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Abstract

We investigate in detail the transient response induced by an edge dislocation near a circular elastic inclusion with simultaneous inter-
face slip and diffusion. A rigorous solution to the interaction problem is derived in series form. As the time approaches infinity, our solu-
tion just recovers the classical one derived by Srolovitz et al. (Acta Metall 1984;32:1079) for fully relaxed boundary conditions. In
addition, we observe that the edge dislocation will induce a uniform rigid-body rotation in the inclusion as the time approaches infinity.
When the dislocation is far away from the inclusion, simple asymptotic expressions of the glide and climb forces on the dislocation are
also obtained. Furthermore, five extreme cases for the imperfect interface are discussed; in particular, we derive approximate closed-form
expressions of the decaying internal stress field within the inclusion and the image force on the dislocation for long-range stress relax-
ations when the interface diffusion occurs much faster than the interface slip and vice versa. Some interesting physical behaviors are
observed.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Interface slip, which leads to viscous-like relaxation of
the shear traction, is due to diffusion over length scales com-
parable to the size of the asperities of the interface [1]; whilst
interface diffusion, which causes relaxation of the normal
traction gradient along the interface, is driven by the gradi-
ent of chemical potential on the interface [2,3]. Interface slip
and diffusion should be taken into consideration when dis-
cussing the dislocation–inclusion interaction at elevated
temperatures [4–8]. Srolovitz et al. [7] were the first to derive
an exact solution for the elastic problem of an edge disloca-
tion interacting with a circular inclusion assuming that both
the tangential traction and normal traction gradients are
instantaneously relaxed at the inclusion/matrix interface.

A recent summary of historical developments in the under-
standing of the dislocation–particle interaction at elevated
temperature can be found in Ref. [9].

Srolovitz et al.’s solution [7] is valid for the steady-state
creep in which both the interface slip and diffusion relaxa-
tion processes have finished as the time approaches infinity.
As observed in Ref. [10], some important phenomena may
only occur in a transient period of time and would disap-
pear at steady state. Thus the main purpose of this work
is to investigate the transient response caused by an edge
dislocation interacting with a circular inclusion with inter-
face slip and diffusion. This paper is structured as follows.
In Section 2, we derive the time-dependent elastic field
caused by an edge dislocation near a circular inclusion by
means of the complex variable method. The time-dependent
image force acting on the dislocation is obtained in Section
3. Five extreme cases of the imperfect interface are discussed
in Section 4, with detailed numerical results to show the
mobility of the dislocation due to its interaction with the
inclusion. Finally, conclusions are drawn in Section 5.
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2. Time-dependent elastic field

Here we consider a solitary circular elastic inclusion of
radius R bonded to an infinite matrix through a sharp
interface L, as illustrated in Fig. 1. We establish a Cartesian
coordinate system xoy, with its origin at the center of the
circular inclusion. Furthermore, we assume that an edge
dislocation with Burgers vector (bx, by) is introduced at
the initial time and is fixed at (n, 0) on the x-axis in the
matrix. In the following analysis, all physical quantities
pertaining to the inclusion and matrix will be labeled with
subscripts 1 and 2 (or superscripts (1) and (2)), respectively.

For the in-plane deformation of an isotropic elastic
material, the stresses, displacements and resultant forces
can be expressed in terms of two analytic functions /(z, t)
and w(z, t) as [11]

rrr þ rhh ¼ 2 /0ðz; tÞ þ/0ðz; tÞ
h i

;

rrr � irrh ¼ /0ðz; tÞ þ/0ðz; tÞ � e2ih �z/00ðz; tÞ þw0ðz; tÞ½ �;

2lður þ iuhÞ ¼ e�ih j/ðz; tÞ � z/0ðz; tÞ �wðz; tÞ
h i

;

X þ iY ¼�i /ðz; tÞ þ z/0ðz; tÞ þwðz; tÞ
h i

;

ð1Þ

where j = 3 � 4m is for plane-strain deformation, which is
assumed in this investigation, and j ¼ ð3� mÞ=ð1þ mÞ for
plane-stress deformation; l and m, where l > 0 and
0 6 m 6 0:5, are the shear modulus and Poisson’s ratio,
respectively; t is the real time variable; and
z ¼ xþ iy ¼ reih is the complex variable. The appearance
of the real time in the above expression is solely due to
the rate-dependent interface slip and diffusion on L. The
interface slip and diffusion boundary conditions can be
expressed as [1–3,10,12]

rð1Þrh ¼ rð2Þrh ¼ g _uð2Þh � _uð1Þh

� �
;

D

R2

d2rð1Þrr

dh2
¼ D

R2

d2rð2Þrr

dh2
¼ _uð1Þr � _uð2Þr ; on L ð2Þ

where the overdot denotes the derivative with respect to
time t, g is a non-negative interface drag parameter and
D is a non-negative interface diffusion parameter. Here
we assume that both g and D are constant along the circu-
lar interface.

If we introduce the following analytic continuations

/iðz; tÞ ¼ �z�/0i R2=z; t
� �

� �wi R2=z; t
� �

; i ¼ 1; 2 ð3Þ

then it can be strictly proved that /01ð0; tÞ is, in fact, time-
independent (hence in the following we can write
/01ð0; tÞ ¼ /01ð0Þ), and that /1ðz; tÞ should satisfy the follow-
ing set of partial differential equations [13]

_/1ðz; tÞ � a
z2

R2

�_/1ðR2=z; tÞ

þ 1

v
z /01ðz; tÞ þ �/01ðR2=z; tÞ
� �

¼ 0; ðjzj < RÞ ð4Þ

a _/1ðz; tÞ �
z2

R2

�_/1ðR2=z; tÞ

� 1

v
z /01ðz; tÞ þ �/01ðR2=z; tÞ
� �

¼ 0; ðjzj > RÞ ð5Þ

_/1ðz; tÞ þ a
z2

R2

�_/1ðR2=z; tÞ

þ 1

4c
z2/001ðz; tÞ þ z3/0001 ðz; tÞ �R2 �/001ðR2=z; tÞ �R4

z
�/0001 ðR2=z; tÞ

� 	
¼ 0; ðjzj< RÞ

ð6Þ

a _/1ðz; tÞ þ
z2

R2

�_/1ðR2=z; tÞ

� 1

4c
z2/001ðz; tÞ þ z3/0001 ðz; tÞ �R2 �/001ðR2=z; tÞ �R4

z
�/0001 ðR2=z; tÞ

� 	
¼ 0; ðjzj> RÞ

ð7Þ

where a and b are two dimensionless parameters defined by

a ¼ j2l1 þ l2

j1l2 þ l1

; b ¼ j2l1 þ l1

j1l2 þ l1

; ð8Þ

and v and c are two time scales (corresponding to the inter-
face slip and diffusion) defined by

v ¼ gRðj1l2 þ l1Þ
2l1l2

; c ¼ R3ðj1l2 þ l1Þ
8l1l2D

ð9Þ

The analytic function /1ðz; tÞ in its original region
jzj < R and in its continuation region jzj > R can then be
expanded into the following forms:

/1ðz; tÞ ¼/01ð0Þzþ
Xþ1
n¼2

AnðtÞzn; ðjzj< RÞ

/1ðz; tÞ ¼�/01ð0Þzþ
Xþ1
n¼3

R2ðn�1ÞBnðtÞz�ðn�2Þ; ðjzj> RÞ
ð10Þ

where An(t) and Bn(t) are time-dependent parameters to be
determined.

ξ

Matrix S2

R

x

Circular Elastic Inclusion S1

y

Interface L

θ

Fig. 1. An edge dislocation near a circular inclusion embedded in a
matrix.
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Substituting the above expressions into Eqs. (4)–(7), we
arrive at

A2ðtÞ ¼ A2ð0Þ exp � t
t0


 �
; ð11Þ

AnðtÞ ¼ P n va� ðn� 2Þt�n
� �

exp � t
t�n


 �

þ Qn va� ðn� 2Þtþn
� �

exp � t
tþn


 �
;

BnðtÞ ¼ P nðv� nt�n Þ exp � t
t�n


 �

þ Qn v� ntþn
� �

exp � t
tþn


 �
; ðn ¼ 3; 4; . . . ;þ1Þ

ð12Þ

where t0 and t�n ; t
þ
n (n = 3, 4, . . ., +1) are the relaxation

times given by

t0 ¼
4vc

vþ 4c
P 0; ð13Þ

and the constants Pn and Qn are related to An(0) and Bn(0)
through the following expressions

P n ¼
ðv� ntþn ÞAnð0Þ þ ½ðn� 2Þtþn � va�Bnð0Þ

ðv� ntþn Þ½va� ðn� 2Þt�n � � ðv� nt�n Þ½va� ðn� 2Þtþn �
;

Qn ¼
ðv� nt�n ÞAnð0Þ þ ½ðn� 2Þt�n � va�Bnð0Þ

ðv� nt�n Þ½va� ðn� 2Þtþn � � ðv� ntþn Þ½va� ðn� 2Þt�n �

ðn¼ 3;4; . . . ;þ1Þ ð15Þ

It is clearly observed from the above derivations that: (i)
A2ðtÞ decays with one single relaxation time t0; and (ii) An(t)
and Bn(t) ðn P 3Þ decay with two different relaxation times,
t�n and tþn . Thus the internal stresses inside the inclusion
will decay with all the relaxation times t0, t�n and tþn
(n = 3, 4, . . ., +1).

In view of the fact that the interface is perfect at the ini-
tial moment, we then have

/01ð0Þ ¼
bl2

pnðj2 þ 1Þ
by

a� b� 1
þ ibx

a� bþ 1


 �
; ð16Þ

and

Anð0Þ ¼ �
bn�nA

n
; ðn ¼ 2; 3; . . . ;þ1Þ

Bnð0Þ ¼
b
a

n�ðn�2Þ�A

R2ðn� 2Þ
þ n�nð1� n2R�2ÞA

" #
;

ðn ¼ 3; 4; . . . ;þ1Þ ð17Þ

where

A ¼ l2ðbx þ ibyÞ
piðj2 þ 1Þ ð18Þ

The analytic function /2ðz; tÞ in its original region |z| > R

and in its continuation region |z| < R can then be easily
obtained as

/2ðz; tÞ ¼ �2Ref/01ð0Þgzþ A lnðz� nÞ � A ln
z� R2=n

z

þ R2ðR2 � n2Þ
n3

�A

z� R2=n
�
Xþ1
n¼2

AnðtÞzn; ðjzj < RÞ

/2ðz; tÞ ¼ A lnðz� nÞ � A ln
z� R2=n

z
þ R2ðR2 � n2Þ

n3

�A

z� R2=n

�
Xþ1
n¼3

R2ðn�1ÞBnðtÞz�ðn�2Þ; ðjzj > RÞ

ð19Þ

As time t approaches infinity, the two analytic functions
within the inclusion become

/1ðz;1Þ ¼ /01ð0Þz;w1ðz;1Þ ¼ 0 ðjzj < RÞ ð20Þ
which indicates that the internal stresses are uniform and
hydrostatic such that

rxx ¼ ryy ¼
2bl2by

pnðj2 þ 1Þða� b� 1Þ ¼
l1l2by

pn½ð2m1 � 1Þl2 � l1�
;

rxy ¼ 0; t!1; ðjzj < RÞ ð21Þ

Furthermore, as time t approaches infinity, the edge dis-
location will induce the following uniform rigid-body rota-
tion in the inclusion

e ¼ bl2ðj1 þ 1Þbx

2pnl1ðj2 þ 1Þða� bþ 1Þ ¼
bx

2pn
: ð22Þ

It can be easily checked that Eq. (21) is in agreement
with the result obtained by Srolovitz et al. [7] using Eshel-
by’s method. In addition, it is of interest to note that the
induced uniform rigid-body rotation in the inclusion is
independent of the material properties of both the inclu-
sion and the matrix, and is also independent of the size
of the inclusion.

3. Time-dependent force on the dislocation

By employing the Peach–Koehler formula [14], we can
obtain the time-dependent image force acting on the edge
dislocation due to its interaction with the circular inclusion.

t�n ¼
½nðaþ 1Þ� 2�½4cþ vðn� 1Þ2� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nðaþ 1Þ� 2�2½4cþ vðn� 1Þ2�2� 64avcnðn� 2Þðn� 1Þ2

q
4nðn� 2Þðn� 1Þ2

P 0;

tþn ¼
½nðaþ 1Þ� 2�½4cþ vðn� 1Þ2� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nðaþ 1Þ� 2�2½4cþ vðn� 1Þ2�2� 64avcnðn� 2Þðn� 1Þ2

q
4nðn� 2Þðn� 1Þ2

P 0; ðn¼ 3;4; . . . ;þ1Þ

ð14Þ
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The specific expression of the image force is rather lengthy
and is suppressed here. However, if the dislocation is far
from the inclusion and contains only the bx component,
then the glide force Fx can be simply approximated as

F x¼
4l2R2ðbxÞ2

pn3ðj2þ1Þ

�
b ðv�3tþ3 Þðva� t�3 Þexpð� t

tþ
3

Þ�ðv�3t�3 Þðva� tþ3 Þexpð� t
t�
3
Þ

h i
vað3a�1Þðt�3 � tþ3 Þ

�1

2
4

3
5

þoðn�5Þ; as jnj�R and t P 0 ð23Þ

which will reduce to Dundurs and Mura’s result [15] when
t = 0. The above far-field asymptotic expression indicates
that, in general, the glide force evolves with two relaxation
times, t�3 and tþ3 . It is also of interest to note that, except for
the pre-factor, the above expression is similar in form to
that of the effective in-plane shear modulus for a material
containing a dilute and random dispersion of the same cir-
cular inclusions with interface slip and diffusion [13].

Similarly, if the dislocation is far from the inclusion and
contains only the by component, then the climb force Fx

can be simply approximated as

F x ¼
2l2R2ðbyÞ2

pn3ðj2 þ 1Þ
a� 1

1� aþ b
þ oðn�5Þ; as jnj

� R and t P 0 ð24Þ

which is the same result obtained by Dundurs and Mura
[15]. Eq. (24) indicates that the interface slip and diffusion
exert no influence on the far-field asymptotic climb force.

4. Discussion of extreme cases of the interface

In this section, we investigate the physical behavior of
the dislocation–inclusion interaction problem by consider-
ing five extreme cases of the interface: (i) the interface dif-
fusion is absent (or a pure slip interface); (ii) the interface
slip is absent (or a pure diffusion interface); (iii) the inter-
face slip occurs much faster than the interface diffusion;
(iv) the interface diffusion occurs much faster than the
interface slip; and (v) the interface diffusion and slip have
the same time scale, v = c.

4.1. The interface diffusion is absent (c ?1)

In this case, the relaxation times can be determined from
Eqs. (13) and (14) as

t0 ¼ v; t�n ¼
2av

nðaþ 1Þ � 2
; tþn !1;

ðn ¼ 3; 4; . . . ;þ1Þ ð25Þ

where t0 > t�n . An(t) and Bn(t) can be explicitly determined as

AnðtÞ ¼
a nAnð0Þ � ðn� 2ÞBnð0Þ½ �

nðaþ 1Þ � 2
exp � t

t�n


 �

þ ðn� 2Þ Anð0Þ þ aBnð0Þ½ �
nðaþ 1Þ � 2

;

BnðtÞ ¼
ðn� 2ÞBnð0Þ � nAnð0Þ

nðaþ 1Þ � 2
exp � t

t�n


 �

þ n Anð0Þ þ aBnð0Þ½ �
nðaþ 1Þ � 2

; ðn ¼ 3; 4; . . . ;þ1Þ ð26Þ

If the dislocation is far from the inclusion and contains
only the bx component, then the glide force Fx can be
obtained from Eq. (23) as

F x ¼
4l2R2ðbxÞ2

pn3ðj2þ 1Þð3aþ 1Þ
3ðb� aÞ� 1þb

a
expð� t

t�3
Þ

� 	
; as jnj

� R and t P 0

ð27Þ
which reduces to the result by Dundurs and Gangadharan
[16] when t ?1. Furthermore, if b� a > 1=3 (or equiva-
lently l1=l2 > 3� 2m1), the dislocation will always be re-
pelled from the inclusion at any time. On the other hand,
if 0 < b� a < 1=3 (or equivalently 1 < l1=l2 < 3� 2m1),
the dislocation will be attracted to or repelled from the
inclusion depending on the time: (i) the dislocation will

be repelled from the inclusion when t < t�3 ln b
a½3ða�bÞþ1�

� �
;

(ii) the dislocation will be attracted to the inclusion when

t > t�3 ln b
a½3ða�bÞþ1�

� �
.

4.2. The interface slip is absent (v ?1)

In this case, the relaxation times can be determined from
Eqs. (13) and (14) as

t0 ¼ 4c; t�n ¼
8ac

ðn� 1Þ2½nðaþ 1Þ � 2�
; tþn !1;

ðn ¼ 3; 4; . . . ;þ1Þ ð28Þ

An(t) and Bn(t) can be explicitly determined as

AnðtÞ ¼
a½nAnð0Þ þ ðn� 2ÞBnð0Þ�

nðaþ 1Þ � 2
exp � t

t�n


 �

þ ðn� 2Þ½Anð0Þ � aBnð0Þ�
nðaþ 1Þ � 2

;

BnðtÞ ¼
ðn� 2ÞBnð0Þ þ nAnð0Þ

nðaþ 1Þ � 2
exp � t

t�n


 �

þ n½aBnð0Þ � Anð0Þ�
nðaþ 1Þ � 2

; ðn ¼ 3; 4; . . . ;þ1Þ

ð29Þ

If the dislocation is far from the inclusion and contains
only the bx component, then the glide force Fx can be
obtained from Eq. (23) as

F x ¼
4l2R2ðbxÞ2

pn3ðj2 þ 1Þð3aþ 1Þ
3ðb� aÞ � 1þ b

a
exp � t

t�3


 �� 	
:

ð30Þ
Interestingly, the above expression is very similar to Eq.

(27) except that the definitions of t�3 for the two cases are
different. Therefore, the dislocation behavior, i.e. whether
the dislocation is attracted to or repelled from the inclu-
sion, is the same as that in Section 4.1.
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4.3. The interface slip occurs much faster than the interface

diffusion (v ? 0)

This kind of interface, on which the shear traction is
fully relaxed (i.e. rrh = 0), is the one discussed by Koeller
and Raj [3]. In this case, the relaxation times can be deter-
mined from Eqs. (13) and (14) as

t0 ¼ t�n ¼ 0; tþn ¼
2c½nðaþ 1Þ � 2�
nðn� 2Þðn� 1Þ2

¼ 2c

ðn� 1Þ2
a

n� 2
þ 1

n

� 	
; ðn ¼ 3; 4; . . . ;þ1Þ ð31Þ

An(t) and Bn(t) can be determined as

A2ðtÞ ¼ 0;

AnðtÞ ¼
ðn� 2Þ½Anð0Þ þ aBnð0Þ�

nðaþ 1Þ � 2
exp � t

tþn


 �
;

ðn¼ 3;4; . . . ;þ1Þ ð32Þ

BnðtÞ ¼
n½Anð0Þ þ aBnð0Þ�

nðaþ 1Þ � 2
exp � t

tþn


 �
;

It is found that tþ3 ¼ cð3aþ 1Þ=6 is the longest time con-
stant among all the relaxation times tþn ðn P 3Þ. Thus for
the long-range stress relaxations one needs only to retain
the terms A3(t) and B3(t) in the series expansions in Eqs.
(10) and (19). The decaying internal stress field for long-
range stress relaxations can thus be approximated as

rxx ¼
2bl2by

pnðj2þ1Þða�b�1Þþ
4bl2½R2ð�2y2þR2Þby�2xyð3n2�R2Þbx�

pR2n3ðj2þ1Þð3aþ1Þ
exp � t

tþ3


 �

ryy ¼
2bl2by

pnðj2þ1Þða�b�1Þþ
4bl2½R2ð2x2�R2Þby�2xyð3n2�R2Þbx�

pR2n3ðj2þ1Þð3aþ1Þ
exp � t

tþ3


 �
;

rxy ¼
4bl2ð3n2�R2Þðx2þ y2�R2Þbx

pR2n3ðj2þ1Þð3aþ1Þ
exp � t

tþ3


 �
;ðx2þ y2 <R2Þ ð33Þ

By employing the Peach–Koehler formula, we arrive at
an approximate closed-form expression of the image force
on the dislocation for long-range stress relaxations as

F x ¼ F 0
x þ

2bl2R2ðbyÞ2

pn3ðj2þ 1Þð1� aþ bÞ

þ 4bl2R2½ðn2 �R2Þð3n2�R2ÞðbxÞ2þR4ðbyÞ2�
pn7ðj2þ 1Þð3aþ 1Þ

exp � t
tþ3


 �
;

F y ¼ F 0
y þ

2bl2R2bxby

pn3ðj2þ 1Þð1� aþ bÞ

� 4bl2R2ð3n2� 2R2Þbxby

pn5ðj2þ 1Þð3aþ 1Þ
exp � t

tþ3


 �
; jnj> R

ð34Þ
where Fx and Fy are, respectively, the x- and y-components
of the image force, and F 0

x and F 0
y correspond to the image

force for the edge dislocation near a circular hole [7].
If the dislocation is far from the inclusion and contains

only the bx component, then the glide force Fx can be
obtained from Eq. (23) as

F x ¼
4l2R2ðbxÞ2

pn3ðj2 þ 1Þ
3b

3aþ 1
exp � t

tþ3


 �
� 1

� 	
; as jnj � R and t P 0 ð35Þ

which reduces to the result by Dundurs and Gangadharan
[16] when t = 0. Furthermore, if b� a < 1=3 (or equiva-
lently l1=l2 < 3� 2m1), the dislocation will always be at-
tracted to the inclusion. On the other hand, if
b� a > 1=3 (or equivalently l1=l2 > 3� 2m1), the disloca-
tion will be attracted to or repelled from the inclusion
depending on the time: (i) the dislocation will be repelled
from the inclusion when t < tþ3 lnð 3b

3aþ1
Þ; (ii) the dislocation

will be attracted to the inclusion when t > tþ3 lnð 3b
3aþ1
Þ.

In order to show the dislocation mobility due to its
interaction with the inclusion more clearly, we illustrate
in Fig. 2 the time-dependent glide force Fx on a dislocation
containing only the bx component for l1 = 10l2 and
m1 = m2 = 1/3 by using the following exact solution:

F x ¼
l2ðbxÞ2

pðj2 þ 1Þ

�
� 2R2ð2n2 � R2Þ

n3ðn2 � R2Þ
þ bðn2 � R2Þ

�
Xþ1
n¼3

ðn� 1Þ2R2ðn�2Þ½nn2 � ðn� 2ÞR2�
n2nþ1½nðaþ 1Þ � 2�

� exp � t
tþn


 �	
: jnj > R and t P 0 ð36Þ

It is strictly proved that, when t = 0, the above expres-
sion is equivalent to Eq. (15) in Dundurs and Gangadharan
[16]. In calculating the curves in Fig. 2 (and also in Figs. 3
and 4 below), the series in Eq. (36) is truncated at n = 50 to
obtain results with relative errors less than 0.01%. It is
observed from Fig. 2 that when 0 < t < 0:2128tþ3 the dislo-
cation has a transient unstable equilibrium position at
n ¼ n0. This means that at this moment the dislocation will
be attracted to the inclusion if n < n0 and be repelled from
the inclusion if n > n0. Furthermore, the equilibrium posi-
tion will move outward from n = R to infinity as the time
increases from t = 0+ to t ¼ 0:2128tþ3 (see Table 1). On
the other hand, when t > 0:2128tþ3 , the dislocation will
always be attracted to the inclusion. Our calculations also
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Fig. 2. The normalized glide force F ¼ pRF x

l2ðbxÞ2
on a dislocation containing

only the bx component at six moments, ~t ¼ t=tþ3 ¼ 0; 0:08; 0:1;
0:15; 0:2128; 0:5. l1 = 10l2 and m1 = m2 = 1/3 (these material parameters
satisfy l1=l2 > 3� 2m1), v ? 0.
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indicate that, for t P 0:5tþ3 , the approximate expression
(34) for the long-range stress relaxations can be used with
very high accuracy.

Fig. 3 presents the time-dependent glide force Fx on a
dislocation containing only the bx component for
l1 = 2l2 and m1 = m2 = 1/3 by using Eq. (35). It is observed

that at t = 0 there is a stable equilibrium position. This is in
agreement with that by Dundurs and Gangadharan [16] for
a free-slipping interface. It is somewhat unexpected to see
that, when 0 < t < 0:00473tþ3 , there are two transient equi-
librium positions for the dislocation: the one closer to the
interface is an unstable one, whilst the other one further
away from the interface is stable. The two equilibrium posi-
tions will merge to a single saddle point at t ¼ 0:00473tþ3 .
When t > 0:00473tþ3 , the dislocation will always be
attracted to the inclusion.

The above calculations demonstrate that the dislocation
mobility is rather complicated and the transient effect due
to interface slip and diffusion cannot be neglected.

4.4. The interface diffusion occurs much faster than the

interface slip (c ? 0)

In this case, the relaxation times can be determined as

t0 ¼ t�n ¼ 0; tþn ¼
v½nðaþ 1Þ � 2�

2nðn� 2Þ ¼ v
2

a
n� 2

þ 1

n

� 	
;

ðn ¼ 3; 4; . . . ;þ1Þ ð37Þ

An(t) and Bn(t) can be obtained as

A2ðtÞ ¼ 0;

AnðtÞ ¼
ðn� 2Þ½Anð0Þ � aBnð0Þ�

nðaþ 1Þ � 2
exp � t

tþn


 �
;

BnðtÞ ¼
n½aBnð0Þ � Anð0Þ�

nðaþ 1Þ � 2
exp � t

tþn


 �
; ðn ¼ 3; 4; . . . ;þ1Þ

ð38Þ

Similarly, it is found that tþ3 ¼ vð3aþ 1Þ=6 is the longest
time constant among the relaxation times tþn ðn P 3Þ. Thus,
for the long-range stress relaxations one only needs to
retain the terms A3(t) and B3(t) in the series expansions
in Eqs. (10) and (19). The decaying internal stress field
for long-range stress relaxations can thus be approximated
as

rxx ¼
2bl2by

pnðj2 þ 1Þða� b� 1Þ

þ 8bl2y½2R2byy þ xð3n2 � 2R2Þbx�
pR2n3ðj2 þ 1Þð3aþ 1Þ

exp � t
tþ3


 �
;

ryy ¼
2bl2by

pnðj2 þ 1Þða� b� 1Þ

þ 8bl2x½�2R2byxþ yð3n2 � 2R2Þbx�
pR2n3ðj2 þ 1Þð3aþ 1Þ

exp � t
tþ3


 �
;
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Fig. 4. The normalized glide force F ¼ pRF x

l2ðbxÞ2
on a dislocation containing

only the bx component at six moments, ~t ¼ t=tþ3 ¼ 0; 0:08; 0:15; 0:2128;
0:5; 1:0, under the conditions c ? 0, l1 = 10l2 and m1 = m2 = 1/3 (these
material parameters satisfy l1=l2 > 3� 2m1).
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Fig. 3. The normalized glide force F ¼ pRF x

l2ðbxÞ2
on a dislocation containing

only the bx component at six moments, ~t ¼ t=tþ3 ¼ 0; 0:002; 0:004;
0:00473; 0:01; 0:04, under the conditions v ? 0, l1 = 2l2 and m1 =
m2 = 1/3 (these material parameters satisfy 1 < l1=l2 < 3� 2m1).

Table 1
Locations of the equilibrium position of the dislocation at different times (l1 = 10l2, m1 = m2 = 1/3 and v ? 0).

t=tþ3 0.001 0.05 0.08 0.1 0.15 0.2 0.21 0.2128
n0/R 1.0937 1.6575 1.9736 2.2275 3.2379 7.6598 16.6145 1
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rxy ¼
4bl2ð2R2� 3n2Þðx2þ y2Þbx

pR2n3ðj2þ 1Þð3aþ 1Þ
exp � t

tþ3


 �
; ðx2þ y2 < R2Þ

ð39Þ
By employing the Peach–Koehler formula, we arrive at

an approximate but closed-form expression for the image
force on the dislocation for long-range stress relaxations:

F x ¼ F 0
x þ

2bl2R2ðbyÞ2

pn3ðj2þ 1Þð1� aþbÞ

þ 4bl2R2½ðn2� 2R2Þð3n2� 2R2ÞðbxÞ2þ 4R4ðbyÞ2�
pn7ðj2þ 1Þð3aþ 1Þ

exp � t
tþ3


 �
;

F y ¼ F 0
y þ

2bl2R2bxby

pn3ðj2þ 1Þð1� aþbÞ

� 4bl2R2ð3n2� 4R2Þbxby

pn5ðj2þ 1Þð3aþ 1Þ
exp � t

tþ3


 �
; jnj> R

ð40Þ

If the dislocation is far from the inclusion and contains
only the bx component, then the glide force Fx can be
obtained from Eq. (23) as

F x ¼
4l2R2ðbxÞ2

pn3ðj2 þ 1Þ
3b

3aþ 1
exp � t

tþ3


 �
� 1

� 	
;

as jnj � R and t P 0 ð41Þ

Interestingly, the above expression is very similar to Eq.
(35) except that the definitions of tþ3 for the two cases are
different. Therefore, the dislocation behavior, i.e. whether
the dislocation is attracted to or repelled from the inclu-
sion, is the same as that in Section 4.3.

In order to more clearly show the dislocation mobility
due to its interaction with the inclusion, we illustrate in
Fig. 4 the time-dependent glide force Fx on a dislocation
containing only the bx component for l1 = 10l2 and
m1 = m2 = 1/3 by using the following exact solution:

F x ¼�
l2ðbxÞ2

pðj2 þ 1Þ
2R2ð2n2 �R2Þ
n3ðn2 �R2Þ

þ bl2ðbxÞ2

pðj2 þ 1Þ
Xþ1
n¼3

�R2ðn�2Þ½ðn� 1Þn2 � ðnþ 1ÞR2�½nðn� 1Þn2 � ðnþ 1Þðn� 2ÞR2�
n2nþ1½nðaþ 1Þ � 2�

� exp � t
tþn


 �
: jnj> R and t P 0 ð42Þ

Again, the above series is truncated at n = 50 during the
calculation. It is observed from Fig. 4 that when
0 6 t < 0:2128tþ3 the dislocation has a transient unstable
equilibrium position at n ¼ n0. At the initial moment, the
equilibrium position is located at n = 2.4497R, which is
at some distance from the interface. This situation is differ-
ent from that observed in Fig. 2. As the time increases from

t = 0 to t ¼ 0:2128tþ3 , the equilibrium position will move
outward from n = 2.4497R to infinity (see Table 2). On
the other hand, when t > 0:2128tþ3 , the dislocation will
always be attracted to the inclusion. Our calculations also
show that, for t P tþ3 , the approximate expression (40)
for long-range stress relaxations can be used with very high
accuracy.

4.5. The interface diffusion and slip have the same time scale

v = c (4gD = R2)

In this case, t�3 and tþ3 can be obtained as

t�3 ¼
v
3
; tþ3 ¼ av: ð43Þ

If the dislocation is far away from the inclusion and con-
tains only the bx component, then the glide force Fx can be
obtained from Eq. (23) as

F x ¼
4l2R2ðbxÞ2

pn3ðj2þ 1Þ
b
a

exp � t
tþ3


 �
� 1

� 	
; as jnj � R and t P 0

ð44Þ
Since we have assumed that the inclusion is stiffer than

the matrix (b > a), the dislocation will be attracted to or
repelled from the inclusion depending on the time: (i) the
dislocation will be repelled from the inclusion when
t < tþ3 lnðb=aÞ; (ii) the dislocation will be attracted to the
inclusion when t > tþ3 lnðb=aÞ .

5. Conclusions

We have obtained the time-dependent elastic field
induced by a dislocation interacting with a circular inclu-
sion with a rate-dependent imperfect interface on which
slip and diffusion occur concurrently. The correctness of
the obtained solution was verified by strict comparison
with existing ones [7,15,16]. Thus our result is highly reli-
able. The far-field asymptotic expressions of the glide and
climb forces on the dislocation were obtained in Eqs. (23)
and (24). The dislocation mobility due to its interaction
with the inclusion was discussed by considering five
extreme cases of the interface. Our discussions in Section
4 clearly show that, under certain conditions, the disloca-
tion will be repelled from the inclusion for an initial period
of time and then be attracted to the inclusion as a result of
the stress relaxation by interface slip and diffusion. Our cal-
culations in Sections 4.3 and 4.4 demonstrate that the tran-
sient effect due to interface slip and diffusion cannot be
ignored if one wants to know the intricate details of the dis-
location–inclusion interaction.

Table 2
Locations of the equilibrium position of the dislocation at different times (l1 = 10l2, m1 = m2 = 1/3 and c ? 0).

t=tþ3 0 0.05 0.08 0.15 0.2 0.21 0.2128
n0/R 2.4497 2.8549 3.1914 4.7265 10.584 22.7337 1
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Finally it is interesting and challenging to consider the
transient response induced by a straight dislocation inter-
acting with a spherical inclusion with simultaneous
interface slip and diffusion. While the corresponding
steady-state response was discussed in some detail by
Gao [17], the corresponding transient stress relaxation
without dislocation was presented by He and Hu [18]. It
is expected that the time scaling of the slip and diffusional
relaxations in the three-dimensional case will be different
than that in the two-dimensional case [7].
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