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a b s t r a c t

In this article, we extend Eshelby’s classic work (Eshelby, 1953) on screw dislocation in an elastic rod to the
corresponding piezoelectric case. In our study the screw dislocation suffers a displacement jump and an
electric potential jump across the slip plane, and the surface of the piezoelectric cylinder is traction-free
and charge-free. Our results demonstrate that this extension is not trivial because under some conditions
the screw dislocation cannot be ejected from the piezoelectric cylinder by applying an external torque to
the cylinder and the stress–strain curve in torsion possesses a nonlinear region due to the movement of
the screw dislocation. These observations are quite different than those predicted by Eshelby (1953) for
the elastic rod case, and should be particularly interesting to piezoelectric nanowire structures involving
Eshelby twist.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Eshelby (1953) demonstrated that when all boundary condi-
tions were taken into consideration, the image force acting on the
screw dislocation would keep the dislocation along the axis of the
cylinder (i.e., the center of the cylinder is a stable equilibrium posi-
tion for the dislocation). He observed that only when the screw
dislocation was displaced more than 0.54 of the rod radius from
the axis did the image force tend to pull it out of the rod. He also
predicted that the screw dislocation would cause a twist of the
cylinder (the so-called “Eshelby twist”) and that the dislocation
could be ejected from the rod by twisting or bending it suitably.
Interestingly the “Eshelby twist” was only experimentally veri-
fied in nanowires very recently (Bierman et al., 2008; Zhu et al.,
2008; Deppert and Wallenberg, 2008). It is added that the “Eshelby
twist” was also observed by Mann (1949). Thus, the objective of
this work is to extend Eshelby’s classical work to piezoelectric
cylinders. In our study the screw dislocation suffers a displace-
ment jump and an electric potential jump across the slip plane,
and the surface of the piezoelectric cylinder is traction-free and
charge-free. Physically the jump in the electric potential (or the so-
called “electric-potential-dislocation”) corresponds to the electric
dipole layer along the slip plane (Lee et al., 2000). Our results show
that some new phenomena emerge if the dislocation possesses an
electric potential jump.
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2. Screw dislocations in piezoelectric rods

Now we consider a homogeneous piezoelectric rod containing a
screw dislocation (Fig. 1). The rod has 6 mm point group symmetry
about the rod axis (i.e., the z-axis is along the c[0 0 0 1] direction of
the crystalline) before the introduction of dislocations. This sym-
metric material corresponds to the hexagonal crystal system (2
dielectric constants, 3 piezoelectric constants, 5 elastic constants).
The screw dislocation is assumed to be straight and infinitely long
in the z-axis, suffering a displacement jump b = bz and an elec-
tric potential jump �� across the slip plane. The jump in the
electric potential corresponds to the electric dipole layer along
the slip plane (i.e., Soh et al., 2005). We first discuss the prob-
lem within the framework of antiplane shear deformation. When
the surface of the infinite cylinder x2 + y2 = R2 is traction-free and
charge-free, the displacement w = uz and electric potential � due
to the piezoelectric screw dislocation (b, ��) at the point x = � and
y = 0 can be easily obtained by using the method of images such
that

w = b

2�
tan−1 y

x − �
− b

2�
tan−1 y

x − R2/�
,

� = ��

2�
tan−1 y

x − �
− ��

2�
tan−1 y

x − R2/�
. (1)

The non-convex electric enthalpy per unit length of the cylinder
can be calculated (Suo et al., 1992)

0093-6413/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechrescom.2010.10.005



Author's personal copy

708 X. Wang, E. Pan / Mechanics Research Communications 37 (2010) 707–711

Fig. 1. A piezoelectric screw dislocation (b, ��) within a piezoelectric rod of radius
R. The slip plane is along the x–z plane and it passes through the source point �.
The electric potential jump �� across the slip plane physically corresponds to an
electric dipole layer.
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where c44, e15 and ∈11 are, respectively, the elastic modulus mea-
sured in a constant electric field, the piezoelectric constant, and the
dielectric permittivity measured at a constant strain. With regard
to Eq. (2), we remark that: (i) it contains the dielectric medium
as a special case (e15 = 0) and (ii) the energy corresponding to the
dislocation core has been neglected in writing the electric enthalpy.

As a result the image force on the piezoelectric screw dislocation
is

F = −dW

d�
= c44b2 + 2e15b�� − ∈ 11��2

2�

�

R2 − �2
, (3)

which indicates that � = 0 is an equilibrium position. However this
equilibrium position is not necessarily unstable as in the purely
elastic case (Eshelby, 1953) in view of the fact that the sign of the
term (c44b2 + 2e15b�� − ∈ 11��2) can be positive as well as nega-
tive. It is observed that the image force derived in this section is by
means of the energy method, which is different than the direct one
(Wang et al., 2010).

On any cross-section of the cylinder there is a torque M

M = c44

∫ (
x

∂w

∂y
− y

∂w

∂x

)
dx dy + e15

∫ (
x

∂�

∂y
− y

∂�

∂x

)
dx dy

= c44b + e15��

2
(R2 − �2). (4)

If we drop the anti-plane deformation requirement, we can
apply a torque −M to cancel out M. As a result, the twist of the
rod per unit length can be calculated as

˛(�) = − 2M

c44�R4
= − c44b + e15��

c44�R4
(R2 − �2). (5)

Table 1
The minimum and maximum of the image force and their corresponding locations.

� 1 1.5 2 3 4 10

�/R ±0.3226 ±0.3926 ±0.4299 ±0.4705 ±0.4929 ±0.5391
F̃ ∓0.2180 ∓0.5321 ∓0.8744 ∓1.5938 ∓2.3341 ∓6.8885

Note: F̃ = 2�RF
c44b2+2e15b��− ∈ 11��2 .

Remark. When a piezoelectric circular cylinder is under torsion,
we have E	 = 0 (i.e., the circumferential component of the electric
field is zero) (Tarn, 2002). Thus the classical formula for torsion can
still be adopted by just replacing the shear modulus 
 by the elastic
modulus c44.

It is observed from the above expression that ˛ = 0 if the con-
dition c44b + e15�� = 0 is satisfied. When taking into consideration
the twist of the cylinder, the electric enthalpy W per unit length of
the cylinder can now be modified as

W = c44b2 + 2e15b�� − ∈ 11��2

4�
ln(R2 − �2)

− (c44b + e15��)2

4�c44

(R2 − �2)
2

R4
. (6)

Due to the fact that at � = 0, we have

dW

d�
= 0,

d2W

d�2
= (c44b + e15��)2 + c̃44 ∈ 11��2

2�R2c44
> 0, (7)

with c̃44 = c44 + e2
15/ ∈ 11 ≥ c44 being the piezoelectrically stiffened

elastic constant, then � = 0 is always a stable equilibrium position for
the piezoelectric screw dislocation when taking into consideration
the twist of the cylinder. In this case, the image force on the screw
dislocation is

F= − dW

d�
= (c44b2 + 2e15b�� − ∈ 11��2)�

2�R2

[
R2

R2−�2
−2�

R2 − �2

R2

]
,

(8)

where

� = (c44b + e15��)2

c44(c44b2 + 2e15b�� − ∈ 11��2)
, (� ≤ 0 or � ≥ 1). (9)

Remark. There is a typo in Eq. (4) in Eshelby (1953). The factor
4� in the denominator should read 2�.

It can be easily observed from Eq. (8) that:

(i) When c44b2 + 2e15b�� − ∈ 11��2 ≤ 0 (in this case � ≤ 0), a dis-
location at any position of the cylinder will always be attracted
to the center;

(ii) On the other hand when c44b2 + 2e15b�� − ∈ 11��2 > 0 (in this
case � ≥ 1), if the screw dislocation is displaced further than

�max =
[

1 − (2�)−(1/2)
]1/2

R (10)

from the center the screw dislocation will be pulled out of the
cylinder by the image force. The existence of the component
�� in the screw dislocation and/or the piezoelectric effect will
make �max > 0.54R, the value obtained by Eshelby (1953) for
an elastic screw dislocation with �� = 0. In addition the mini-
mum and maximum of the image force take place at the point
determined by the following algebraic equation

6�

(
�

R

)6

− 14�

(
�

R

)4

+ (10� + 1)

(
�

R

)2

+ 1 − 2� = 0. (11)
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Table 1 lists the calculated results for six different values of �. It is
observed from Table 1 that an increment in � will cause the location
to move toward the surface of the cylinder, accompanying with an
increase in the magnitude of the maximum and minimum image
force.

In the following we discuss the possibility of ejecting the dislo-
cation by applying an external torque M’ to the cylinder. According
to Eshelby (1953), the external energy per unit length due to the
external torque is V = − ˛(�)M′ = − (c44b + e15��)M′�2/c44�R4 (here
we have omitted the trivial constant). Thus the total energy ˘ ,
which is the sum of the electric enthalpy W and the external energy
V, can be expressed as

˘ = c44b2 + 2e15b�� − ∈ 11��2

4�
ln(R2 − �2)

− (c44b + e15��)2

4�c44

(R2 − �2)
2

R4
− c44b + e15��

c44�R4
M′�2. (12)

In order to obtain the critical value of M′ at which the screw
dislocation at the center of the cylinder can be possibly ejected, we
must have d2˘/d�2 = 0 at � = 0. This is a necessary but not sufficient
condition. We finally arrive at the critical value as follows

M′
c = R2

4

[
c44b + e15�� + c̃44 ∈ 11��2

c44b + e15��

]
= R2

2
(c44b + e15��)[1 − (2�)−1]. (13)

When there is no piezoelectric effect, the above reduces to

M′
c = c44b2 + ∈ 11��2

4b
R2, (14)

which can further reduce to the result of Eshelby (1953) if �� = 0.
In the presence of the critical value of M′ given by Eq. (13), the

image force on the screw dislocation is

F = −d˘

d�
= (c44b2 + 2e15b�� − ∈ 11��2)�3

2�R2

(
1

R2 − �2
+ 2�

R2

)
(15)

It follows from Eq. (15) that:

(i) When c44b2 + 2e15b�� − ∈ 11��2 < 0 and −1/2 ≤ � ≤ 0, there is
no way to eject the screw dislocation at the center of the cylin-
der due to the fact that �F < 0 for � /= 0.

(ii) When c44b2 + 2e15b�� − ∈ 11��2 < 0 and � < − 1/2, the screw
dislocation may find two new non-central stable equilibrium

positions at � = ±R
√

1 + (2�)−1.
(iii) When c44b2 + 2e15b�� − ∈ 11��2 ≥ 0, the screw dislocation

will be ejected from the cylinder due to the fact that �F > 0 for
� /= 0.

Observations (i) and (ii) are quite different than that by Eshelby
(1953). In fact when c44b2 + 2e15b�� − ∈ 11��2 < 0, we have �F < 0
as � → ± R (in this case the traction-free and charge-free surface
always repels the dislocation; Lee et al., 2000; Pak, 1990). Thus no
matter what value of the external torque M′ is applied, there are
only two possibilities if c44b2 + 2e15b�� − ∈ 11��2 < 0: (i) there is
always no way to eject the screw dislocation at the center of the
cylinder if � = 0 (i.e., c44b + e15�� = 0); (ii) the screw dislocation may
find two new non-central stable equilibrium positions in the pres-
ence of M′ if � < 0 (c44b + e15�� /= 0). Moreover the two new stable
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Fig. 2. The image force F̃ = 2�RF/(c44b2 + 2e15b�� − ∈ 11��2) on the screw dislo-
cation with � = − 1/4 under different values of external torque M̃. The two new stable
equilibrium positions move outward from the origin � = 0 to the surface � = ± R as M̃
increases from its critical value of M̃ = 1.5.

equilibrium positions can be explicitly given by

� = ±R

[
1 + (2�)−1

M̃ + [M̃2 + (2�)−1]
1/2

]1/2

, (� < 0) (16)

where M̃ = M′/(R2(c44b + e15��)) ≥ (1 − (2�)−1)/2 (the equality
establishes when M′ = M′

c). It is clearly observed from Eq. (16)
that when the dimensionless torque M̃ increases starting from its
critical value of (1 − (2�)−1)/2, (i) the two new stable equilibrium
positions move outward from the origin � = 0 toward the surface
� = ± R if −1/2 ≤ � < 0; (ii) the two new stable equilibrium positions

move outward from � = ±R
√

1 + (2�)−1 toward the surface � = ± R
if � < − 1/2. Two typical cases of � = − 1/4 > − 1/2 and � = − 1 < − 1/2
are illustrated, respectively, in Figs. 2 and 3 to verify the above
analysis.

In short we observe that when c44b2 + 2e15b�� − ∈ 11��2 < 0,
the screw dislocation cannot be ejected from the cylinder by apply-
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Fig. 3. The image force F̃ = 2�RF/(c44b2 + 2e15b�� − ∈ 11��2) on the screw dislo-
cation with � = − 1 under different values of external torque M̃. The two new stable
equilibrium positions move outward from � = ± 0.707R toward the surface � = ± R as
M̃ increases from its critical value of M̃ = 0.75.
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Fig. 4. The torsional stress–strain curve of a piezoelectric cylinder containing a
screw dislocation for different values of � < 0.

ing any external torque and it can at most be moved to some new
equilibrium positions within the cylinder.

Next we discuss the induced twist ˛ under the external torque
M′:

(i) When c44b + e15�� = 0 (� = 0), the screw dislocation will
always be lodged at the center of the cylinder under any exter-
nal torque M′. Thus the twist can be simply determined as

˛ = 2M′

c44�R4
, (17)

which indicates that the induced twist is proportional to the
external torque.

(ii) When c44b2 + 2e15b�� − ∈ 11��2 < 0 and c44b + e15�� /= 0
(� < 0), the screw dislocation may find new equilibrium
positions under external torque M′. Thus the twist can be deter-
mined as

˜̨ =

⎧⎨⎩ 2M̃ − 1, if M̃ <
1 − (2�)−1

2

M̃ + [M̃2 + (2�)−1]
1/2

, if M̃ ≥ 1 − (2�)−1

2

(18)

where ˜̨ = c44�R2˛/(c44b + e15��).
Eq. (18) demonstrates that when M̃ ≥ (1 − (2�)−1)/2, a non-

linear function exists between the twist and the external
torque. Furthermore when M′ = M′

c , ˜̨ undergoes a jump from
−(2�)−1 to 1 if � < − 1/2; whereas ˜̨ is still continuous at M′ =
M′

c if −1/2 ≤ � < 0. We illustrate in Fig. 4 the stress–strain curve
in torsion for different values of � < 0. In this figure the straight
dashed line ˜̨ = 2M̃ is the asymptotic line as M̃ → ∞. It is
clearly observed from Fig. 4 that the stress–strain curve is con-
tinuous when −1/2 ≤ � < 0; whereas it undergoes a jump when
� < −1/2.

(iii) When c44b2 + 2e15b�� − ∈ 11��2 ≥ 0 (� ≥ 1), the screw dislo-
cation will be ejected from the cylinder once M′ = M′

c . Thus the
induced twist can be determined as

˜̨ =

⎧⎨⎩ 2M̃ − 1, if M̃ <
1 − (2�)−1

2

2M̃, if M̃ ≥ 1 − (2�)−1

2

(19)

The above expression corresponds to Fig. 3 in Eshelby (1953).
Furthermore when M′ = M′

c , ˜̨ undergoes a jump from −(2�)−1

to 1 − (2�)−1 due to the ejection of the screw dislocation. The
stress–strain relation satisfying Eq. (19) can be more clearly
observed in Fig. 5 for different values of � ≥ 1, where the curve
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Fig. 5. The torsional stress–strain curve of a piezoelectric cylinder containing a
screw dislocation for different values of � ≥ 1.

for fixed � is similar to Fig. 3 in Eshelby (1953). However,
Eshelby’s curve passed the origin, which we believe is a minor
error in Fig. 3 (Eshelby, 1953).

3. Conclusions

We addressed a screw dislocation in a homogeneous piezo-
electric cylinder. Our results demonstrated that: (i) when all the
boundary conditions are taken into consideration, the center of
the piezoelectric cylinder is a stable equilibrium position; (ii)
when c44b2 + 2e15b�� − ∈ 11��2 ≥ 0, the screw dislocation will
be ejected from the cylinder by applying a critical value of the
torque given by Eq. (13); (iii) when c44b + e15�� = 0, there is no
way to eject the screw dislocation at the center of the cylin-
der by applying any value of torque to the cylinder; (iv) when
c44b2 + 2e15b�� − ∈ 11��2 < 0 and c44b + e15�� /= 0, the screw
dislocation may find two new non-central stable equilibrium posi-
tions [given by Eq. (16)] by applying a certain value of torque to the
cylinder; (v) the stress–strain curve of a piezoelectric rod in torsion
[see Eqs. (17)–(19)] will no longer simply be Fig. 3 in Eshelby (1953),
and when c44b2 + 2e15b�� − ∈ 11��2 < 0 and c44b + e15�� /= 0, a
nonlinear region in the curve exists due to the lodged screw dis-
location [see Eq. (18)]. It is believed that our striking theoretical
predictions will be useful to piezoelectric nanowire growth where
the interesting Eshelby twist exists.
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