =S Sas Sag|, (A22)
Sas Saz Sss
1 S2 Sax Ssa 1 S S S
T; =A Sas Sas Sag |, S‘/“:T Sas Sax  Ssal,
Ss Sas Sss Sas Saz Sss
1 Sz Sa4 Sus
=S Su S| (x=1,657) (A23)
SZD( 541 58&
Sup S2p Sap Ssp
1 (S22 S22 Saa Sag
K ,=— , (o, p=1,6,5,7 A24
PN |Ssy S Sua Sas (@ § 7 (A24)

Sgy  Sas Saz Sss

In view of Eq. (A2), we have Sy >0, Sas >0, S5 — S5, > 0 and
Sgs < 0. Consequently, if we write N§™ into the following form:

0 O 0 0
N = 0 On 0O Oyn (A25)
} 0 O3 033 O3
0 Oun O3 Ou

then @22 > 07 @33 > 07 @22@33 — @%3 > 0 and @44 < 0.

It is of interest to point out that the expressions of N3 and Ng’”
for anisotropic elastic materials in terms of the reduced elastic
compliances s, were first obtained by Stroh (1958) and those of
N; and N{™" were first obtained by Ting (1988). Here we present
the explicit expressions of N; and N{"" for anisotropic piezoelectric
materials in terms of the introduced S;. Thus S; can be considered
as the reduced generalized compliances for piezoelectric materials.

Appendix B. The structures of N; and N{™" for Scheme 2

In Scheme 2 of the Stroh formalism, the following identity is
still valid:
Qi =Ry,

Thus the structures in Eq. (A1) for Scheme 1 are still valid for
Scheme 2.

RZI(:TlKa (17 1(21727374) (Bl)

Next we introduce S, (i,j =1—38 and i,j # 3) such that

—hi1 ]
Co Cn Gy GCs GCp hyp -—hp
Cia Cu Cy Cgis Cy hyg —hyy
Cis Gy Css Css  Csg hys  —hys
Cis Cx Cs Css Coge  has —hys
hay hyp  hay has Py —Pia
|—hi —hiz —hy —his —hie —Bn B |
[S11 Si2 Sia Sis Sis Si7 Sis]
Siz2 S»2 Saa Sos Sas S27 Sas
Sia Soa Saa Sis Sis Saz Sas
X |Sis Sas Sas Sss Sss Ss7 Ssg | =1, (B2)
Si6 Sz Sis Sse Ses Se7  Ses
S17 Sz Saz Ss7 Ser S77 Sis
| Sis S»s Sis Sss Ses Sz Sss

which can also be obtained from Eq. (A2) by using the following
substitutions:

€ — hzj»

€11 — — P,

=12

€ — 71811.

ey — My, (B3)
€12 — P,

It is observed from Eq. (B2) that the 7 x 7 real and symmetric
matrix formed by S; is positive definite in view of the fact that
the introduced energy density function / is convex (Suo, 1993).
Once we introduce Eq. (B2), all the rest development is very similar
to that in Appendix A. The only difference lies in that in scheme 2
both the two 4 x 4 matrices —N3 and N are positive semidefi-
nite, and both the two 4 x 4 matrices N, and —N™" are positive
definite. This situation is similar to that for anisotropic elastic
materials.

Appendix C. The imperfect interface models used in Sections 3
and 4

The constitutive equations for a piezoelectric interphase of con-
stant thickness h between the upper semi-infinite anisotropic pie-
zoelectric solid 1 and the lower semi-infinite anisotropic
piezoelectric solid 2 can be equivalently written into

o1 =Q.u; +Reuy,

Cc1
6) = RZu.l + Tcll]7 ( )
where 61 = [(711 01 031 Dy ]T7 6y = [012 02 03 Dz]T‘
and the subscript c is used to identify the quantities associated with
the interphase. All the rest notations in Eq. (C1) are the same as
those adopted in Section 2.1 for Scheme 1 of the Stroh formalism.
(i) If we assume that Cff) << Cj, Ci; .e,?jc,j <<ey), el and
e,ﬁﬁ << 6§j ) egj) (or the so-called compliant and weakly con-
ducting interphase) and that the interphase is also very thin,
then it follows from (C1), that
L

'=of) = A (uy —uy),

a
L)

X =0 (€2)

which is equivalent to Eq. (25). As a result A in Eq. (25) is related to
the electroelastic properties and the thickness of the interphase
through the following:

A =hT." = hNY, (C3)

which clearly indicates that the property of A is exactly the same as
that of T.' = N [or equivalently that of T, defined in Eq. (6)]. In
view of the fact that T is positive definite and €5, > 0, then we
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o1 Oz Oas
arrive at the conclusion that | o, 0 03
O3 023 033

is positive definite

whereas oyg < 0.

(ii) If we assume that Cff) > Cjj), Cji) and € > €}, € (or
the so-called stiff and highly conducting interphase, it is of
interest to notice that here there is no restriction on the pie-
zoelectric constants of the interphase), then it follows from

Eq. (C1), that
u; = -T.'Rlu;. (C4)

Substituting the above into Eq. (C1),, we arrive at the following
expression:

o1 =(Q. —RT.'R)u;. (C5)

By taking the derivative of both sides of Eq. (C5) with respect to x;,
and by noticing the 2D equilibrium equations 611 + 63> = 0, we can
finally obtain

622 = —(Q. — RT:'RN)u ;. (C6)

If we further assume that the interphase is very thin, then we arrive
at

6y —6) = —Euyy, X =0, (C7)

where the real and symmetric matrix E is related to the electroelas-
tic properties and the thickness of the interphase through the
following:

E=h(Q.-RT.'R") = —hNY. (C8)

In view of Eq. (A14), it is then apparent that E can be expressed into
Eq (72) and that E]] > 0, E33 > 0, E11E33 — Ef3 > 0 and E44 < 0.

Appendix D. The imperfect interface models used in Sections 5
and 6

The constitutive equations for a piezoelectric interphase of con-
stant thickness h between the upper semi-infinite anisotropic pie-
zoelectric solid 1 and the lower semi-infinite anisotropic
piezoelectric solid 2 can be equivalently written into

01 = ch‘] + Rcu.27

. D1
o, =Rlu; +Tuy,’ ®n

where o1 =[011 021 03 Ez]T, 6, =[01, O0n 03 -—E ]T,
and the subscript c is used to identify the quantities associated with
the interphase. All the rest notations in Eq. (D1) are the same as
those adopted in Section 2.2 for Scheme 2 of the Stroh formalism.
(i) If we assume that C) < Cjyy. Ci: hi < hy), h) and
By < By, By’ (or the so-called compliant and highly con-
ducting interphase) and that the interphase is also very thin,
then it follows that:

U - =Ac)) = AdY, X =0, (D2)

where A = hT."' = hNY is positive definite in view of the fact that T
is positive definite.
(ii) If we assume that i > Cjy), Cioy and g > i, g2 (or
the so-called stiff and weakly conducting interphase), then
the following interface model establishes:

o)) —6? = —Euy, x,=0, (D3)
where
E=h(Q. —RT,'R]) = —hN{". (D4)

It is apparent that E is positive semidefinite in view of the fact
that — N3 is positive semidefinite.
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