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a b s t r a c t

Dislocations and the elastic fields they induce in anisotropic elastic crystals are basic for understanding
and modeling the mechanical properties of crystalline solids. Unlike previous solutions that provide the
strain and/or stress fields induced by dislocation loops, in this paper, we develop, for the first time, an
approach to solve the more fundamental problem—the anisotropic elastic dislocation displacement field.
By applying the point-force Green’s function for a three-dimensional anisotropic elastic material, the
elastic displacement induced by a dislocation of polygonal shape is derived in terms of a simple line inte-
gral. It is shown that the singularities in the integrand of this integral are all removable. The proposed
expression is applied to calculate the elastic displacements of dislocations of two different fundamental
shapes, i.e. triangular and hexagonal. The results show that the displacement jump across the dislocation
loop surface exactly equals the assigned Burgers vector, demonstrating that the proposed approach is
accurate. The dislocation-induced displacement contours are also presented, which could be used as
benchmarks for future numerical studies.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of dislocations and induced elastic fields strongly
influence the material properties of crystalline solids, such as the
crystal growth (Rupert et al., 2009; Rajgarhia et al., 2009), the
mechanical strength (Püschl, 2002; Kurzic, 2009) and other related
physical properties (Bai et al., 2001; Gromov et al., 2010). The elas-
tic fields induced by dislocations were widely studied in the past
(Mura, 1963; Willis, 1970; Hirth and Lothe, 1982; Ting, 1996; Lu-
barda, 2003; Ghoniem and Han, 2005; Paynter and Nowell, 2005;
Paynter and Hills, 2009). Generally, the elastic fields due to disloca-
tion loops in three-dimensional (3D) homogeneous solids can be
evaluated by the integrals of the point-force Green’s function and
its derivatives over the dislocation surfaces (Mura, 1963; Willis,
1970; Wang, 1996). These surface integrals for the stress field or
strain field were reduced to the integrals along the dislocation line
by means of Stokes’ theorem (Mura, 1987). Moreover, Willis (1970)
found the analytical expression of the stress field for a straight seg-
ment of a dislocation loop in an anisotropic solid. Gosling and Wil-
lis (1994) derived a line integral for the stresses due to an arbitrary
dislocation in an isotropic half-space. Wang (1996) discussed the
integral along curved segments and presented a derivation for

the stress field induced by a curved dislocation loop. Obviously,
reducing the surface integral to a line integral, or even to an analyt-
ical expression, is advantageous computationally and provides
more accurate results and insight. However, in general, reductions
to line integrals or analytical expressions have been applied for
predictions of the dislocation-induced stress and/or strain field
only, but not for the associated displacement field. As for the latter,
Lerma et al. (2003) obtained the displacement field due to a sym-
metrical prism dislocation in isotropic solids. Ghoniem and Sun
(1999) presented a line integral for an arbitrarily shaped disloca-
tion loop in an isotropic material.

The major difficulty in reducing the surface integral in the
expression for the displacement field induced by dislocations in
anisotropic materials to a line integral is that the Stokes’ theorem
cannot be utilized. The displacement integral expression does not
satisfy the conditions that are required in applying the Stokes’ theo-
rem. To the best of our knowledge, no explicit result or line integral
expression has been reported for the elastic displacement field pro-
duced by the dislocation loops in 3D generally anisotropic media. In
this paper, a line integral (from 0 to p) expression for the elastic dis-
placement field induced by a triangular dislocation is derived by
using the point-force Green’s function in the Stroh formalism. With
this fundamental solution, the solution to an arbitrary polygonal dis-
location can be constructed by the method of superposition. The
influence of dislocation shape is included in the integrand.
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This paper is organized as follows. In the next section, we first
describe the problem of interest in brief and then review some rel-
evant expressions for the point-force Green’s function and the dis-
placement field due to a dislocation loop. In Section 3, a line
integral expression for the displacement field is achieved by inte-
grating the triple integrals for a triangular dislocation. A discussion
on the singularity concludes this section. Next, in section 4, numer-
ical examples are provided for some fundamental dislocation loop
configurations. Here, the efficiency and accuracy of the derived dis-
placement solution is demonstrated. Conclusions are drawn in the
final section.

2. Problem description and some applicable formula in
anisotropic elastic materials

Consider an arbitrarily shaped dislocation loop located in an
elastic and anisotropic solid as shown in Fig. 1. The dislocation loop
is denoted by the surface S. In order to describe the dislocation, the
dislocation surface is divided into two adjacent surfaces: S+ with its
normal n+ and S�with its normal n�. The upper surface S+ slips by b
relative to the lower surface S�, i.e.

b ¼ uþ � u� ð1Þ

where b is called the Burgers vector. According to the Volterra for-
mula (Volterra, 1907), the displacement field due to the dislocation
loop can be expressed as

ukðyÞ ¼
Z

S
CijmlGmk;lðy; xÞbjnidS ð2Þ

where Cijml denotes the elastic stiffness tensor, ni equal to n�i is the
component of the normal vector of the dislocation surface. The
Green’s function Gmk(y;x) denotes the displacement in m-direction
at the field point x due to a point force in k-direction applied at the
source point y. By considering the corresponding relation between
the eigenstrain and the dislocation Burgers vector, Mura (1963) ob-
tained a similar expression for the displacement field due to a dis-
location loop.

There are several ways to construct the point-force Green’s
function in 3D anisotropic materials (Wang, 1997; Ting and Lee,
1997; Ting, 2000; Pan and Yuan, 2000; Tonon et al., 2001). One
well-known method is to apply the Fourier transform method

(Mura, 1987). Consequently, the solution for the general aniso-
tropic media often includes the 3D infinite integral associated with
the inverse Fourier transform. With some mathematical manipula-
tions, it can be shown that the inverse transform integral can be re-
duced to a line integral. Another method is the Radon transform
(Tonon et al., 2001). Recalling Eq. (2), one can easily observe that,
in general, the displacements due to dislocation loops are ex-
pressed in terms of triple integrals. In this paper, we will show
how the triple integrals can be reduced to a line integral.

To this end, we first present the Green’s function solutions in
terms of the Stroh formalism. Consider a point force f applied at
(0,0,d) in an anisotropic material. For brevity, bold symbols will
be used for tensors and vectors. The main idea here is to divide
the full space into two half spaces. One is in the domain with
x3 > d and the other in x3 < d. In each half space, the two-dimen-
sional Fourier transforms

~ukðn1; n2; x3Þ ¼
Z þ1

�1

Z þ1

�1
ukðx1; x2; x3Þeiðx1n1þx2n2Þdx1dx2 ð3Þ

are applied. In the Fourier transformed domain, the equilibrium
equation in the source-free domain is

Ciakbnanb~uk þ iðCiak3 þ Ci3kaÞna~uk;3 � Ci3k3~uk;33 ¼ 0 ð4Þ

The general solution of Eq. (4) in Fourier transformed domain is

~uðn1; n2; x3Þ ¼ a expð�i pgx3Þ ð5Þ

where p and a satisfy the following Stroh eigenequation:

½Q þ pðR þ RTÞ þ p2T�a ¼ 0 ð6Þ

with

Q ij ¼ Cikjsnkns; Rik ¼ Cikjsnkms; Rik ¼ Cikjsmkms

n ¼ ½cos h; sin h;0�T ; m ¼ ½0;0;1�T ; n ¼ gn
ð7Þ

where the superscript ‘T’ denotes the transpose of the matrix. Sup-
pose pi, ai (i = 1,2, . . . ,6) are the eigenvalues and the associated
eigenvectors, respectively. We let

ImðpiÞ > 0; piþ3 ¼ �pi; �aiþ3 ¼ �ai; ði ¼ 1;2;3Þ
A � ½a1;a2;a3�; B � ½b1;b2;b3� with bi ¼ ðRT þ piTÞai

ð8Þ

where the symbol ‘Im’ and the over bar denote the imaginary part
and the complex conjugate, respectively. There is no summation
over the repeated index i in Eq. (8).

By considering the displacement continuity and the traction
condition at x3 = d, we finally get

~uðn1; n2; x3Þ ¼
�ig�1Ahe�i�p�gðx3�dÞiAT f ; x3 > d

ig�1Ahe�ip�gðx3�dÞiAT f ; x3 < d

(
ð9Þ

where the symbol h�i denotes the diagonal matrix. The subscript ‘‘⁄’’
represents 1, 2 and 3, which corresponds to the three diagonal
elements.

By applying the Fourier inverse transform to Eq. (9), the point-
force Green’s function displacement in the physical domain can be
expressed as

uðx1;x2;x3Þ¼
�i

4p2

R R
g�1Ahe�i�p�gðx3�dÞiAT f e�iðx1n1þx2n2Þdn1dn2; x3>d

i
4p2

R R
g�1Ahe�ip�gðx3�dÞiAT f e�iðx1n1þx2n2Þdn1dn2; x3<d

8<
:

ð10Þ

Making use of the last expression in Eq. (7) and introducing a polar
coordinate transform, we have

n1 ¼ g cos h

n2 ¼ g sin h
ð11Þ

Fig. 1. Geometry of an arbitrarily shaped dislocation loop S in an anisotropic,
elastic, and infinite space E3. The vector b denotes the Burgers vector of the
dislocation, which is equal to the displacement jump across the dislocation surface.
The vector n+ denotes the normal of the surface S+ towards S�, and n� = �n+.
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Therefore, Eq. (10) becomes

uðx1;x2;x3Þ ¼
�i

4p2

R 2p
0 dh

R1
0 Ahe�i�p�gðx3�dÞiAT f e�igðx1 coshþx2 sinhÞdg; x3 > d

i
4p2

R 2p
0 dh

R1
0 Ahe�ip�gðx3�dÞiAT f e�igðx1 coshþx2 sinhÞdg; x3 < d

(

ð12Þ

Since the matrices A, AT and their complex conjugates are indepen-
dent of the radial integrating variable g, the integral with respect to
g can be performed analytically, i.e.

uðx1; x2; x3Þ ¼
1

2p2

R p
0 A �1

�p�ðx3�dÞþx1 cos hþx2 sin h

D E
AT f dh; x3 > d

1
2p2

R p
0 A 1

p�ðx3�dÞþx1 cos hþx2 sin h

D E
AT f dh; x3 < d

8><
>:

ð13Þ

In writing Eq. (13), the periodical properties of the integrand have
been used to reduce the upper limit of the integral from 2 p to p
(Ting, 2000).

Therefore, the Green’s function matrix due to a point force ap-
plied at y is

Gðy; xÞ ¼
�1
2p2

R p
0 AHð�p�; yÞAT dh; x3 > d

1
2p2

R p
0 AHðp�; yÞA

T dh; x3 < d

(
ð14Þ

with

Hijðp�; yÞ ¼
dij

piðx3 � dÞ þ ðx1 � y1Þ cos hþ ðx2 � y2Þ sin h
ð15Þ

where there is no summation over the repeated index i. Substituting
Eq. (14) into Eq. (2), one can easily find that the displacement field
induced by dislocation loops actually involves a triple integral. For
the stress or strain field, by means of the Stokes’ theorem, the inte-
gration over the dislocation surface can be reduced to a line integral
along the boundary of the dislocation loop. However, the expression
of the displacement field prevents us from making use of Stokes’
theorem.

3. The displacement field induced by polygonal dislocations

A triangular element can be regarded as a fundamental unit for
constructing any arbitrary shaped polygon dislocation surface. A
polygon dislocation can be built using a combination of two or
more triangles, possibly differing in size. (A set that involves the
least number of triangles is clearly optimal.) This fact implies that
once we solve the displacement field for a single triangular disloca-
tion, the displacement field due to a polygonal dislocation can be
obtained by superposition of the fields of its component triangles.
It is interesting to note that the triangular dislocation itself can be
used to model the macroscopic plastic flow (McKellar et al., 2003).

We consider a triangular dislocation as shown in Fig. 2. We as-
sume that the maximum and minimum values for x3 on the dislo-
cation loop are x3max and x3min. Substituting Eq. (14) into Eq. (2), we
obtain the displacement field induced by a triangular dislocation,
i.e.

uD
k ðyÞ ¼

�1
2p2

R p
0 dh

R
D Cijml½AHð�p�; yÞAT �mk;lbjnidSðxÞ; y3 > x3 max

1
2p2

R p
0 dh

R
D Cijml½AHðp�; yÞA

T �mk;lbjnidSðxÞ; y3 < x3 min

(

ð16Þ

Since the eigenvector matrix A is independent of the integral vari-
able over the dislocation surface, Eq. (16) can be written as:

uD
k ðyÞ ¼

�1
2p2

R p
0 CijmlbjniAmtA

T
sk

R
D Hð�p�; yÞts;xl

dSðxÞ
h i

dh; y3 > x3 max

�1
2p2

R p
0 CijmlbjniAmtA

T
sk

R
D Hðp�; yÞts;xl

dSðxÞ
h i

dh; y3 > x3 min

8><
>:

ð17Þ

By applying Eq. (15), the surface integral involved in Eq. (17)
becomesR

D Hð�p�; yÞts;xl
dSðxÞ ¼

R
D

�dtshlð�ptÞ
½hð�pt Þ�ðx�yÞ�2

dSðxÞR
D Hðp�; yÞts;xl

dSðxÞ ¼
R

D
�dtshlðptÞ
½hðpt Þ�ðx�yÞ�2

dSðxÞ

8<
: ð18Þ

where there is no summation over the repeated index t, and the
vector h is defined as

hðpÞ ¼ ½cos h; sin h;p�T ð19Þ

Since the numerators of the integrands in Eq. (18) are independent
of x, their integrals are simply power functions (to the power of �2).
Since the two integrals in Eq. (18) have a similar mathematical
form, the kernel integral on the triangular dislocation can be ex-
pressed as:

F2ðy; hÞ ¼
Z

D

dSðxÞ
½hðpÞ � ðx� yÞ�2

ð20Þ

where p can be assigned to different eigenvalues. In order to carry
out the area integration over a flat triangle in Eq. (20), a local coor-
dinate system (x0: n1,n2,n3) with the base vectors n0

i ði ¼ 1;2;3Þ is
introduced as shown in Fig. 2. The base vectors of the global coor-
dinate system (O: x1,x2,x3) are x0

i ði ¼ 1;2;3Þ. Thus, the transforma-
tion matrix between the two systems is (super 0 denotes the base
vector)

Dij ¼ x0
i � n

0
j ð21Þ

Therefore, the relation between the global and local coordinates is

½x� x0� ¼ ½D�½n� ð22Þ

Then, the integration in Eq. (20) becomes

F2ðy; hÞ ¼
Z h

0
dn2

Z l2�l2n2=h

�l1þl1n2=h
dn1

� 1

½f1ðy; hÞn1 þ f2ðy; hÞn2 þ f3ðy; hÞ�2
ð23Þ

where

faðy; hÞ ¼ DkahkðpÞ; a ¼ 1;2 ð24Þ
f3ðy; hÞ ¼ ðx0k � ykÞhkðpÞ ð25Þ

The results are

F2ðy; hÞ ¼
1
f1

1
f2 þ f1l�1

ln
f �3 þ f2

f �3 � f1l�1
� 1

f2 � f1l�2
ln

f �3 þ f2

f �3 þ f1l�2

� �
ð26Þ

Fig. 2. Geometry of a triangular dislocation with corners P1, P2, P3 with respect to
the global coordinate system (O; x1,x2,x3) and local coordinate system (x0; n1,n2,n3)
where h = n2(P1), l1 = �n1(P2), l2 = n1(P3). Obviously, l1 and l2 can be negative.
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with

l�1 ¼ l1=h; l�2 ¼ l2=h; f �3 ¼ f3=h ð27Þ

Thus, we have obtained the exact solution for the integral H over an
arbitrary triangular dislocation. Substituting these analytical results
to Eq. (17), we have then successfully reduced the original triple
integrals of the displacements into a simple line integral from 0
to p.

Before analyzing the displacement field, we will need to address
three possible singularities in Eq. (26) associated with

1Þ f 2 þ f1l�1 ¼ 0; 2Þ f 2 � f1l�2 ¼ 0; 3Þ f 1 ¼ 0 ð28Þ

These singularities are independent of the field point y, but depen-
dent on the integration variable h. This implies that they could
influence the numerical results at any field point y. For this reason
we examine their characteristics below.

For the first case, Eq. (26) can be written equivalently as

F2ðy; hÞ ¼
1
f1

1
f2 þ f1l�1

ln 1þ f1l�1 þ f2

�f1l�1 þ f �3

� �
� 1

f2 � f1l�2
ln

f2 þ f �3
f1l�2 þ f �3

� �
ð29Þ

When f2 þ f1l�1 ! 0, according to the Taylor series expansion, we
have

F2ðy; hÞ ¼
1
f1

1
f �3 � f1l�1

X1
n¼1

1
n
� f1l�1 þ f2

f �3 � f1l�1

� �n�1

� 1
f2 � f1l�2

ln
f2 þ f �3

f1l�2 þ f �3

( )

ð30Þ

Similarly, for the second case, i.e. f2 � f1l�2 ! 0, we have

F2ðy;hÞ¼
1
f1

1
f2þ f1l�1

ln
f2þ f �3
�f1l�1þ f �3

� �
� 1

f1l�2þ f �3

X1
n¼1

1
n
� f2� f1l�2

f1l�2þ f �3

� �n�1
( )

ð31Þ

For the third case, i.e., f1 ? 0, Eq. (26) can be rewritten as

F2ðy; hÞ ¼
l�1 ln f �3þf1 l�2

f �
3
þf2
þ l�2 ln f �3�f1 l�1

f �
3
þf2
þ f2

f1
ln 1þ f1 l�1þf1 l�2

f �3�f1 l�1

� �
f2 þ f1l�1
� 	

f2 � f1l�2
� 	 ð32Þ

When f1 ? 0, by mean of the series expansion, we have

F2ðy; hÞ ¼
1

f2 þ f1l�1
� 	

f2 � f1l�2
� 	 l�1 ln f �3þf1 l�2

f �3þf2
þ l�2 ln f �3�f1 l�1

f �3þf2

þ f2 l�1þl�2ð Þ
f �
3
�f1 l�1

P1
n¼1

f1 l�1þl�2ð Þ
f �
3
�f1 l�1

� �n�1

8>><
>>:

9>>=
>>; ð33Þ

Therefore, all three singularities are removable. Other singularities,
such as f3

⁄ + f2 ? 0, f3
⁄ � f1l1

⁄? 0 and f3
⁄ + f1l2

⁄? 0 are possible,
but because these only occur at special points, they will not be dis-
cussed in this paper.

It should be emphasized that Eq. (16) and the subsequent equa-
tions are not suitable for a field point y with coordinate compo-
nents y3 2 (x3min,x3max). To deal with this problem, we divide the
triangular dislocation with corners P1, P2 and P3 into two parts
(Fig. 3): One is x3 < y3, i.e. D P4P1P5; the other is x3 > y3, i.e. the
quadrangle P1P4P5P3, where P4 and P5 are the points of the intersec-
tion of the triangular dislocation and the plane x3 = y3. For the qua-
drangular part, it can be divided into two sub-triangles. Therefore,
when y3 2 (x3min,x3max), the original triangular dislocation can be
divided into three sub-triangles. (When y3 = x3(P1), there are only
two sub-triangles.) For each sub-triangle, we can use Eq. (16) and
related formulae.

As mentioned earlier, any arbitrary polygonal dislocation can be
represented as a combination of triangles. Thus the displacement
field of the polygonal dislocation is obtained by superposing the re-
sults of the triangular dislocations that constitute the polygonal
dislocation.

4. Numerical examples

In this section, the derived line integral expression is used to
calculate the displacement field induced by triangular and hexag-
onal dislocations in a copper crystal.

4.1. Displacement field from a triangular dislocation loop in a copper
crystal

Copper has a face-centered cubic (fcc) crystal structure. Disloca-
tions in copper glide easily on the {1 1 1} planes of highest atomic
density in the close packed h110i direction. As an example, con-
sider a dislocation loop modeled as a regular triangle with side
length a lying in the (1 1 1) slip plane (Fig. 4). The displacement
jump across the upper S+ and lower S� surfaces bounded by the
dislocation is equal to its Burgers vector b. We define a local
orthogonal coordinate system (n1,n2,n3), where n3 is parallel to
the slip plane normal [1 1 1] and n1 coincides with the slip direc-
tion [�1 1 0].

We first check our line integral expression by applying it to pre-
dict the displacement jump for any point lying within the slipped
region of this dislocation. Fig. 4 shows the positions of the four
points A, B, C and D chosen for this calculation. Because the dislo-
cated surface is discontinuous, it is necessary to calculate the dis-

Fig. 3. Partition of a triangular dislocation into three sub-triangles, when the
coordinate component y3 of the field point y is located between the x3min and x3max.
P4 and P5 are points lying along the intersection line of the dislocation loop and the
plane x3 = y3. When y3 = x3(P1), there are only two sub-triangles in the partition.

Fig. 4. Geometry of a regular triangular dislocation with corners P1, P2, P3 in local
coordinates (x0; n1,n2,n3) and the selected points A, B, C, D within the slipped region
of the dislocation plane.
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placements at these points on both the upper and lower surfaces,
denoted as A±, B±, C± and D±. For instance, A± = (nA1,nA2,±n3), with
n3 being very small (i.e., n3 = 10�5). The numerical results are listed
in Table 1, where the displacements are normalized by the magni-
tude of the Burgers value b. Table 1 shows that the displacement

jump at the four points almost coincide with the Burgers vector.
The relative error of the displacement along n1 is below 0.2% at
the points A, B and C, and below 0.4% at the point D. Due to the
symmetry, the displacements at A and B along n2 and n3 are zero.
The numerical results at points A and B are below 10�16. Thus,
the accuracy of the proposed method is demonstrated.

Table 1
Numerical results of the displacement jumps across the dislocation plane at points A, B, C, and D. All data are in the local coordinates and are normalized by the Burgers vector
magnitude b. The superscript ‘‘+’’ and subscript ‘‘�’’ denote, respectively, the points on the upper and lower surfaces of the dislocation.

Field points u1 u2 u3 Du1 Du2 Du3

A+ 0.50097566 0.00000000 0.00000000 0.99823045 0.00000000 0.00000000
A� �0.49725479 0.00000000 0.00000000
B+ 0.50038775 0.00000000 0.00000000 0.99881769 0.00000000 0.00000000
B� �0.49842994 0.00000000 0.00000000
C+ 0.49986823 0.00018151 0.03156048 0.99858703 �0.00000015 0.00000002
C� �0.49871880 0.00018166 0.03156046
D+ 0.49687362 �0.00254462 0.07911198 0.99658039 �0.00016644 0.00000025
D� �0.49970677 �0.00237818 0.07911173

Fig. 5. Contour map of the normalized local displacement component u1/b in local
coordinates n1/b and n2/b induced by a triangular dislocation with the Burgers
vector magnitude b. The normalized side length of the triangle is a/b.

Fig. 6. Contour map of the normalized local displacement component u2/b in local
coordinates n1/b and n2/b induced by a triangular dislocation with the Burgers
vector magnitude b. The normalized side length of the triangle is a/b.

Fig. 7. Contour map of the normalized local displacement component u3/b in local
coordinates n1/b and n2/b induced by a triangular dislocation with the Burgers
vector magnitude b. The normalized side length of the triangle is a/b.

Fig. 8. Geometry of a regular hexagonal dislocation, which is divided into four sub-
triangular dislocations, where the n1-axis points to [�1 1 0] and n2-axis points to
[�1 �1 2].
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The contour maps for the normalized displacements u1, u2, and
u3 in the local coordinates (n1,n2,n3) due to the triangle dislocation
are shown in Figs. 5–7 respectively. In these figures, the plane is
n3 = 0.01a, and the local coordinates n1 and n2 are both normalized
by b.

As shown in Fig. 5, the displacement component u1 is symmet-
ric, as expected from the loop geometry with respect to the crystal
structure. It is observed that, except for the upper region, the dis-
placement u1 in the n1-direction is positive, and that its values in-
side the dislocation triangle are much larger than those outside. In
fact, Table 1 shows that the latter tends to 0.5, as n3 ? 0. The high
density of contour lines at the dislocation boundary region implies
that the strain and stress fields in the boundary region are quite
large and may even have singularities. This phenomenon is consis-
tent with analytical formula for the stress field given in (Willis,
1970; Wang, 1996).

Shown in Figs. 6,7 are the u2 and u3 displacement distributions
in the n2- and n3-directions. Note that both distributions are asym-
metric about the n2-axis. The displacements inside the dislocation
region have the same order of magnitude compared to those out-
side, which is quite different from the results shown in Fig. 5 where
they differ by two-orders of magnitude. At the base of the triangle,

the transition between the contours is smooth, and therefore the
strain component u2,2 in the local coordinates is continuous at this
edge.

4.2. Displacement field from a hexagonal dislocation loop in a copper
crystal

We consider now a dislocation loop in the shape of a regular
hexagon, which lies on the (1 1 1) slip plane, as illustrated in
Fig. 8. As before, the Burgers vector b lies along [�1 1 0]. The length
of each side of the hexagon is a. The distributions for the three dis-
placements u1, u2, and u3 on the plane n3 = 0.1a are shown in
Figs. 9–11, respectively. It is observed in Fig. 9 that the u1 distribu-
tion is symmetric about the n1- and n2-axes. On the other hand, as
shown in Figs. 10,11, the distributions of u2 and u3 are asymmetric
about the n2-axis. These characteristics are consistent with the
combined symmetric condition of the crystal property, the disloca-
tion geometry and the direction of the Burgers vector. Note from
Fig. 9 that u1 reaches its peak value at the center
(n1,n2,n3) = (0,0,0.1a) and decreases with increasing distance away
from the center. This reduction occurs more rapidly at the bound-

Fig. 9. Distribution of the normalized local displacement u1/b on the plane n3 = 0.1a in the local coordinates n1/b and n2/b induced by a hexagonal dislocation with the Burgers
vector magnitude b. The normalized side length of the hexagon is a/b.

Fig. 10. Distribution of the normalized local displacement u2/b on the plane n3 = 0.1a in the local coordinates n1/b and n2/b induced by a hexagonal dislocation with the
Burgers vector magnitude b. The normalized side length of the hexagon is a/b.
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ary region than elsewhere. On the contrary, u2 and u3 are nearly
zero in the center region and peak on the left and right boundaries.

5. Conclusions

In this paper, a line integral expression for the three-dimen-
sional, anisotropic elastic displacement field induced by polygonal
dislocations is presented. It is derived using the associated Green’s
function in the Stroh formalism. The influence of the shape of the
polygon dislocation on the elastic displacements is included en-
tirely in the integrand. Based on the proposed approach, the dis-
placement field induced by a dislocation in the shape of a
triangle is calculated. Since a dislocation loop of any arbitrary poly-
gon shape can be constructed from a triangle, the present solution
for a triangle is fundamental. Via superposition, the displacement
field for any polygon dislocation can be obtained. The proposed
line integral expression is applied to calculate the displacement
field of a triangular dislocation and a hexagonal dislocation (con-
structed using four triangles). We use the former to demonstrate
the accuracy of the method by comparing the calculated displace-
ment jump across the dislocation surface with the given Burgers
vector. Our numerical results also show that near and at the
boundary region, there is a large gradient in the u1 displacement
distribution, which indicates, at the very least, a large strain field
and possibly a strain concentration. To sum, the line integral form
provides a computationally efficient method to calculate displace-
ment fields in three-dimensions induced by polygon dislocation(s)
contained in an elastically anisotropic solid.
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