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Three-Dimensional Modeling of Functionally Graded
Multiferroic Composites

Ruifeng Wang and Ernian Pan
Computer Modeling and Simulation Group, University of Akron, Akron, Ohio USA

A three-dimensional (3D) finite-element-method (FEM) for-
mulation is developed to investigate the response of functionally
graded material (FGM) multiferroic composites under different
types of loads. Numerical examples are carried out for the three-
layered piezoelectric (PE)/piezomagnetic (PM) composite with its
top and bottom layers being FGMs and the middle layer homoge-
nous PE material. For the FGM layer, two cases of material grading
along the thickness direction of the composite are considered: one
is the PM material with the properties varying as an exponential
function (E-FGM) and the other is the PE/PM composite material
with the volume ratios varying as a power-law function (P-FGM).
The effect of different material grading functions on the mechan-
ical, electric and magnetic responses is clearly showed by both
E-FGM and P-FGM grading cases, which could be useful to the
future design of FGM multiferroic devices.

Keywords FEM, multiferroic, piezoelectric, piezomagnetic, magne-
toelectric, FGM, composite

1. INTRODUCTION
Multiferroic structures composed of piezoelectric (PE) and

piezomagnetic (PM) materials have the magneto-electro-elastic
(MEE) coupling property, with ability to convert energy from
one form (among magnetic, electric, and mechanical energies)
to the other. Research [1–7] has been conducted to investigate
the magnetoelectric (ME) effect in the past two decades. As for
the full-field study, the analytical solution based on the Stroh
formulism and propagator matrix method has been proposed
to study the static and vibration responses of the MEE plates
under certain simple lateral boundary conditions [8, 9]. Similar
methods [10] were also applied to the cylindrical bending
problem of MEE laminated structures with simply supported
edges. As for the numerical modeling, the semi-analytical
layer-wise finite element methods (FEM) were proposed for
the MEEplates in [11, 12].
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Functionally graded materials (FGMs) can be fabricated by
continuously changing the volume fraction of the material, re-
sulting in gradual changes in material properties. The concept
of FGMs was first proposed in 1984 by material scientists when
preparing thermal barrier materials [13, 14]. Since then FGMs
have been applied to various fields, for instance, used as an inter-
facial zone material to improve the anti-cracking strength [15,
16], applied to improve the electrochemical performance of fuel
cells [17, 18], and applied to biomechanics [19–21]. Some ana-
lytical and numerical discussions for single-phase FGM struc-
ture have been conducted: an exact solution was provided for
layered elastic FGM structure under simply-supported bound-
ary condition [22]; an analytical solution was obtained for a
piezoelectric functionally graded layered half space under uni-
form circular surface loadings [23]; a two-dimensional (2D)
FEM for simulating purely elastic FGM structures and for de-
termining the stress intensity factors were discussed in [24, 25].
By extending the multiferroic problem to FGMs, Pan and Han
[26] provided an exact static solution for the exponential func-
tionally graded (E-FGM) layered magneto-electro-elastic com-
posites. The discrete layer model was employed to investigate
the free vibration properties for FGM magneto-electro-elastic
composites in [27].

In this article, we present a 3D FEM model for multifer-
roic FGM composites. In our 3D FEM program for layered
FGM multiferroic structures, the continuously varying mate-
rial properties in the PE or PM layer is taken into account
and the material gradient can be defined with different func-
tions and along different directions. As numerical examples,
the exponential (E-FGM) and power-law (P-FGM) functions
are used to define the variation of the material properties along
the grading direction. In the study of E-FGM case, a three-
layered MEE plate with fixed lateral boundary condition under
a mechanical load [26] on the top surface is considered; in
the P-FGM case, a different three-layered MEE plate is stud-
ied with a simply-supported lateral boundary condition, with
applied uniform mechanical traction and electric potential on
the top surface. In both cases, the influence of the material
grading on the elastic, electric and magnetic responses are
discussed.
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3D FEM MODELING OF FG MULTIFERROIC COMPOSITES 69

2. BASIC EQUATIONS AND GENERAL FEM
FORMULATION

A general constitutive equation for the magneto-electro-
elastic three-phase coupled material can be expressed as

σ̄ = D̄γ̄ (1)

where,

σ̄ = ( σ D B )T (2)

γ̄ = ( γ −E −H )T (3)

D̄ =

⎡
⎢⎣

C e q

eT −ε −α

qT −αT −µ

⎤
⎥⎦ (4)

are the extended stress, strain and stiffness vectors (matrices)
and a superscript T means the transpose of vector (matrix). In
these expressions, σ, D and B are vectors of the elastic stress,
electric induction and magnetic displacement; γ, E and H are
vectors of the elastic strain, electric field and magnetic field. C,
ε, µ, e, q and α are matrices of the elastic stiffness, permittivity,
permeability, piezoelectric, piezomagnetic and magnetoelectric
coefficients. For a layered multiferroic composite where each
layer is either piezoelectric or piezomagnetic material, the ex-
tended stiffness matrix (4) is reduced to

D̄PE =

⎡
⎢⎣

C e 0

eT −ε 0

0 0 −µ

⎤
⎥⎦ (5)

D̄PM =

⎡
⎢⎣

C 0 q

0 −ε 0

qT 0 −µ

⎤
⎥⎦ (6)

for the PE and PM layer, respectively.

For a solid brick element with 8 nodes and 5 degrees of
freedom (DOFs) on each node, the general strain-displacement
equation can be expressed as

γ̄ = B̄ū (7)

ū = (u1 v1 w1 φ1 ψ1 · · · u8 v8 w8 φ8 ψ8)T (8)

B̄ = [B1 B2 B3 B4 B5 B6 B7 B8] (9)

where ū is a 40 × 1 general nodal displacement vector, and each
submatrix in B̄ can be expressed as

Bi=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0 0 0

∂Ni

∂z

∂Ni

∂y
0 0 0 0 0 0

0
∂Ni

∂y
0

∂Ni

∂z
0

∂Ni

∂x
0 0 0 0 0 0

0 0
∂Ni

∂z

∂Ni

∂y

∂Ni

∂x
0 0 0 0 0 0 0

0 0 0 0 0 0
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z
0 0 0

0 0 0 0 0 0 0 0 0
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(10)

In Eq. (10), N is the shape function and is evaluated in the
intrinsic coordinate:

Ni = (1 + ξξi)(1 + ηηi)(1 + ζζi)/8, i = 1, . . . , 8

(11)

where (ξ, η, ζ) denotes the intrinsic coordinate of an arbitrary
point and (ξi , ηi , ζi) the intrinsic coordinate of the ith node in
the element.

The Jacobian matrix is defined as:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

∂x

∂η

∂y

∂η

∂z

∂η

∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≡ NdXn (12)
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70 R. WANG AND E. PAN

where,

Nd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂ξ
· · · ∂N8

∂ξ

∂N1

∂η
· · · ∂N8

∂η

∂N1

∂ζ
· · · ∂N8

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Xn =

⎡
⎢⎢⎢⎢⎣

x1 y1 z1

...
...

...

x8 y8 z8

⎤
⎥⎥⎥⎥⎦ (14)

with (xi , yi , zi) (i = 1, . . . , 8) denoting the global coordinates
of node i in the considered element.

The derivatives of the shape functions with respect to the
global coordinates can be expressed in terms of those with re-
spect to the intrinsic coordinates:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= J−1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂ξ

∂Ni

∂η

∂Ni

∂ζ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(i = 1, . . . , 8) (15)

Considering the principle of virtual work

∫
V

σ̄T δγ̄dv = δūT Fe (16)

in terms of the discretized extended nodal force and displace-
ment vectors, we finally arrived at the following linear algebraic
equation between the extended nodal force vector Fe and dis-
placement vector ū.

Fe = Keū (17)

where Ke is the extended element stiffness matrix in the dis-
cretized system, i.e.,

Ke =
∫

V

B̄T D̄B̄dv (18)

which can be calculated by the Gauss integration:

∫
V

BT (x, y, z)D(x, y, z)B(x, y, z)dxdydz =
∫ 1

−1

∫ 1

−1

∫ 1

−1

×BT (ξ,η, ζ)D(ξ,η, ζ)B(ξ,η, ζ) |J | dξdηdζ (19)

where |J | is the determination of the Jacobian matrix. It
should be pointed out that the material stiffness matrix D in

Eq. (19) is not a constant for FGM structures as discussed
below.

3. GRADED MATERIAL PROPERTIES
There are mainly three types of functions defining the varia-

tion of material properties in the previous research: an exponen-
tial function called E-FGM [23, 26 and 28], a power-law func-
tion called P-FGM [29–31], and a sigmoid function composed
of two power-law functions called S-FGM [32–34]. While all
these grading variations can be easily included in our 3D FEM
program, in this article, we focus on the E-FGM and P-FGM
cases.

3.1. E-FGM
The E-FGM stiffness matrix can be constructed similar to

that in [26]:

D = D1e
kzr (20)

where D1 is the stiffness matrix at the top or bottom surface of
the layer and k is the exponential coefficient; zr is the relative
height along the thickness of the layer and has a value between
0 and 1; ekzr is called the proportional factor of the material
stiffness matrix. Figure 1 shows the proportional factors for
different k values, varying along the thickness direction of a
three-layered MEE composite. The top and bottom layers are
both piezomagnetic E-FGM with symmetric proportional factor
and the middle layer is homogenous piezoelectric with stiffness
matrix DE. For this special layered composite, the exponential
grading function is defined in the top layer as:

D = DMekzr (21)

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

Proportional Factor of Material Property

z 
(m

)

k=1

k=0.5k=0
k=-0.5

k=-1

FIG. 1. Variation of the material proportional factor along the thickness direc-
tion for a three-layered E-FGM composite. For z ∈[0.2,0.3 m], the coefficient
is calculated using e10k(z−0.2) with k = −1,−0.5, 0, 0.5, 1 and for z ∈[0,0.1m]
it is obtained by symmetric requirement.
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0

0.1

0.2

0.3

Material Property

 z
  (m

)

k=5

k=0.1
k=0.2 k=0.5

D
M

DE

k=2
k=1

k=10

FIG. 2. Variation of the material property along the thickness direction for a
three-layered P-FGM composite. For z ∈[0.2,0.3 m], the material property is
calculated by D = (1 − (10(z − 0.2))k)DM + (10(z − 0.2))kDE with k = 0.1,
0.2, 0.5, 1, 2, 5, 10 and for z ∈[0,0.1m] it is obtained by symmetric requirement.

Note that the material stiffness at the interface is not continuous
and k = 0 corresponds to the three-layered case with all of them
being homogenous, that is, the FBF case in [8].

3.2. P-FGM
A power-law function:

D = (
1 − zk

r

)
D1 + zk

r D2 (22)

is used to define the graded material property for P-FGM com-
posite. In Eq. (22), D1 and D2 denote the material stiffness
matrices at the top and bottom surfaces of the layer, respec-
tively, and D is, therefore, the effective stiffness matrix in the
layer, which obviously varies continuously along the thickness
direction. Figure 2 shows the variation of the material stiffness
matrix for different k, varying along the thickness direction of
the three-layered MEE composite. The top and bottom layers
are P-FGM with symmetric material properties, and the middle
layer is homogenous piezoelectric material with stiffness ma-
trix DE. The power-law grading function for this specific case

is defined as:

D = (
1 − zk

r

)
DE + zk

r DM (23)

in the top layer. It is observed from Figure 2, although the
material property is continuous at the interfaces of the layers,
different power coefficients k correspond to different degrees of
material property variation. It is noticed that while k = 0.1 cor-
responds to a sharp change in the material property at interface,
k = 1 corresponds to a linearly graded material.

In the numerical integration for calculating the element stiff-
ness matrix, the graded material property needs to be computed.
Different from the approximate method in [24], in this article,
the coordinates of the Gauss points are directly substituted into
the material property functions and thus an exact material stiff-
ness is obtained at the Gauss points, avoiding the error from the
approximate shape functions.

4. NUMERICAL EXAMPLES
The three-layered composites (Figure 3) with E-FGM and

P-FGM grading layers are solved in this section. To precisely
capture the field distribution along the thickness direction, the
mesh density in the z-direction is set finer than those in the in-
plane directions, i.e., a mesh grid nx × ny × nz = 10 × 10 × 30
is used.

We consider, first, an E-FGM three-layered multiferroic com-
posite model (Figure 3a) similar to the one in [26]. The top and
bottom layers are piezomagnetic E-FGM material CoFe2O3 and
the middle layer is homogenous piezoelectric material BaTiO3.
The proportional factors of the material stiffness in Figure 1 are
adopted. Material properties of CoFe2O3 and BaTiO3 are list in
Table 1. Note that for the piezomagnetic material CoFe2O3, the
permeability coefficients along the x- and y-directions are taken
to be positive rather than negative [8, 26]. The layered plate has
the geometric dimensions Lx = Ly = 1m and t1 = t2 = t3 =
0.1m. A mechanical load

σzz = sin
πx

Lx

sin
πy

Ly

(N/m2) (24)

FIG. 3. Three-layered FGM multiferroic composites with a homogenous piezoelectric material in the middle: Top and bottom layers are single phase piezomag-
netic with grading E-FGM in (a); top and bottom layers are PE/PM with grading P-FGM in (b).
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72 R. WANG AND E. PAN

TABLE 1
Material properties of BaTiO3 and CoFe2O4 [8, 26](Cij :
elastic constants in GPa; eij : piezoelectric coefficients in
N/(Vm); qij : piezomagnetic coefficients in N/(Am); εij :

permittivity coefficients in 10−9 C/(Vm); and µij : permeability
coefficients in 10−6 Wb/(Am)

BaTiO3 CoFe2O4 BaTiO3 CoFe2O4

C11 166 286 q13 0 580.3
C12 77 173 q23 0 580.3
C13 78 170.5 q33 0 699.7
C22 166 286 q42 0 550
C23 78 170.5 q51 0 550
C33 162 269.5 ε11 11.2 0.08
C44 43 45.3 ε22 11.2 0.08
C55 43 45.3 ε33 12.6 0.093
C66 44.5 56.5 µ11 5 590
e13 −4.4 0 µ22 5 590
e23 −4.4 0 µ33 10 157
e33 18.6 0
e42 11.6 0
e51 11.6 0

is applied on the top surface while all other extended trac-
tion components are zero. On the bottom surface, it is trac-
tion free (i.e., σxz = σyz = σzz = Dz = Bz = 0). For the
simply supported lateral boundary condition case, we found
that our 3D FEM results coincide very well with the exact so-
lutions in [26] (using exactly the same material properties as
in [26]). For instance, Table 2 compares the elastic displace-
ments, electric and magnetic potentials based on the present
3D FEM with those from the exact solutions [26] at field point

TABLE 2
Comparison of the elastic displacements (10−14 m), electric
potential (10−3 V) and magnetic potential (10−7 A) between
the present 3D FEM solution and the exact one by Pan and

Han [26] for the E-FGM three-layered multiferroic composite.
A mechanical load is applied on the top surface while the

lateral boundaries are simply supported [26]. The exponential
coefficient of the E-FGM is k = 0 and 1, and the field point is

at (x,y,z) = (0.8 m,0.2 m,0.2 m).

k = 0 k = 1

Present Exact Present Exact
FEM solution [26] FEM solution [26]

ux 27.13 27.47 6.887 7.181
uy −27.13 −27.47 −6.887 −7.181
uz 346.8 345.3 225.2 223.8
φ 1.651 1.619 1.514 1.490
ψ −13.66 −13.29 −8.362 −8.133

(x,y,z) = (0.8m,0.2m,0.2m). It is obvious that using even a
coarse mesh grid nx ×ny ×nz = 10 ×10× 30, the relative error
from the present 3D FEM is only about 4%.

Now we assume a fixed lateral boundary condition to the
layered plate (i.e., the extended displacement vector is zero)
and calculate the field variation in the z-direction at the fixed
horizontal coordinate (x = 0.75m, y = 0.25m). Figures 4a–
4h show, respectively, the variations of the electric potential
φ in Volt (V), magnetic potential ψ in Ampere (A), elastic
stress σxx in N/m2, elastic stress σzz, electric displacement Dx

in Coulomb/m2 (C/m2), electric displacement Dz, magnetic in-
duction Bx in Weber/m2 (Wb/m2) and magnetic induction Bz

along the thickness direction of the composite (from z = 0
to z = 0.3m). It is observed that: 1). Because of the mate-
rial mismatch, the field variation (except for σzz) shows clearly
either a discontinuity (σxx , Dx , and Bx) or slope discontinu-
ity (φ, ψ, Dz, and Bz) at the two interfaces of the compos-
ite; 2). Material grading has obvious effects on both the elec-
tric and magnetic potentials in all the three layers (even in the
middle homogeneous layer, Figures 4a and 4b), on Dx in the
middle layer (Figure 4e), and on other field quantities (except
for σzz) in both the top and bottom layers (Figures 4c, 4f, 4g,
and 4h).

The second example is a P-FGM three-layered MEE com-
posite (Figure 3b) with material variation shown in Figure 2.
The top and bottom layers are PE/PM with grading P-FGM
and the middle layer is a homogenous PE material. The lateral
boundary condition of the layered plate is assumed to be simply
supported. On the top and bottom surfaces, two boundary condi-
tion cases are considered: In the first case, a uniform mechanical
traction

σzz = −1 (N/m2) (25)

is applied to the top surface, while the other extended traction
components are zero. On the bottom surface, it is traction free.
In the second case, a uniform electric potential

φ = 1 (V ) (26)

is applied on the top surface, whilst the elastic traction and
Bz are zero. Similarly, on the bottom surface, it is traction
free.

Figure 5 shows the field variation induced by the mechanical
load (Eq. (25)) at the fixed horizontal coordinate (x = 0.75 m,
y = 0.25 m) along the thickness direction of the composite
(from z = 0 to z = 0.3 m). It is observed that, different to the
exponential grading case (Figures 4c, 4d), the horizontal and
vertical normal stresses (Figures 5c, 5d) are nearly independent
of power coefficient k. In other words, the k value has a greater
influence on the electric displacement and magnetic induction
than on the elastic stresses. Furthermore, it is noticed that: 1).
For both the electric and magnetic potentials, a larger k corre-
sponds to a smaller magnitude of them (Figures 5a, 5b); 2). With
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3D FEM MODELING OF FG MULTIFERROIC COMPOSITES 73

FIG. 4. Variation of the electric potential in (a) (in V), magnetic potential in (b) (in A), elastic stresses in (c) and (d) (in N/m2), electric displacements in (e) and
(f) (in C/m2) and magnetic inductions in (g) and (h) (in Wb/m2) along the thickness direction in the three-layered E-FGM multiferroic composite with fixed lateral
boundary condition induced by a mechanical load on the top surface.

increasing power coefficient k, the field quantities become
smoother, which is consistent with the grading variation in
Figure 2, where a small k corresponds to a sharp change of
material properties at interfaces; 3). A large value of k results in
a large electric displacement (Figure 5e, 5f) as this corresponds

to a large volume ratio of piezoelectric phase in the FGM layer.
Similarly, a small value of k results in a large magnetic induction
(Figure 5g, 5h) due to the large volume ratio of piezomagnetic
phase in the FGM layer; 4). Because the piezomagnetic coef-
ficients of the piezoelectric material BaTiO3 are zeros, for any
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74 R. WANG AND E. PAN

FIG. 5. Variation of the electric potential in (a) (in V), magnetic potential in (b) (in A), elastic stresses in (c) and (d) (in N/m2), electric displacements in
(e) and (f) (in C/m2) and magnetic inductions in (g) and (h) (in Wb/m2) along the thickness direction in the three-layered P-FGM multiferroic composite with
simply-supported lateral boundary condition induced by a mechanical load on the top surface.

value of k, the magnetic induction in the homogenous piezo-
electric layer (middle) is close to zero (Figures 5g, 5h).

Figure 6 shows the field variation induced by the electric
load (Eq. (26)) at the fixed horizontal coordinate (x = 0.75 m,
y = 0.25 m) along the thickness direction of the composite
(from z = 0 to z = 0.3 m). It is observed that: 1). A large

value of k corresponds to a large magnitude of the electric and
magnetic potentials; 2). As compared to the mechanical load
case (Figures 4c, 4d, Figures 5c, 5d), the stresses (Figures 6c
and 6d) are more sensitive to the power coefficient k. In general,
a large k corresponds to a large magnitude of the stresses; 3).
As k increases from 0.1 to 10, the magnitude of both electric
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FIG. 6. Variation of the electric potential in (a) (in V), magnetic potential in (b) (in A), elastic stresses in (c) and (d) (in N/m2), electric displacements in
(e) and (f) (in C/m2) and magnetic inductions in (g) and (h) (in Wb/m2) along the thickness direction in the three-layered P-FGM multiferroic composite with
simply-supported lateral boundary condition induced by an electric potential on the top surface.

displacements increases (Figure 6e, 6f); 4). For large k, the
normal stress σzz (Figure 6d) and normal magnetic induction Bz

(Figure 6h) on the top and bottom surfaces are different from
zero. This is due to the factor that a large k corresponds to
a steep material property gradient near the surface, as can be
clearly observed from Figure 2. Therefore, a dense mesh in the

vertical direction would be required near the surface in order to
obtain more accurate results on the field response.

5. CONCLUSIONS
A 3D FEM program is developed for FGM multiferroic com-

posite analysis. The formulation is based on the 8-node brick
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elements with integration of the material stiffness for any given
grading material. Both the exponential and power-law functions
are assumed in the top and bottom layers of the three-layered
composites (with the middle layer being homogeneous) and the
following conclusions can be drawn from our FEM modeling:

1. Different grading functions correspond to different field re-
sponses, and due to the material mismatch, the field response
along the thickness direction of the layered plate is either dis-
continuous or has a discontinuous slope across the interface.

2. Under a mechanical load, the electric displacements and
magnetic inductions are more sensitive than the stresses to
the material grading; under an electric load, on the other
hand, material grading affects all field responses.

3. For the mechanical load case, a grading coefficient k which
produces a large volume ratio of the piezoelectric (piezo-
magnetic) phase in the layered plate would result in a large
magnitude of the piezoelectric displacement (magnetic in-
duction) response.

4. The electric displacement (magnetic induction) responses are
relatively smaller in the purely piezomagnetic (piezoelectric)
material layer as compared to these in the adjacent layer.
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