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a b s t r a c t

We consider the in-plane deformation of a circular elastic inhomogeneity embedded in an
infinite elastic matrix subjected to remote uniform stresses or uniform heat flow. The inho-
mogeneity and matrix have different material properties. The rate-dependent slip and
mass transport by stress-driven diffusion concurrently occur on the inhomogeneity/matrix
interface. For the remote uniform stress case, it is observed that the internal stresses within
the inhomogeneity are quadratic functions of the coordinates x and y, and decay with two
relaxation times. Interestingly the average mean stress within the circular inhomogeneity
is in fact time-independent. As time approaches infinity, the internal stress field within the
inhomogeneity becomes uniform and hydrostatic. In addition the change of strain energy
due to the introduction of the circular elastic inhomogeneity is derived, containing various
existing results as special cases. Furthermore, a simple condition leading to an internal uni-
form stress state within the inhomogeneity is found. This condition, which is independent
of the elastic properties of the inhomogeneity and matrix, gives a simple relationship
between the interface drag and diffusion parameters. For the remote heat flow case, the
internal thermal stresses are linear functions of the coordinates x and y and decay only
with a single relaxation time. Numerical results are presented to demonstrate the obtained
solution and the corresponding physics.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It has been observed that slip and diffusion on the inhomogeneity/matrix interface at high homologous temperatures can
reduce the creep strength of the composite [1,2] and will cause stress relaxation in the composite or polycrystal [3–7]. The
imperfect interface can now be more precisely described as follows: (i) the slip rate is proportional, in terms of the interface
drag parameter, to the interfacial shear stress; and (ii) the normal displacement jump rate is proportional, in terms of the
interface diffusion parameter, to a certain differential expression of the interfacial normal stress. Interface slip is due to
the viscous nature of the thin interphase; whilst interface diffusion is induced by the gradient in the normal stress along
the interface [1–4,8]. Furthermore the heterogeneity in interface diffusion and drag parameters in polycrystals can induce
transient high local stress concentrations [8]. To simplify the analysis involved, it was assumed in previous modeling
attempts that the inhomogeneity is rigid [1,2,6,7], or the interfacial shear stress is fully relaxed by the interface slip [3],
or the inhomogeneity and the matrix have exactly the same elastic moduli [4,5].
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This research is devoted to a rigorous study of the two-dimensional circular elastic inhomogeneity bonded to an infi-
nite matrix through a sharp interface on which both slip and diffusion concurrently occur. By means of the complex var-
iable method ([9,10]), a closed-form solution is developed for the loading case when the matrix is subjected to remote
uniform in-plane stresses. As a byproduct, the inhomogeneity/matrix system under a remote uniform heat flow is also
solved. Since our solution is very general, various important features associated with this type of imperfect interface
are discussed. These features should aid our understanding of the material or composite behaviors which containing such
an interface.

2. Formulation

As shown in Fig. 1, we consider a domain in R2, infinite in extent, containing a single circular elastic inhomogeneity with
elastic properties different than those of the surrounding matrix. The inhomogeneity S1: x2 + y2 < R2 is bonded to the matrix
S2: x2 + y2 > R2 through a sharp interface L: x2 + y2 = R2. The matrix is subjected to an in-plane remote uniform stress field
ðr1xx;r1yy;r1xyÞ (Fig. 1a). The subscripts 1 and 2 (or the superscripts (1) and (2)) will refer to the regions S1 and S2, respectively.

For an in-plane deformation of an isotropic elastic material, the stresses, displacements and resultant forces can be ex-
pressed in terms of two analytic functions /(z, t) and w(z, t) as [9]

Nomenclature

A(t), B(t) time-dependent complex constants
A0, B0 real constants defined by Eq. (81) for heat flow case
D non-negative interface diffusion parameter
f volume fraction of the inhomogeneities
Fx, Fy resultant forces in x- and y-directions
K�12 effective plane-strain bulk modulus
kt thermal conductivity
L interface between the inhomogeneity and matrix
P, Q time-independent constants
q0 remote uniform heat flow
r radial variable in polar coordinates
R radius of the cylindrical inhomogeneity
S1 inhomogeneity domain
S2 matrix domain
t time variable
t0 relaxation time defined by Eq. (80) for heat flow case
t1, t2 relaxation times defined by Eq. (25), notice that t1 P t2 P 0
x, y coordinate variables in the (x,y)-plane
z complex variable (z = x + iy)
at thermal expansion coefficient
a and b dimensionless parameters defined by Eq. (10)
/(z, t) and w(z, t) analytic functions of complex variable z and time t
l, m shear modulus and Poisson’s ratio
j = 3 � 4m parameter for plane strain
j = (3 � m)/(1 + m) parameter for plane stress
h angular variable in polar coordinates
g non-negative interface drag parameter

r1xx;r1yy;r1xy

� �
remote uniform stress field

c parameter in the dimension of time, defined by Eq. (15)
C and C0 remote-stress related constants defined by Eq. (6)
v parameter in the dimension of time, defined by Eq. (11)
DW change of strain energy per unit length due to the introduction of the inhomogeneity
l�12 effective in-plane shear modulus
rxx, ryy, rxy in-plane stress field in Cartesian coordinates
rrr, rhh, rrh in-plane stress field in polar coordinates
DWSD change of strain energy per unit length in Eq. (73)
DWS = DWD change of strain energy per unit length in Eq. (74)
DWp change of strain energy per unit length in Eq. (75)
DWC change of strain energy per unit length in Eq. (76)
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rrr þ rhh ¼ 2½/0ðz; tÞ þ /0ðz; tÞ�;
rrr � irrh ¼ /0ðz; tÞ þ /0ðz; tÞ � e2ih �z/00ðz; tÞ þ w0ðz; tÞ½ �;
2lður þ iuhÞ ¼ e�ih j/ðz; tÞ � z/0ðz; tÞ � wðz; tÞ

h i
;

Fx þ iFy ¼ �i /ðz; tÞ þ z/0ðz; tÞ þ wðz; tÞ
h i

;

ð1Þ

where j = 3 � 4m for plane-strain deformation, which is assumed in this investigation, and j = (3 � m)/(1 + m) for plane-stress
deformation; l and m, where l > 0 and 0 6 m 6 0.5, are the shear modulus and Poisson’s ratio, respectively; t is the real time
variable, whilst z = x + iy = reih is the complex variable. The appearance of the real time in the above expression is solely due
to the rate-dependent interface slip and diffusion on L. The interface slip and diffusion boundary conditions can be expressed
as [2–4,8]

rð1Þrh ¼ rð2Þrh ¼ g _uð2Þh � _uð1Þh

� �
;

D

R2

d2rð1Þrr

dh2 ¼
D

R2

d2rð2Þrr

dh2 ¼ _uð1Þr � _uð2Þr ; on L; ð2Þ

where an overdot denotes the derivative with respect to time t, g is the non-negative interface drag parameter, and D is the
non-negative interface diffusion parameter. Here we assume that both g and D are constant along the circular interface. For
the shearing component, it is noted that g = 0 corresponds to a slipping interface where the shear stress is zero whilst g ?1
corresponds to the condition where the shear traction and displacement are continuous along the interface. On the other
hand, for the normal component, it is noted that D = 0 corresponds to the condition where the normal traction and displace-
ment are continuous along the interface whilst D ?1 corresponds to the ‘‘opening interface” where the normal stress is
zero.

Matrix S2
R

x
Circular Elastic  

Inhomogeneity S1

y

Imperfect  
Interface L

θ

q0 

q0 

Matrix S2
R

x
Circular Elastic  

Inhomogeneity S1

y

Imperfect  
Interface L

θ

xyσ ∞

xyσ ∞

xxσ ∞

yyσ ∞a

b

Fig. 1. A circular elastic inhomogeneity bonded to an infinite elastic matrix through a sharp interface on which slip and diffusion concurrently occur. The

elastic matrix is subjected to an in-plane remote uniform stress field r1xx ;r1yy;r1xy

� �
in (a) or to a remote uniform heat flow q0 in (b).
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3. Analytical solutions

To facilitate the analysis involved, we first introduce the following analytic continuations

/iðz; tÞ ¼ �z/0 iðR2=z; tÞ � �wiðR2=z; tÞ; i ¼ 1;2: ð3Þ

As a result, the continuity condition of tractions across the interface can be simply expressed as:

/þ1 ðz; tÞ � /�1 ðz; tÞ ¼ /�2 ðz; tÞ � /þ2 ðz; tÞ; on jzj ¼ R; ð4Þ

where the superscripts ‘‘+” and ‘‘�” denote the limit values from the inhomogeneity and matrix sides of the interface jzj = R,
respectively.

By employing the Liouville’s theorem, we arrive at the following expression defined in the whole complex z-plane

/1ðz; tÞ þ /2ðz; tÞ ¼ C� /01ð0; tÞ
h i

z� R2C0z�1; ð5Þ

where C and C0 are two time-independent constants related to the remote uniform stresses through

C ¼
r1xx þ r1yy

4
; C0 ¼

r1yy � r1xx þ 2ir1xy

2
: ð6Þ

Meanwhile the interface slip condition can be expressed as:

Im /0þ1 ðz; tÞ � /0�1 ðz; tÞ
� �

¼ gR
2l2

Im z�1 j2
_/�2 ðz; tÞ þ _/þ2 ðz; tÞ

h in o
� gR

2l1
Im z�1 j1

_/þ1 ðz; tÞ þ _/�1 ðz; tÞ
h in o

; on jzj ¼ R:

ð7Þ

Substituting Eq. (5) into the above expression and also applying the Liouville’s theorem, we arrive at

_/1ðz; tÞ � a
z2

R2
�_/1ðR2=z; tÞ þ 1

v z /01ðz; tÞ þ /01ðR
2=z; tÞ

h i
¼ ð1þ aÞ _/01ð0; tÞ þ 2ibIm _/01ð0; tÞ

n oh i
z; ðjzj < RÞ; ð8Þ

a _/1ðz; tÞ �
z2

R2
�_/1ðR2=z; tÞ � 1

v z /01ðz; tÞ þ �/01ðR
2=z; tÞ

h i
¼ �ð1þ aÞ _/01ð0; tÞz; ðjzj > RÞ; ð9Þ

where a and b are two dimensionless parameters given by

a ¼ j2l1 þ l2

j1l2 þ l1
; b ¼ j2l1 þ l1

j1l2 þ l1
;

1
3
6

1
j1
6 a 6 j2 6 3

� �
ð10Þ

and v is defined by

v ¼ gRðj1l2 þ l1Þ
2l1l2

; ð11Þ

which has the time dimension [1].
The interface diffusion condition can be expressed as:

D

R2

d2 Re /0þ1 ðz; tÞ � /0�1 ðz; tÞ
� �� 	

dh2 ¼ R
2l1

Re z�1 j1
_/þ1 ðz; tÞ þ _/�1 ðz; tÞ

h in o

� R
2l2

Re z�1 j2
_/�2 ðz; tÞ þ _/þ2 ðz; tÞ

h in o
; on jzj ¼ R: ð12Þ

Substituting Eq. (5) into the above expression and also applying the Liouville’s theorem, we finally arrive at

_/1ðz; tÞ þ a
z2

R2
�_/1ðR2=z; tÞ þ 1

4c
z2/001ðz; tÞ þ z3/0001 ðz; tÞ � R2/001ðR

2=z; tÞ � R4

z
/0001 ðR

2=z; tÞ
" #

¼ ða� 1Þ _/01ð0; tÞ � 2bRe _/01ð0; tÞ
n oh i

z; ðjzj < RÞ; ð13Þ

a _/1ðz; tÞ þ
z2

R2
�_/1ðR2=z; tÞ � 1

4c
z2/001ðz; tÞ þ z3/0001 ðz; tÞ � R2/001ðR

2=z; tÞ � R4

z
/0001 ðR

2=z; tÞ
" #

¼ ð1� aÞ _/01ð0; tÞz; ðjzj > RÞ;

ð14Þ
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where c is defined by

c ¼ R3ðj1l2 þ l1Þ
8l1l2D

; ð15Þ

which also has the time dimension [1].
The compatibility condition between Eqs. (8) and (9) yields

Im _/01ð0; tÞ
n o

¼ 0; ð16Þ

and the compatibility condition between Eqs. (13) and (14) yields

Re _/01ð0; tÞ
n o

¼ 0: ð17Þ

Eqs. (16) and (17) imply that /01ð0; tÞ is in fact time-independent. Thus we can write /01ð0; tÞ � /01ð0Þ ¼
bC

1�aþb due to the fact
that the interface is perfect at the initial time t = 0. Utilizing this result, Eqs. (8), (9), (13) and (14) can be simplified into

_/1ðz; tÞ � a
z2

R2
�_/1ðR2=z; tÞ þ 1

v z /01ðz; tÞ þ �/01ðR
2=z; tÞ

h i
¼ 0; ðjzj < RÞ; ð18Þ

a _/1ðz; tÞ �
z2

R2
�_/1ðR2=z; tÞ � 1

v z /01ðz; tÞ þ �/01ðR
2=z; tÞ

h i
¼ 0; ðjzj > RÞ; ð19Þ

_/1ðz; tÞ þ a
z2

R2
�_/1ðR2=z; tÞ þ 1

4c
z2/001ðz; tÞ þ z3/0001 ðz; tÞ � R2/001ðR

2=z; tÞ � R4

z
/0001 ðR

2=z; tÞ
" #

¼ 0; ðjzj < RÞ; ð20Þ

a _/1ðz; tÞ þ
z2

R2
�_/1ðR2=z; tÞ � 1

4c
z2/001ðz; tÞ þ z3/0001 ðz; tÞ � R2/001ðR

2=z; tÞ � R4

z
/0001 ðR

2=z; tÞ
" #

¼ 0; ðjzj > RÞ: ð21Þ

The analytic function /1(z, t) in its original region jzj < R and in its continuation region jzj > R is assumed to take the fol-
lowing forms

/1ðz; tÞ ¼ bC
1�aþb zþ AðtÞz3; ðjzj < RÞ;

/1ðz; tÞ ¼ � bC
1�aþb zþ R4BðtÞz�1; ðjzj > RÞ;

ð22Þ

where A(t) and B(t) are two time-dependent complex constants to be determined. Consequently we arrive at the following
state-space equation

v �va
c ca


 � _AðtÞ
_BðtÞ

" #
¼ �

3 �1
3 1


 �
AðtÞ
BðtÞ


 �
; ð23Þ

whose solution can be easily given by

AðtÞ ¼ Pðva� t1Þ exp � t
t1

� �
þ Qðva� t2Þ exp � t

t2

� �
;

BðtÞ ¼ Pðv� 3t1Þ exp � t
t1

� �
þ Qðv� 3t2Þ exp � t

t2

� �
;

ð24Þ

where P and Q are two time-independent constants determined by the initial conditions, and t1 and t2 are the two relaxation
times determined by

t1;2 ¼
ð3aþ 1Þðvþ cÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3aþ 1Þ2ðvþ cÞ2 � 48avc

q
12

; ð25Þ

where t1 P t2 P 0.
Because at the initial time the interface is perfect, we then arrive at the following explicit expressions of /1(z, t) in its ori-

ginal region jzj < R and in its continuation region jzj > R as

/1ðz; tÞ ¼ bC
1�aþb zþ

bC0 ðva�t1Þðva�t2Þ exp � t
t1

� �
�exp � t

t2

� �h i
vaR2ð3a�1Þðt1�t2Þ

z3; ðjzj < RÞ;

/1ðz; tÞ ¼ � bC
1�aþb zþ

bR2C0 ðv�3t1Þðva�t2Þ exp � t
t1

� �
�ðv�3t2Þðva�t1Þ exp � t

t2

� �h i
vað3a�1Þðt1�t2Þ

z�1; ðjzj > RÞ:

ð26Þ

Then the explicit expressions of /2(z, t) in its original region jzj > R and in its continuation region jzj < R can be easily ob-
tained as

X. Wang, E. Pan / International Journal of Engineering Science 48 (2010) 1733–1748 1737
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/2ðz; tÞ ¼ �R2 �C0z�1 þ 1�a�b
1�aþb Cz�

bC0 ðva�t1Þðva�t2Þ exp � t
t1

� �
�exp � t

t2

� �h i
vaR2ð3a�1Þðt1�t2Þ

z3; ðjzj < RÞ;

/2ðz; tÞ ¼ Cz� R2C0 1þ
b ðv�3t1Þðva�t2Þ exp � t

t1

� �
�ðv�3t2Þðva�t1Þ exp � t

t2

� �h i
vað3a�1Þðt1�t2Þ

2
4

3
5z�1; ðjzj > RÞ:

ð27Þ

Thus, the two original analytic functions w1(z, t) and w2(z, t) can be obtained as

w1ðz; tÞ ¼
bC0 ½ð3aþ 1Þv� 6t1�ðva� t2Þ exp � t

t1

� �
� ð3aþ 1Þv� 6t2½ �ðva� t1Þ exp � t

t2

� �h i
avð1� 3aÞðt1 � t2Þ

z; ðjzj < RÞ; ð28Þ

w2ðz; tÞ ¼ C0z� 2ð1� aÞR2C
1� aþ b

z�1

� R4 �C0 1þ
b ðva� t2Þ vð1� aÞ � 2t1½ � exp � t

t1

� �
� ðva� t1Þ vð1� aÞ � 2t2½ � exp � t

t2

� �h i
vað3a� 1Þðt1 � t2Þ

2
4

3
5z�3; ðjzj > RÞ:

ð29Þ

It is observed that the internal stress components within the inhomogeneity are quadratic functions of the coordinates x
and y when t > 0 and decay with the two relaxation times t1 and t2. In addition the average mean stress within the inhomo-
geneity is given by

rð1Þxx þ rð1Þyy

� �
Ave
¼

bðr1xx þ r1yyÞ
1� aþ b

; ð30Þ

which is in fact time-independent. Furthermore, it can be easily shown that, as time approaches infinity, the internal stress
field within the inhomogeneity is uniform and hydrostatic such that

rð1Þxx ¼ rð1Þyy ¼
bðr1xx þ r1yyÞ
2ð1� aþ bÞ ; rð1Þxy ¼ 0; for r < R as t !1: ð31Þ

With the derived analytical displacement and stress fields, the strain energy change can be also obtained. This can be
done by using the Eshelby’s formula [11–14]. Actually, the change of strain energy per unit length DW due to the introduc-
tion of the circular inhomogeneity with the remote uniform stresses being held constant can be finally evaluated as

DW

pR2 ¼
ð1� aÞð1� m2Þðr1xx þ r1yyÞ

2

4l2ð1� aþ bÞ þ
ð1� m2Þ ðr1yy � r1xxÞ

2 þ 4ðr1xyÞ
2

h i
2l2

� 1þ
b ðv� 3t1Þðva� t2Þ exp � t

t1

� �
� ðv� 3t2Þðva� t1Þ exp � t

t2

� �h i
vað3a� 1Þðt1 � t2Þ

2
4

3
5; ð32Þ

This important result can be employed to predict the effective property of the corresponding composite. We assume that the
composite contains a dilute and random dispersion of the same circular inhomogeneities with the same interface conditions.
Then the effective moduli of the composite, i.e., the effective plane-strain bulk modulus K�12 and effective in-plane shear
modulus l�12 can be easily obtained as

1
K�12
¼ 1� 2m2

l2
þ 2f ð1� aÞð1� m2Þ

l2ð1� aþ bÞ ; ð33Þ

1
l�12
¼ 1

l2
þ 4f ð1� m2Þ

l2
1þ

b ðv� 3t1Þðva� t2Þ exp � t
t1

� �
� ðv� 3t2Þðva� t1Þ exp � t

t2

� �h i
vað3a� 1Þðt1 � t2Þ

2
4

3
5; ð34Þ

where f is the volume fraction of the inhomogeneities. Eqs. (33) and (34) clearly indicate that the effective plane-strain bulk
modulus is in fact time-independent, whereas the time-dependent effective in-plane shear modulus decays with the two
relaxation times t1 and t2. The time-independence of the effective bulk modulus lies in the fact that the hydrostatic part
of the remote stresses produces uniform normal stress and vanishing tangential stress along the entire circular interface
which cannot be relaxed or influenced by the interface slip and diffusion [3]. In addition the effective in-plane shear modulus
at the initial time t = 0 can be determined from Eq. (34) as

1
l�12
¼ 1

l2
þ 4f ð1� m2Þ

l2
1� b

a

� �
: ð35Þ

It can be strictly proved that Eqs. (33) and (35) recover the classical dilute result [12,15] and are consistent with the Mori–
Tanaka predictions [16] for small values of f (f� 1).
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4. Discussions

Besides the brief discussion on the effective property, our solution contains various important results associated with the
interface behavior. Many of these results are new and should be very useful to our understanding of the material/composite
features involving imperfect interface.

4.1. The interface diffusion is absent (c ?1)

In this case the two relaxation times can be determined as

t1 !1; t2 ¼
2av

3aþ 1
: ð36Þ

Consequently the two analytic functions /1(z, t) and w1(z, t) defined in the inhomogeneity are

/1ðz; tÞ ¼ bC
1�aþb z�

bC0 1�exp � t
t2

� �h i
R2ð3aþ1Þ z3;

w1ðz; tÞ ¼
bC0 6aþð1�3aÞ exp � t

t2

� �h i
að3aþ1Þ z;

ðjzj < RÞ ð37Þ

and the two analytic functions /2(z, t) and w2(z, t) defined in the matrix are

/2ðz; tÞ ¼ Czþ R2 �C0

3aþ1 3ðb� aÞ � 1þ b
a exp � t

t2

� �h i
z�1;

w2ðz; tÞ ¼ C0z� 2ð1�aÞR2C
1�aþb z�1 þ R4 �C0

3aþ1 2b� 3a� 1þ bð1þaÞ
a exp � t

t2

� �h i
z�3;

ðjzj > RÞ: ð38Þ

In this case, the internal stresses within the inhomogeneity are given by

rð1Þxx ¼
bðr1xx þ r1yyÞ
2ð1� aþ bÞ þ

b r1xx � r1yy

� �
2að3aþ 1Þ 6aþ ð1� 3aÞ exp � t

t2

� �
 �
þ

6b y2ðr1yy � r1xxÞ þ 2xyr1xy

h i
R2ð3aþ 1Þ

1� exp � t
t2

� �
 �
;

rð1Þyy ¼
b r1xx þ r1yy

� �
2ð1� aþ bÞ þ

b r1yy � r1xx

� �
2að3aþ 1Þ 6aþ ð1� 3aÞ exp � t

t2

� �
 �
þ

6b x2 r1xx � r1yy

� �
þ 2xyr1xy

h i
R2ð3aþ 1Þ

1� exp � t
t2

� �
 �
;

rð1Þxy

r1xy
¼

b 6aþ ð1� 3aÞ exp � t
t2

� �h i
að3aþ 1Þ � 6bðx2 þ y2Þ

R2ð3aþ 1Þ
1� exp � t

t2

� �
 �
; ðx2 þ y2 < R2Þ

ð39Þ

and the tractions are distributed along the interface as

rð1Þrr ¼ rð2Þrr ¼
b r1xxþr1yyð Þ

2ð1�aþbÞ þ
b 6aþð1�3aÞ exp � t

t2

� �h i
r1xx�r1yyð Þ cos 2hþ2r1xy sin 2h½ �

2að3aþ1Þ ;

rð1Þrh ¼ rð2Þrh ¼
b r1yy�r1xxð Þ sin 2hþ2r1xy cos 2h½ �

2a exp � t
t2

� �
;

on L; ð40Þ

which clearly indicates that the interfacial shear stress rrh decays to zero as the time approaches infinity.
In addition the change of strain energy due to the introduction of the inhomogeneity can be obtained as

DW

pR2 ¼
ð1� aÞð1� m2Þ r1xx þ r1yy

� �2

4l2ð1� aþ bÞ þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2ð3aþ 1Þ 3ða� bÞ þ 1� b
a

exp � t
t2

� �
 �
: ð41Þ

4.2. The interface slip is absent (v ?1)

In this case the two relaxation times can be determined as

t1 !1; t2 ¼
2ac

3aþ 1
: ð42Þ

Remark 1. When the inhomogeneity is rigid (l1 ?1), the above expression reduces to

t2 ¼
R3ð3� 4m2Þ

8Dl2ð5� 6m2Þ
; ð43Þ
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which is just the result obtained by He and Zhao [6]. We point out that there is a typo in [6]. M appearing in Eq. (32) should
be in the denominator, but not in the numerator.

When the interface slip is absent, the two analytic functions /1(z, t) and w1(z, t) defined in the inhomogeneity are

/1ðz; tÞ ¼ bC
1�aþb zþ

bC0 1�exp � t
t2

� �h i
R2ð3aþ1Þ z3;

w1ðz; tÞ ¼ bC0

a exp � t
t2

� �
z;

ðjzj < RÞ ð44Þ

and the two analytic functions /2(z, t) and w2(z, t) defined in the matrix are

/2ðz; tÞ ¼ Czþ R2 �C0

3aþ1 3ðb� aÞ � 1þ b
a exp � t

t2

� �h i
z�1;

w2ðz; tÞ ¼ C0z� 2ð1�aÞR2C
1�aþb z�1 þ R4 �C0

3aþ1 4b� 3a� 1þ bð1�aÞ
a exp � t

t2

� �h i
z�3;

ðjzj > RÞ: ð45Þ

In this case, the internal stresses within the inhomogeneity are given by

rð1Þxx ¼
b r1xxþr1yyð Þ

2ð1�aþbÞ þ
b r1xx�r1yyð Þ

2a exp � t
t2

� �
þ 6b y2ðr1xx�r1yyÞ�2xyr1xy½ �

R2ð3aþ1Þ 1� exp � t
t2

� �h i
;

rð1Þyy ¼
b r1xxþr1yyð Þ

2ð1�aþbÞ þ
b r1yy�r1xxð Þ

2a exp � t
t2

� �
þ 6b x2 r1yy�r1xxð Þ�2xyr1xy½ �

R2ð3aþ1Þ 1� exp � t
t2

� �h i
;

rð1Þxy

r1xy
¼ b

a exp � t
t2

� �
þ 6bðx2þy2Þ

R2ð3aþ1Þ 1� exp � t
t2

� �h i
;

ðx2 þ y2 < R2Þ ð46Þ

and the tractions are distributed along the circular interface as

rð1Þrr ¼ rð2Þrr ¼
b r1xxþr1yyð Þ

2ð1�aþbÞ þ
b r1xx�r1yyð Þ cos 2hþ2r1xy sin 2h½ �

2a exp � t
t2

� �
;

rð1Þrh ¼ rð2Þrh ¼
b 6aþð1�3aÞ exp � t

t2

� �h i
2að3aþ1Þ r1yy � r1xx

� �
sin 2hþ 2r1xy cos 2h

h i
;

on L; ð47Þ

which indicates that the interfacial normal stress will finally become uniform along the whole interface as time approaches
infinity.

In addition, the change of strain energy due to the introduction of the inhomogeneity can be obtained as

DW

pR2 ¼
ð1� aÞð1� m2Þ r1xx þ r1yy

� �2

4l2ð1� aþ bÞ þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2ð3aþ 1Þ 3ða� bÞ þ 1� b
a

exp � t
t2

� �
 �
: ð48Þ

Interestingly Eq. (41) for a purely slip interface and Eq. (48) for a purely diffusion interface are similar except that the
definitions of t2 for the two cases are different.

4.3. The interface slip occurs much faster than the interface diffusion (v ? 0)

In this case the two relaxation times can be determined as

t1 ¼
cð3aþ 1Þ

6
¼ R3½l1ð5� 6m2Þ þ l2ð3� 2m1Þ�

24l1l2D
; t2 ¼ 0; ð49Þ

which is identical to that obtained by Koeller and Raj [3].
Consequently the two analytic functions /1(z, t) and w1(z, t) defined in the inhomogeneity are

/1ðz; tÞ ¼
bC

1� aþ b
z�

bC0 exp � t
t1

� �
R2ð3aþ 1Þ

z3; w1ðz; tÞ ¼
6bC0

3aþ 1
exp � t

t1

� �
z; ðjzj < RÞ ð50Þ

and the two analytic functions /2(z, t) and w2(z, t) defined in the matrix are

/2ðz; tÞ ¼ Cz� R2 �C0 1� 3b
3aþ1 exp � t

t1

� �h i
z�1;

w2ðz; tÞ ¼ C0z� 2ð1�aÞR2C
1�aþb z�1 � R4 �C0 1� 2b

3aþ1 exp � t
t1

� �h i
z�3;

ðjzj > RÞ: ð51Þ
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Thus the internal stresses within the inhomogeneity can be determined as

rð1Þxx ¼
b r1xxþr1yyð Þ
2ð1�aþbÞ þ

3b r1xx�r1yyð Þ
3aþ1 exp � t

t1

� �
þ 6b y2 r1yy�r1xxð Þþ2xyr1xy½ �

R2ð3aþ1Þ exp � t
t1

� �
;

rð1Þyy ¼
b r1xxþr1yyð Þ
2ð1�aþbÞ þ

3b r1yy�r1xxð Þ
3aþ1 exp � t

t1

� �
þ 6b x2 r1xx�r1yyð Þþ2xyr1xy½ �

R2ð3aþ1Þ exp � t
t1

� �
;

rð1Þxy

r1xy
¼ 6b R2�ðx2þy2Þ½ �

R2ð3aþ1Þ exp � t
t1

� �
;

ðx2 þ y2 < R2Þ ð52Þ

and the tractions are distributed along the circular interface as

rð1Þrr ¼ rð2Þrr ¼
b r1xxþr1yyð Þ

2ð1�aþbÞ þ
3b r1xx�r1yyð Þ cos 2hþ2r1xy sin 2h½ �

3aþ1 exp � t
t1

� �
;

rð1Þrh ¼ rð2Þrh ¼ 0;
on L; ð53Þ

which indicates that the interfacial shear stress is fully relaxed by the interface slip. Interestingly it follows from Eq. (52)3

that rð1Þxy � 0 along the whole interface L.
In addition the change of strain energy due to the introduction of the inhomogeneity can be obtained as

DW

pR2 ¼
ð1� aÞð1� m2Þ r1xx þ r1yy

� �2

4l2ð1� aþ bÞ þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2
1� 3b

3aþ 1
exp � t

t1

� �
 �
: ð54Þ

4.4. The interface diffusion occurs much faster than the interface slip (c ? 0)

In this case the two relaxation times can be determined as

t1 ¼
vð3aþ 1Þ

6
; t2 ¼ 0: ð55Þ

Consequently the two analytic functions /1(z, t) and w1(z, t) defined in the inhomogeneity are

/1ðz; tÞ ¼
bC

1� aþ b
zþ bC0

R2ð3aþ 1Þ
exp � t

t1

� �
z3; w1ðz; tÞ ¼ 0; ðjzj < RÞ ð56Þ

and the two analytic functions /2(z, t) and w2(z, t) defined in the matrix are

/2ðz; tÞ ¼ Cz� R2 �C0 1� 3b
3aþ1 exp � t

t1

� �h i
z�1;

w2ðz; tÞ ¼ C0z� 2ð1�aÞR2C
1�aþb z�1 � R4 �C0 1� 4b

3aþ1 exp � t
t1

� �h i
z�3;

ðjzj > RÞ: ð57Þ

Thus the internal stresses within the inhomogeneity can be determined as

rð1Þxx ¼
b r1xxþr1yyð Þ
2ð1�aþbÞ þ

6b y2 r1xx�r1yyð Þ�2xyr1xy½ �
R2ð3aþ1Þ exp � t

t1

� �
;

rð1Þyy ¼
b r1xxþr1yyð Þ
2ð1�aþbÞ þ

6b x2ðr1yy�r1xxÞ�2xyr1xy½ �
R2ð3aþ1Þ exp � t

t1

� �
;

rð1Þxy

r1xy
¼ 6bðx2þy2Þ

R2ð3aþ1Þ exp � t
t1

� �
;

ðx2 þ y2 < R2Þ ð58Þ

and the tractions are distributed along the circular interface as

rð1Þrr ¼ rð2Þrr ¼
b r1xxþr1yyð Þ

2ð1�aþbÞ ;

rð1Þrh ¼ rð2Þrh ¼
3b r1yy�r1xxð Þ sin 2hþ2r1xy cos 2h½ �

3aþ1 exp � t
t1

� �
;

on L; ð59Þ

which indicates that there is no gradient in interfacial normal stress (i.e., the normal stress is constant along the interface).
In addition the change of strain energy due to the introduction of the inhomogeneity can be obtained as

DW

pR2 ¼
ð1� aÞð1� m2Þ r1xx þ r1yy

� �2

4l2ð1� aþ bÞ þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2
1� 3b

3aþ 1
exp � t

t1

� �
 �
: ð60Þ

Interestingly Eqs. (54) and (60) are similar except that the definitions of t1 for the two cases are different.
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4.5. The inhomogeneity and the matrix have the same elastic properties

When the inhomogeneity and the matrix have exactly the same elastic properties (l1 = l2 = l and m1 = m2 = m), the two
relaxation times are given by

t1;2 ¼
vþ c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvþ cÞ2 � 3vc

q
3

; ð61Þ

where

v ¼ 2gRð1� mÞ
l

; c ¼ R3ð1� mÞ
2lD

: ð62Þ

It can be easily checked that Eq. (61) coincides with the result obtained by Onaka et al. [4, Eqs. (34) and (35)] for the case
of f = 0.

In this case the change of strain energy due to the introduction of the inhomogeneity can be obtained as

DW

pR2 ¼
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2
1þ
ðv� 3t1Þðv� t2Þ exp � t

t1

� �
� ðv� 3t2Þðv� t1Þ exp � t

t2

� �
2vðt1 � t2Þ

2
4

3
5; ð63Þ

which indicates that the hydrostatic part r1xx þ r1yy

� �
does not contribute to the energy change.

4.6. Both the inhomogeneity and the matrix are incompressible (m1 = m2 = 0.5)

In this case the two relaxation times are determined as

t1;2 ¼
vþ c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvþ cÞ2 � 3vc

q
3

; ð64Þ

where

v ¼ gRðl1 þ l2Þ
2l1l2

; c ¼ R3ðl1 þ l2Þ
8l1l2D

: ð65Þ

The change of strain energy due to the introduction of the inhomogeneity can be obtained as

DW

pR2 ¼
r1yy � r1xx

� �2
þ 4 r1xy

� �2

4l2
1þ

b ðv� 3t1Þðv� t2Þ exp � t
t1

� �
� ðv� 3t2Þðv� t1Þ exp � t

t2

� �h i
2vðt1 � t2Þ

2
4

3
5; ð66Þ

which indicates that the hydrostatic part r1xx þ r1yy

� �
also does not contribute to the energy change.

4.7. v = c (4gD = R2)

In this case the two relaxation times can be determined as

t1 ¼ av; t2 ¼
v
3
: ð67Þ

Consequently the two analytic functions /1(z, t) and w1(z, t) defined in the inhomogeneity are

/1ðz; tÞ ¼
bC

1� aþ b
z; w1ðz; tÞ ¼

bC0

a
exp � t

t1

� �
z; ðjzj < RÞ ð68Þ

and the two analytic functions /2(z, t) and w2(z, t) defined in the matrix are

/2ðz; tÞ ¼ Cz� R2 �C0 1� b
a exp � t

t1

� �h i
z�1;

w2ðz; tÞ ¼ C0z� 2ð1�aÞR2C
1�aþb z�1 � R4 �C0 1� b

a exp � t
t1

� �h i
z�3;

ðjzj > RÞ: ð69Þ
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Interestingly in this case the stresses are uniformly distributed within the inhomogeneity as

rð1Þxx ¼
b r1xxþr1yyð Þ
2ð1�aþbÞ þ

b
2a r1xx � r1yy

� �
exp � t

t1

� �
;

rð1Þyy ¼
b r1xxþr1yyð Þ
2ð1�aþbÞ þ

b
2a r1yy � r1xx

� �
exp � t

t1

� �
;

rð1Þxy

r1xy
¼ b

a exp � t
t1

� �
;

ðx2 þ y2 < R2Þ; ð70Þ

which decay only with the larger relaxation time t1 = av. Meanwhile the tractions are distributed along the circular interface
as

rð1Þrr ¼ rð2Þrr ¼
b r1xxþr1yyð Þ

2ð1�aþbÞ þ
b r1xx�r1yyð Þ cos 2hþ2r1xy sin 2h½ �

2a exp � t
t1

� �
;

rð1Þrh ¼ rð2Þrh ¼
b r1yy�r1xxð Þ sin 2hþ2r1xy cos 2h½ �

2a exp � t
t1

� �
;

on L: ð71Þ

It can be easily proved that v = c is also the sufficient condition leading to an internal uniform stress state within the
inhomogeneity. v = c can be equivalently written in terms of the interface drag and diffusion parameters as 4gD = R2. It is
observed that this condition is independent of the elastic properties of both the inhomogeneity and matrix.

In this case the change of strain energy due to the introduction of the inhomogeneity can be obtained as

DW

pR2 ¼
ð1� aÞð1� m2Þ r1xx þ r1yy

� �2

4l2ð1� aþ bÞ þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2
1� b

a
exp � t

t1

� �
 �
: ð72Þ

4.8. Energy comparison

It is of interest to compare the values of the change of strain energy for the following several cases:

(a) The steady-state (t ?1) of Eq. (32) for a slip and diffusion interface

DWSD

pR2 ¼
ð1� aÞð1� m2Þ r1xx þ r1yy

� �2

4l2ð1� aþ bÞ þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2
: ð73Þ

(b) The steady-state of Eqs. (41) or (48) for a purely slip or purely diffusion interface

DWS

pR2 ¼
DWD

pR2 ¼
ð1� aÞð1� m2Þ r1xx þ r1yy

� �2

4l2ð1� aþ bÞ þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2ð3aþ 1Þ 3ða� bÞ þ 1½ �: ð74Þ

(c) The change of strain energy due to the introduction of a perfectly bonded inhomogeneity

DWP

pR2 ¼
ð1� aÞð1� m2Þ r1xx þ r1yy

� �2

4l2ð1� aþ bÞ þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2
1� b

a

� �
: ð75Þ

(d) The change of strain energy due to the introduction of a circular cavity (l1 = 0)

DWC

pR2 ¼
ð1� m2Þ r1xx þ r1yy

� �2

4l2
þ
ð1� m2Þ r1yy � r1xx

� �2
þ 4 r1xy

� �2

 �

2l2
: ð76Þ

It can be easily found that the following inequality holds

DWP 6 DWS ¼ DWD 6 DWSD 6 DWC : ð77Þ

Remark 2. It can be easily checked that the factor 2[3(a � b) + 1]/(3a + 1) appearing in Eq. (74) is equal to b2 defined in Eq.
(24) by Koeller and Raj [3]. Consequently Koeller and Raj’s result of the effective shear modulus can be modified to become
exactly the same as ours if we replace 2/p in Eqs. (22) and (23) in [3] by 1. Keep in mind that our prediction is based on the
energy approach [11–14], whilst Koeller and Raj’s result was obtained by ‘‘integrating the displacements along the mid-
distance line between the particles, where the particles are assumed to be arranged in a square array.” [3] In addition it
is found that Eq. (74) is in agreement with the result in [15].
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4.9. The matrix is subjected to a remote uniform heat flow

When the matrix is only subjected to a remote steady uniform heat flow q0 (Fig. 1b) along the positive y-direction [17,18],
the two analytic functions /1(z, t) and w1(z, t) defined in the inhomogeneity can be determined as

/1ðz; tÞ ¼ iA0 exp � t
t0

� �
z2; w1ðz; tÞ ¼ 0; ðjzj < RÞ ð78Þ

and the two analytic functions /2(z, t) and w2(z, t) defined in the matrix are given by

/2ðz; tÞ ¼ /2ðzÞ ¼ iR2B0 ln z;

w2ðz; tÞ ¼ �iR2B0 ln z� iR4 B0 þ A0 exp � t
t0

� �h i
z�2;

ðjzj > RÞ; ð79Þ

where the relaxation time t0 and the two time-independent real constants A0 and B0 are

t0 ¼
4vc

vþ 4c
P 0; ð80Þ

A0 ¼
q0l1l2

j1l2 þ l1

at2ð1þ m2Þ
kt2

� 2at1ð1þ m1Þ
kt1 þ kt2


 �
; B0 ¼

q0l2at2ð1þ m2Þ
2kt2ð1� m2Þ

kt2 � kt1

kt2 þ kt1
; ð81Þ

with kt being the thermal conductivity and at the thermal expansion coefficient.
During the above theoretical developments, a perfect thermal interface contact [17,18] and the plane-strain condition

have been assumed. It is observed from the above expressions that:

(i) the internal thermal stresses are now linear functions of the coordinates x and y and decay only with the single relax-
ation time t0 such that

rð1Þxx ¼ �6A0y exp � t
t0

� �
; rð1Þyy ¼ �2A0y exp � t

t0

� �
; rð1Þxy ¼ 2A0x exp � t

t0

� �
; ðx2 þ y2 < R2Þ; ð82Þ

(ii) the relaxation time t0 is zero when the interface slip occurs much faster than the interface diffusion (v = 0) or when
the interface diffusion occurs much faster than the interface slip (c = 0);
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Fig. 2. Variation of the three relaxation times t1, t2 and t0 as functions of v/c for four different values of a = 0.5,0.852,1,2.
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(iii) the mean stress within the matrix is in fact time-independent and is given by rð2Þxx þ rð2Þyy ¼ 4R2B0 sin h=r, (r > R); and
(iv) as time approaches infinity, all the internal thermal stresses within the inhomogeneity become zero whilst the steady

distributions of the external thermal stresses in the matrix are similar in form to those caused by an insulating circular
cavity perturbing a remote uniform heat flow [19].

5. Numerical results

In this section, we present numerical results to demonstrate the obtained solution and the corresponding physics.

5.1. The relaxation times

Here we first look into the relaxation times determined by Eqs. (25) and (80). Fig. 2 illustrates the variation of the three
relaxation times t1, t2 and t0 as functions of v/c for four typical values of a. Apparently t0 determined by Eq. (80) is indepen-
dent of a. It is observed from Fig. 2 that:

(i) For a fixed value of a, all the three relaxation times are increasing functions of v/c. More specifically the value of t1

monotonically increases from c (3a + 1)/6 to infinity as v/c increases from zero to infinity; the value of t2 monoton-
ically increases from zero to 2ac/(3a + 1) as v/c increases from zero to infinity; and the value of t0 monotonically
increases from zero to 4c as v/c increases from zero to infinity.

(ii) When a < 0.852, the curve of t1 intersects with that of t0 at two points (see the upper-left subplot for a = 0.5); when
a = 0.852, the curve of t1 is just tangential to that of t0 (see the upper-right subplot); when a > 0.852, there is no inter-
section between the curves t1 and t0 (see the lower two subplots for a = 1 and a = 3).

(iii) For a fixed value of a, the value of t0 is always greater than that of t2.

5.2. The time-dependent interfacial tractions

Figs. 3 and 4 illustrate the time-dependent distributions of the tractions rrr and rrh along the circular interface L for four

different values of v/c = 0,1,5,1 when the composite is subjected to remote shear stress r1xy r1xx ¼ r1yy ¼ 0
� �

with l1 = 10l2

and m1 = m2 = 1/3. In view of the fact that c is finite and non-zero, then v/c=1 corresponds to the case in which the interface
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Fig. 3. Time-dependent distribution of the interfacial normal stress rrr along the circular interface L for four different values of v/c = 0,1,5,1 when the
composite is only subjected to the remote shear stress r1xy with fixed l1 = 10l2 and m1 = m2 = 1/3.

X. Wang, E. Pan / International Journal of Engineering Science 48 (2010) 1733–1748 1745



Author's personal copy

slip is absent (see Section 4.2), and v/c = 0 corresponds to the case in which the interface slip occurs much faster than the
interface diffusion (see Section 4.3). It is observed from Fig. 3 that at the initial moment, the maximum value of the normal
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Fig. 4. Time-dependent distribution of the interfacial shear stress rrh along the circular interface L for four different values of v/c = 0, 1,5,1 when the
composite is only subjected to the remote shear stress r1xy with fixed l1 = 10l2 and m1 = m2 = 1/3.
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m1 = m2 = 1/3 and f = 0.1.
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stress rrr=r1xy along the interface is 6b/(3a + 1) = 2.4742 when v/c = 0 and is b/a = 1.5094 when v/c–0. It is observed from
Fig. 4 that: (i) the interfacial shear stress is always zero when v/c = 0 due to the fact that the interfacial shear stress is fully
relaxed by the interface slip; (ii) as t ?1, the steady state of the interfacial shear stress rrh=r1xy is zero when v /c <1, and is
the sinusoidal distribution 6bcos 2h/(3a + 1) = 2.4742cos2h when v/c =1.

5.3. The time-dependent effective shear modulus

Next we show in Fig. 5 the variation of the effective in-plane shear modulus with the normalized time t/c for six different
values of the ratio v/c. Here we set l1 = 10l2, m1 = m2 = 1/3, and the volume fraction is chosen as f = 0.1. It is observed that: (i)
in the case of v/c = 0, the initial value of the effective shear modulus is l�12=l2 ¼ 1= 1þ 4f ð1�m2Þ½3ða�bÞþ1�

3aþ1

h i
¼ 1:0675. When v/

c–0, the initial value of the effective shear modulus is l�12=l2 ¼ 1=½1þ 4f ð1� m2Þð1� b=aÞ� ¼ 1:1572; and (ii) in the case of
v/c =1, the effective shear modulus monotonically decreases to l�12=l2 ¼ 1:0675 as time approaches infinity. When v/
c <1, the effective shear modulus monotonically decreases to l�12=l2 ¼ 1=½1þ 4f ð1� m2Þ� ¼ 0:7895 as time approach
infinity.

Finally we illustrate in Fig. 6 the variation of the effective in-plane shear modulus with the normalized time t/v for six
different values of the ratio c/v. Here we also set l1 = 10l2, m1 = m2 = 1/3, and f=0.1. In view of the fact that v is finite and
non-zero, then c/v =1 corresponds to the case in which the interface diffusion is absent (see Section 4.1), and c/v = 0 cor-
responds to the case in which the interface diffusion occurs much faster than the interface slip (see Section 4.4). A compar-
ison of Fig. 5 with Fig. 6 reveals a very interesting feature: the effective in-plane shear modulus curves in the two figures are
exactly the same, which means that this effective modulus has the same dependence on the normalized times t/c and t/v.

6. Conclusions

We have derived, in this paper, a rigorous closed-form solution for the benchmark problem of an isolated circular elastic
inhomogeneity bonded to an infinite matrix through a sharp interface on which both diffusion and slip concurrently occur.
The special cases in which only interface slip or interface diffusion occurs, or interface slip occurs much faster than interface
diffusion or vice versa were also discussed through a limiting procedure. When the interface slip occurs much faster than the
interface diffusion, or when the inhomogeneity and the matrix have the same elastic properties, or when the inhomogeneity
is rigid, our results can be reduced to previous ones [3,4,6]. Interestingly, we have found that the simple condition 4gD = R2

would lead to an internal uniform but time-decaying stress field within the inhomogeneity, a new phenomenon which has
not been observed before. Furthermore, as a byproduct, we have also considered the case in which the matrix is subjected to
a remote uniform heat flow. While our work also suggests that the complex variable method can be conveniently applied to
investigate two-dimensional inhomogeneity problems with rate-dependent imperfect interface, numerical examples are in-
cluded to demonstrate the obtained solution with the corresponding physics.
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Fig. 6. Variation of the effective in-plane shear modulus with the normalized time t/v for six different values of c/v. Other fixed parameters are l1 = 10l2,
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