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a b s t r a c t

In this paper, a special boundary integral equation (BIE) formation is proposed to analyze the fracture

problem in transversely isotropic and inhomogeneous solids. In this formulation, the single-domain

boundary element method (BEM) is utilized to discretize the cracked matrix and the displacement BEM

to the surface of the embedded inhomogeneity. The two regions are then connected through the

continuity conditions along their joint interface. The conventional and three special nine-node

quadrilateral elements are utilized to discretize the inhomogeneity–matrix interface and the crack

surface. From the crack-opening displacements on the crack surface, the mixed-mode stress intensity

factors (SIFs) are calculated, using the well-known asymptotic expression in terms of the Barnett–Lothe

tensor. In the numerical analysis, the distance between the inhomogeneity and the crack as well as the

orientation of the isotropic plane of the transversely isotropic media is varied to show their influences

on the mixed-mode SIFs along the crack fronts.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical behaviors of heterogeneous materials such as
composites, rock structures, porous and cracked media have been
widely investigated, using various boundary integral-related
methods. Bush [1] investigated the interaction between a crack
and a particle cluster in composites, using the boundary element
method (BEM). Also applying the BEM, Knight et al. [2] analyzed
the effects of the constituent material properties, fibre spatial
distribution and microcrack damage on the localized behavior of
fibre-reinforced composites. Dong et al. [3,4] presented a general-
purpose integral formulation in order to study the interaction
between the inhomogeneity and crack embedded in two-dimen-
sional (2D) and three-dimensional (3D) isotropic matrices. Based
on a symmetric-Galerkin BEM, Kitey et al. [5] investigated the
crack growth behavior in materials embedded with a cluster of
inhomogeneities. Phan et al. [6] used the symmetric-Galerkin
BEM to calculate the stress intensity factors (SIFs) for the 2D
crack-inhomogeneity interaction problem. Lee and Tran [7]
applied the Eshelby equivalent inclusion method to carry out
the stress analysis, when a penny-shaped crack interacts with
inhomogeneities and voids. Interface cracks in two or more

isotropic materials were also studied by Sladek and Sladek [8] and
Liu and Xu [9].

So far, however, only a few studies exist when the inhomo-
geneous material is of anisotropy, e.g., transverse isotropy. Berger
and Tewary [10] studied the interface crack problems in 2D
anisotropic bimaterials. Huang and Liu [11] used the eigenstrain
method to obtain the elastic fields around the inclusion and
further studied the interactive energy in the system. Pan and
Yuan [12] investigated the fracture mechanics problems in
3D anisotropic solids, using the combined displacement and
traction integral representations (i.e., the single-domain BEM).
Ariza and Dominguez [13] obtained the boundary traction
integral equation for cracked 3D transversely isotropic bodies, in
which explicit expressions for the fundamental traction deriva-
tives were presented. Yue et al. [14] calculated the 3D SIFs of an
inclined square crack within a bimaterial cuboid, using the
single-domain BEM. Chen et al. [15,16] studied the fracture
behavior of a cracked transversely isotropic cuboid also using 3D
BEM. Benedetti et al. [17] presented a fast dual BEM for cracked
3D problems.

While the interaction between the inhomogeneities and cracks
embedded in a transversely isotropic medium is important, there
is no existing literature on this topic. Therefore, in this paper, the
effect of a spherical inhomogeneity on the SIFs of a square-shaped
crack, both being embedded in a transversely isotropic matrix, is
studied using a special BIM formulation. The influence of the
distance between the inhomogeneity and the square-shaped
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crack and the material orientation on the SIFs of the crack fronts is
discussed.

2. Boundary integral equations

We consider the general case where a transversely isotropic
inhomogeneity is embedded in a cracked infinite matrix of
transverse isotropy. In order to study the effect of the inhomo-
geneity on the SIFs of the crack, a special BIE formulation is
presented. In our formulation, the displacement and traction
boundary integral equations [12]
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Z
S
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are applied to the cracked matrix. In Eqs. (1) and (2), bij are
coefficients that depend only on the local geometry of the
inhomogeneity–matrix interface S at yS. A point on the positive
(or negative) side of the crack is denoted by xGþ (or xG� ), and on
the inhomogeneity–matrix interface S by both xS and yS; nm is the
unit outward normal of the positive side of the crack surface at
yGþ ; clmik is the fourth-order stiffness tensor of the material; u0

i ðysÞ

is the displacement component along the i-direction at point yS

caused by a given uniform remote loading, and t0
l ðyGþ Þ and t0

l ðyG� Þ

are the corresponding traction components along l-direction at
points yGþ and yG� and ti are the displacements and tractions on
the inhomogeneity–matrix interface S (or the crack surface G); Uij

and Tij are the Green’s functions of the displacements and
tractions; Uij,k and Tij,k are, respectively, the derivatives of the
Green’s displacements and tractions with respect to the source
point. The displacement and traction Green’s functions are taken
from Pan and Chou [18], whilst their derivatives are taken from
Pan and Yuan [12].

The displacement integral equation is applied to the surface of
the inhomogeneity as follows:

bijujðySÞ ¼

Z
S

UijðyS,xSÞtjðxSÞdSðxSÞ�

Z
S

TijðyS,xSÞujðxSÞdSðxSÞ ð3Þ

Eqs. (1)–(3) then can be used to investigate the effect of the
inhomogeneity on the SIFs of the crack embedded in a
transversely isotropic matrix. In discretization of these equations,
we apply nine-node quadrilateral curved elements as shown in
Fig. 1 to the inhomogeneity–matrix interface and the crack
surface with the crack front being discretized by special elements.
For any point within each element on the inhomogeneity–matrix
interface, the global coordinates, displacements and tractions can
be expressed, in terms of the element type I (Fig. 1), as [12,15,16]

xi ¼
X9

k ¼ 1

fkxk
i , ui ¼

X9

k ¼ 1

fkuk
i , ti ¼

X9

k ¼ 1

fktk
i , i¼ 1,2,3 ð4Þ

where the subscript i is the Cartesian coordinate component; the
superscript k is the nodal number; fk(k¼1�9) are the shape
functions (of the local coordinates x1 and x2), which are given in

Pan and Yuan [12]; xk
i , tk

i , uk
i are, respectively, the coordinates,

tractions and displacements at nodal point k.
Similarly, the crack-opening displacements (CODs) Duið ¼

uiðxGþ Þ�uiðxG� ÞÞ on the crack surface can be expressed as

Dui ¼
X9

k ¼ 1

fkDuk
i , i¼ 1,2,3 ð5Þ

where Duk
i are the crack-opening displacements at nodal point k.

For the crack elements away from the crack front, the
shape functions fk(k¼1�9) are the same as those in Eq. (4).
However, for the crack element near the crack front, the
corresponding shape functions need to be modified. In other
words, the shape functions near the crack front should be
multiplied by suitable weight functions to represent the near-
field behavior of the crack. For the element type II shown in Fig. 1,
the CODs can be expressed as

Dui ¼
X9

k ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

p
fkDuk

i , i¼ 1,2,3 for type II ð6Þ

For the element types III and IV shown in Fig. 1, the CODs have
the following expressions
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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We point out that element types II–IV are in general called
non-conforming elements, employed to better approximate the
field behavior. The concept of this type of elements was
introduced and discussed in [19–23]. We further mention that
while in this paper, the concerned nodes are fixed at 2/3, other
locations, such as the quarter point, could be selected with equal
efficiency.

Taking each node in turn as the collocation point and
performing the involved integrals, we finally obtain the compact
forms of the discretized equations from Eqs. (1)–(3) as
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and

HiUi ¼ GiTi ð9Þ

where the subscripts i and m represent, respectively, the
inhomogeneity and matrix; H and G are, respectively, the
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Fig. 1. Four types of elements employed for the discretization of the crack surface

[12], where the dash line represents the crack front.
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influence coefficient matrices containing integrals of the funda-
mental Green’s function solutions; B1 and B2 are, respectively, the
displacement and traction vectors induced by the remote loading;
Um(Ui) and Tm(Ti) are, respectively, the node displacement and
traction vectors on the matrix side (inhomogeneity side) of the
inhomogeneity–matrix interface; DUc and Tc are, respectively, the
discontinuous displacement and traction vectors over the crack
surface. In this paper, we assume that the tractions on both sides
of the crack are equal and opposite. Therefore Tc is equal to zero.

Using the continuity condition of the displacement and
traction vectors along the interface, i.e., Um¼Ui and Tm¼ �Ti,
between the inhomogeneity and matrix, we can combine Eqs. (8)
and (9) into

H11þG11G�1
i Hi H12

H21þG21G�1
i Hi H22

" #
Um

DUc

( )
¼�

B1

B2

( )
ð10Þ

Therefore, once the unknowns Um and DUc are solved, the SIFs
(KI, KII, KIII) along the crack front can be evaluated, using the
following asymptotic expression [12]
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where r is the distance behind the crack front; L is the Barnett–
Lothe tensor [24], which depends only on the anisotropic
properties of the solid in the local crack-front coordinates; Du1,
Du2 and Du3 are the relative CODs in the local crack-front
coordinates.

3. Numerical examples

We study the effect of a spherical inhomogeneity on the SIFs
along the crack fronts of a square-shaped crack. Both the
inhomogeneity and crack are embedded in an infinite matrix,
which is under a far-field stress sN

¼1.0 GPa in the z-direction.
The side length of the square is 2a (¼2.0 m). The radius of the
sphere is R¼1.0 m and it is made of transversely isotropic marble
with the following elastic properties: EX¼90 GPa, EZ¼55
GPa,nXY¼nYZ¼0.3, GYZ¼21 GPa [15,16]. The matrix material
properties are EX¼12 GPa, EZ¼4 GPa, nXY¼nYZ¼0.3, GYZ¼1.6 GPa.
We should point out that all these coefficients are with respect to
the local material coordinates with X, Y and Z being, respectively,
along the longitudinal, transverse and normal directions of the
X–Y plane of isotropy. The space-fixed global coordinates (x, y, z)
can be related to (X, Y, Z), using the orientation and inclined angles
b and C between them. In other words, the transformation
relation between the local (X, Y, Z) and global (x, y, z) coordinates
is as follows [25]

x

y

z

2
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2
64
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In the numerical analysis, 24 nine-node quadrilateral elements
with 98 nodes (Fig. 2a) and 100 nine-node quadrilateral elements
with 441 nodes are employed to discretize the inhomogeneity–
matrix interface and the square-shaped crack surface (Fig. 3
below), respectively. A refined mesh with 386 nodes (96
elements, Fig. 2b) is also used to discretize the inhomogeneity–
matrix interface to check the accuracy of the numerical solution.
It is found that SIFs from both refined and coarse meshes are
nearly the same (to the third decimal number) and therefore, only
the results from the coarse mesh are discussed. We consider two

different relative orientations of the inhomogeneity and crack,
and they are discussed below separately.

3.1. The spherical inhomogeneity and square-shaped crack are both

in the x–y plane, separated by a distance d in the x-direction

The relative locations and orientations of the spherical
inhomogeneity and square-shaped crack are shown in Fig. 3.
For varying distance d but fixed b¼01 and C¼01 for both
the inhomogeneity and the matrix, the normalized SIF KI¼

KI=ðs1
ffiffiffiffiffiffi
pa
p
Þ along the crack fronts AB, BC, CD and DA of the

square is shown in Fig. 4 (The crack fronts AB, BC, CD and DA are
denoted, respectively, by (�1,1), (1,3), (3,5) and (5,7) in all SIF
plots). It is obvious that as d decreases, the SIF along the crack

Fig. 2. Discretization of a spherical inhomogeneity–matrix interface with 24 nine-

node quadrilateral elements (98 nodes) in (a) and with 96 elements (386 nodes)

in (b).

R=1m 

x

y

d

A B

CD

L=2m R=1m 

x

z

d

σ zz=1GPa

Fig. 3. A spherical inhomogeneity and a square-shaped crack within an infinite

matrix under a far-field stress. The distance between the inhomogeneity and crack

is d in the x-direction. The x–z plane view in (a) and the x–y plane view in (b). The

crack fronts AB, BC, CD and DA are denoted, respectively, by (�1,1), (1,3), (3,5) and

(5,7) in the SIF plots.
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front DA (which closes to the inhomogeneity) is significantly
decreased, while the SIFs along the other crack fronts (i.e., AB, BC
and CD) are nearly insensitive to d.

For fixed distance d¼0.5 m, fixed b¼01 and C¼01 for the
inhomogeneity, but different angles b and C for the matrix, the
normalized SIF KI¼ KI=ðs1

ffiffiffiffiffiffi
pa
p
Þ along crack fronts AB, BC, CD and

DA of the square crack is shown in Fig. 5. It is observed that with
increasing angle C, the SIF KI along the crack fronts AB and CD
decreases, while it increases along the crack fronts BC and DA. The
maximum SIF KI appears in the middle of the crack front BC,
approximately equal to 0.9, whilst the minimum KI appears in the
middle of the crack fronts AB and CD, approximately equal to 0.6.

Fig. 6 shows the effect of the material orientations b and c of
the inhomogeneity on the SIF KI along the crack fronts AB, BC, CD
and DA of the square crack. In this example, the distance is fixed
at d¼0.5 m and the orientations of the matrix are fixed at b¼01
and C¼01. Contrary to Fig. 5, where the SIF KI is very sensitive to
the matrix anisotropy, here the SIF KI is nearly independent of the
inhomogeneity anisotropy.

For fixed d¼0.5 m, fixed b¼01 and C¼01 for the inhomo-
geneity and fixed b¼01 and C¼451 for the matrix, the normalized
SIFs KII¼ KII=ðs1

ffiffiffiffiffiffi
pa
p
Þ and KIII¼ KIII=ðs1

ffiffiffiffiffiffi
pa
p
Þ along the crack

fronts AB, BC, CD and DA of the square crack is shown in Fig. 7. It is

observed that the variation of the SIFs KII and KIII along the crack
front is more complicated than the SIF KI.

The effect of material anisotropy on the SIFs is further studied
by comparing to the corresponding isotropic case. Shown in Fig. 8
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pairs for the inhomogeneity and matrix.
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is the normalized SIF KI along the crack fronts AB, BC, CD and DA
of the square for fixed d¼0.1 m with various material pairs. In this
figure, Iso(m)–Iso(i) denotes the case, where both the inhomo-
geneity and matrix are of isotropy with E¼4 GPa and n¼0.25;
Tr(m)–Iso(i) denotes the case, where the matrix is of transverse
isotropy with EX¼12GPa, EZ¼4GPa, nXY¼nYZ¼0.3, GYZ¼1.6GPa,
whilst the inhomogeneity is of isotropy with E¼4 GPa and
n¼0.25; Iso(m)–Tr (i) denotes the case, where the matrix is of
isotropy with E¼4 GPa and n¼0.25, whilst the inhomogeneity is
of transverse isotropy with EX¼12 GPa, EZ¼4 GPa, nXY¼nYZ¼0.3,
GYZ¼1.6 GPa; Tr(m)–Tr(i) denotes the case, where both the
inhomogeneity and matrix are of transverse isotropy with
EX¼12GPa, EZ¼4GPa, nXY¼nYZ¼0.3, GYZ¼1.6GPa. The effect of
material anisotropy on the SIF KI can be clearly observed from
Fig. 8, where the SIF KI corresponding to material pair Tr(m)–Tr(i)
(i.e., both the inhomogeneity and matrix are of transverse
isotropy) is smaller than those corresponding to other material
pairs. Particularly along the crack front AD, even the behavior of
the SIF KI variation for the material pair Tr(m)–Tr(i) is different, as
also observed in Fig. 4.

3.2. The spherical inhomogeneity and square-shaped crack are in the

x–y plane, separated by a distance d in the z-direction.

The relative locations and orientations of the spherical
inhomogeneity and square-shaped crack are shown in Fig. 9. All
the material parameters, mesh size and remote loading are the
same as those in the first case (see Section 3.1) (Fig. 3). For
different distance d and fixed b¼01 and C¼01 of both the
inhomogeneity and the matrix, the normalized SIF
KI¼ KI=ðs1

ffiffiffiffiffiffi
pa
p
Þ along crack fronts AB, BC, CD and DA of the

square is shown in Fig. 10 (again, the crack fronts AB, BC, CD and
DA are denoted, respectively, by (�1,1), (1,3), (3,5) and (5,7) in all
SIF plots). It is observed from Fig. 10 that the SIF KI distribution of
the crack fronts AB, BC and CD is symmetrical with respect to the
middle point of each crack front, as expected. Also for this case,
different to the first case (see Section 3.1), the normalized SIFs

KII¼ KII=ðs1
ffiffiffiffiffiffi
pa
p
Þ and KIII¼ KIII=ðs1

ffiffiffiffiffiffi
pa
p
Þ along the crack fronts

AB, BC, CD and DA of the square are nonzero, as shown in Fig. 11.
For fixed d¼0.5 m, fixed b¼01 and C¼01 of the inhomogene-

ity and different angles b and C of the matrix, the SIF
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Fig. 9. A spherical inhomogeneity and a square-shaped crack within an infinite

matrix under a far-field stress. The distance between the inhomogeneity and the

crack is d in the z-direction. The x–z plane view in (a) and the x–y plane view in (b).

The crack fronts AB, BC, CD and DA are denoted, respectively, by (�1,1), (1,3), (3,5)

and (5,7) in the SIF plots.
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Fig. 12. The normalized SIF KI along the square-shaped crack fronts (�1,1), (1,3),

(3,5) and (5,7) for different material orientations b and C of the matrix with fixed

distance d¼0.5 m, and fixed angles b¼01 and C¼01 of the inhomogeneity.
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KI¼ KI=ðs1
ffiffiffiffiffiffi
pa
p
Þ along the crack fronts AB, BC, CD and DA of the

square is shown in Fig. 12. It is observed that the distribution of
the SIF KI is similar to that in the first case (see Section 3.1)
(Fig. 5). In other words, with increasing angle C, the SIF KI along
the crack fronts AB and CD decreases, whilst the SIF KI along the
crack fronts BC and DA increases. The maximum value of KI

appears in the middle of the crack fronts BC and DA and is
approximately equal to 1.0, whilst the minimum value of KI

appears in the middle of the crack fronts AB and CD, with a value
equal to 0.65. For fixed d¼0.5 m, fixed b¼01 and C¼01 of the
inhomogeneity and different values of b and C of the matrix, the
normalized SIFs KII¼ KII=ðs1

ffiffiffiffiffiffi
pa
p
Þ and KIII¼ KIII=ðs1

ffiffiffiffiffiffi
pa
p
Þ along

the crack fronts AB, BC, CD and DA of the square are shown in
Figs. 13 and 14. It is obvious that relatively larger SIFs
KII¼ KII=ðs1

ffiffiffiffiffiffi
pa
p
Þ and KIII¼ KIII=ðs1

ffiffiffiffiffiffi
pa
p
Þ are observed for fixed

b¼01 and C¼451 of the matrix.

4. Conclusions

A special BIE formulation is developed for the study of the
fracture problem in a transversely isotropic and heterogeneous

medium. In this formulation, the single-domain BEM is applied to
the cracked matrix, whilst the displacement BEM to the surface of
the inhomogeneity. The continuity conditions along the inhomo-
geneity–matrix interface are then used to derive the final system
of equations. In the numerical analysis, four sets of nine-node
quadrilateral elements are applied to discretize the inhomogene-
ity–matrix interface and the square-shaped crack surface. The
mixed-mode SIFs are calculated from the solved discontinuous
displacements on the crack surface. The effect of the distance
between the inhomogeneity and the crack as well as the material
anisotropy on the SIFs of crack fronts is investigated. It is observed
that accurate SIFs can be obtained with 24 nine-node quad-
rilateral elements to the spherical surface and 100 elements to the
square-shaped crack surface. It is believed that the proposed
formulation could be applied to study more complicated interac-
tion problems between inhomogeneities and cracks in 3D
anisotropic media.
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