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Abstract
By introducing the cylindrical system of vector functions and the corresponding propagating
matrix, we present a semi-analytical solution for a layered multiferroic half space under a
uniform vertical circular load on its surface. A two-layered system made of BaTiO3 and
CoFe2O4 is analyzed by the proposed method. The coupling feature among the elastic, electric,
and magnetic fields and the interplay between the adjacent layers are investigated. In particular,
we find that the interfacial elastic, electric, and magnetic fields are very sensitive to the
thickness of the surface layer. Consequently, a critical thickness is found for each field quantity
when it reaches its extreme value for varying thickness of the surface layer. This striking feature
could be very useful as a theoretical reference for the optimal design of surface coatings.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Considerable efforts have been devoted to multiferroic
composites made of piezoelectric and piezomagnetic materials
due to their broad applications related to smart systems such
as intelligent sensors, damage detectors, etc (Spaldin and
Fiebig 2005, Fiebig 2005, Kohlstedt et al 2005, Ramesh
and Spaldin 2007, Rogez et al 2010). Since multiferroic
materials/composites possess at least two coexisting orders
among the magnetic, electric, and elastic fields, they may also
play an important role in future magnetic applications (Kimura
et al 2003, Zhuravlev et al 2005). It is possible to fabricate
multiferroic composites by artificially making ferroelectric
and ferromagnetic heterostructures in the nanoscale (Zhong
et al 2008). The interplay among elastic, electric, and
magnetic fields also provides excellent alternative avenues for
controlling material growth or optimizing material properties
(Kimura et al 2003, Lottermoser et al 2004, Duan et al 2006,
Pang et al 2010, Sun and Kim 2010).

The complex coupling effect in multiferroic materi-
als/composites was investigated before. These include the
studies on the peculiar magneto-electric effect (Nan 1994,
Benveniste 1995, Wu and Huang 2000, Liu et al 2004) as
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well as the general effective properties of composites (Li and
Dunn 1998), static and dynamic structural behavior (Pan 2001,
Chen et al 2004, Ramirez 2006, Ke et al 2008, Wang et al
2010), fracture-mechanics-related problems (Liu et al 2001,
Sih and Chen 2003, Feng et al 2007, Zhong 2009, Zhong
et al 2009, Rungamornrat and Senjuntichai 2009), and on the
general coupling theory based on Green’s function and other
mathematical approaches (Pan 2002, Wang and Shen 2002, Li
2003, Hou et al 2005, Wang et al 2008, Feng et al 2009).

Circular surface loading on multilayered half spaces is
a very interesting boundary value problem. It has important
practical applications in various engineering areas, such as
cell biology (Balaban et al 2001, Schwarz et al 2002),
smart piezoelectric composites (Pan and Han 2005, Han et al
2006), foundation engineering (Graig 1997), and earth science
(Becker and Bevis 2004, Pan et al 2007). Combined with the
Hertzian contact theory, the surface loading solution can be
utilized in indentation tests for material characterization (Xu
et al 1999, Yu 2001, Giannakopoulos and Suresh 1999, Chen
et al 2010). Numerous analytical and/or numerical methods
were proposed in the past for solving the circular loading
problem in inhomogeneous elastic isotropic (Oner 1990, Yue
et al 1999) and elastic non-isotropic (Hooper 1975, Rowe
and Booker 1981, Kumar 1988, Doherty and Deeks 2003,
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Figure 1. Schematic of a layered magneto-electro-elastic half space
under a uniform surface loading over a circular area. The global
coordinate system is (r, θ, z) with the origin O0, and the local
coordinate system in the kth layer is (r, θ, ξ) with the origin Ok−1.

Wang et al 2005) structures. To the best knowledge of the
authors, however, the surface loading problem corresponding
to a layered multiferroic half space has not been reported in the
literature.

Thus, in this paper, we focus on the response of a
transversely isotropic and layered multiferroic half space under
a uniform vertical load within a circle on its surface. The
solution is derived by virtue of the cylindrical system of
vector functions and the propagator matrix method (Gilbert
and Backus 1966, Ulitko 1979, Pan 1989). First, we transform
the basic equations in the physical domain to the transformed
domain in terms of the cylindrical system of vector functions.
Secondly, making use of the boundary conditions, we obtain
the exact solutions of this problem in the transformed domain.
Thirdly, the solutions in the transformed domain are inverted
back to the physical domain, and the semi-analytical solutions
including one-dimensional integration are obtained. Finally,
the proposed method is applied to a two-layered half space
made of piezoelectric BaTiO3 and magnetic CoFe2O4. Besides
some interesting coupling features among the elastic, electric,
and magnetic fields, our numerical results show further some
peculiar interplay behavior between the adjacent layers and
the influence of the thickness of the surface layer on the
field quantities. In particular, the critical thickness of the
surface layer is introduced to analyze the field variation feature,
which could provide an important theoretical guidance to
future practical design of layered structures made of the novel
multiferroic materials/composites.

2. Basic equations and cylindrical system of vector
functions

Consider a magneto-electro-elastic layered half space under a
uniform vertical load q over a circle of radius a, as shown in

figure 1. Two cylindrical coordinates, i.e. global coordinates
(r, θ, z) and local coordinates (r, θ, ξ), are attached to the
layered half space. Due to the translation relationship between
the global and local coordinates, we have ∂( )/∂z = ∂( )/∂ξ

which implies that the basic equations (e.g. the constitutive
relations, equilibrium equations, etc) under global and local
coordinates have the same form.

Under the global coordinates, the constitutive relations
of the magneto-electro-elastic material are (in terms of the
material coefficients)

σrr = c11γrr + c12γθθ + c13γzz − e31 Ez − q31 Hz

σθθ = c12γrr + c11γθθ + c13γzz − e31 Ez − q31Hz

σzz = c13γrr + c13γθθ + c33γzz − e33 Ez − q33 Hz

σθ z = 2c44sθ z − e15 Eθ − q15 Hθ

σrz = 2c44γrz − e15 Er − q15 Hr

σrθ = 2c66γrθ

(1a)

Dr = 2e15γrz + ε11 Er + d11 Hr

Dθ = 2e15γθ z + ε11 Eθ + d11 Hθ

Dz = e31 (γrr + γθθ)+ e33γzz + ε33 Ez + d33Hz

(1b)

Br = 2q15γrz + d11 Er + μ11 Hr

Bθ = 2q15γθ z + d11 Eθ + μ11 Hθ

Bz = q31 (γrr + γθθ )+ q33γzz + d33 Ez + μ33 Hz

(1c)

where σi j , Di , and Bi (i, j = r, θ, ξ ) are the elastic stresses,
electrical displacements, and magnetic fields, respectively;
γi j , Ei , and Hi denote the elastic strains, electric fields, and
magnetizing fields, respectively.

The generalized equilibrium equations of the magneto-
electro-elastic material without ‘body forces’ are

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ ∂σrz

∂z
+ σrr − σθθ

r
= 0,

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ ∂σθ z

∂z
+ 2σrθ

r
= 0,

∂σrz

∂r
+ 1

r

∂σθ z

∂θ
+ ∂σzz

∂z
+ σrz

r
= 0,

∂Dr

∂r
+ 1

r

∂Dθ

∂θ
+ ∂Dz

∂z
+ Dr

r
= 0,

∂Br

∂r
+ 1

r

∂Bθ
∂θ

+ ∂Bz

∂z
+ Br

r
= 0.

(2)

In order to solve the problem, the cylindrical system of vector
functions is introduced (Ulitko 1979, Pan 1989)

L (r, θ; λ,m) = iz S (r, θ; λ,m)

M (r, θ; λ,m) = ∇S = ir
∂S

∂r
+ iθ

∂S

r∂θ

N (r, θ; λ,m) = ∇ × (iz S) = ir
∂S

r∂θ
− iθ

∂S

∂r

(3)

with

S(r, θ; λ,m) = 1√
2π

Jm(λr) exp(imθ) (4)
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where ir , iθ , and iz are the unit vectors in cylindrical
coordinates and Jm(λr) denotes the Bessel function of order
m. The function S satisfies

∂2S

∂r 2
+ 1

r 2

∂2S

∂θ2
+ 1

r

∂S

∂r
+ λ2 S = 0. (5)

Due to the orthogonal properties of L, M, and N defined in
equations (3), the elastic displacements, electric and magnetic
potentials can be expressed in terms of these vector functions
as

u(r, θ, z) =
∑

m

∫ +∞

0
(ULL + UMM + UN N) λ dλ

φ (r, θ, z) =
∑

m

∫ +∞

0
�Sλ dλ

ψ (r, θ, z) =
∑

m

∫ +∞

0

Sλ dλ

(6)

where the expansion coefficients UL , UM , UN , �, and 
 are
functions of (z, λ,m). Similarly, we can find the following
expansions

T (r, θ, z) ≡ σrz ir + σθ ziθ + σzz iz

=
∑

m

∫ +∞

0
(TLL + TMM + TN N) λ dλ

D (r, θ, z) =
∑

m

∫ +∞

0
(DL L + DM M + DN N) λ dλ

B (r, θ, z) =
∑

m

∫ +∞

0
(BLL + BMM + BN N) λ dλ.

(7)

Unless otherwise indicated, the summation of m and
integration of

∫ ∞
0 [ ]λ dλ will be omitted in the following

derivation. Based on equation (6) and making use of
equations (5) and (1) we obtain

σrr = c11

(
UM

∂2S

∂r 2
− UN

r 2

∂S

∂θ
+ UN

r

∂2S

∂r∂θ

)

+ c12

(
UM

r 2

∂2S

∂θ2
− UN

r

∂2S

∂r∂θ
+ UM

r

∂S

∂r
+ UN

r 2

∂S

∂θ

)

+ c13

(
∂UL

∂z
S

)
+ e31

∂�

∂z
S + q31

∂


∂z
S (8a)

σθθ = c12

(
UM

∂2S

∂r 2
− UN

r 2

∂S

∂θ
+ UN

r

∂2S

∂r∂θ

)

+ c11

(
UM

r 2

∂2S

∂θ2
− UN

r

∂2S

∂r∂θ
+ UM

r

∂S

∂r
+ UN

r 2

∂S

∂θ

)

+ c13

(
∂UL

∂z
S

)
+ e31

∂�

∂z
S + q31

∂


∂z
S (8b)

σzz = c13

(
UM

∂2S

∂r 2
− UN

r 2

∂S

∂θ
+ UN

r

∂2S

∂r∂θ

)

+ c13

(
UM

r 2

∂2S

∂θ2
− UN

r

∂2S

∂r∂θ
+ UM

r

∂S

∂r
+ UN

r 2

∂S

∂θ

)

+ c33

(
∂UL

∂z
S

)
+ e33

∂�

∂z
S + q33

∂


∂z
S (8c)

σθ z = c44

(
∂UM

∂z

∂S

r∂θ
− ∂UN

∂z

∂S

∂r
+ UL

r

∂S

∂θ

)

+ e15
�

r

∂S

∂θ
+ q15




r

∂S

∂θ

σrz = c44

(
UL
∂S

∂r
+ ∂UM

∂z

∂S

∂r
+ ∂UN

∂z

∂S

r∂θ

)

+ e15�
∂S

∂r
+ q15


∂S

∂r

σrθ = c66

(
2UM

r

∂2S

∂r∂θ
+ UN

r 2

∂2S

∂θ2
− 2UM

r 2

∂S

∂θ

− UN
∂2S

∂r 2
+ UN

r

∂S

∂r

)

(8d)

Dr = e15

(
UL
∂S

∂r
+ ∂UM

∂z

∂S

∂r
+ ∂UN

∂z

∂S

r∂θ

)

− ε11�
∂S

∂r
− d11


∂S

∂r

Dθ = e15

(
UL

r

∂S

∂θ
+ ∂UM

∂z

∂S

r∂θ
− ∂UN

∂z

∂S

∂r

)

− ε11
�

r

∂S

∂θ
− d11




r

∂S

∂θ

Dz = −λ2e31UM S + e33
∂UL

∂z
S − ε33

∂�

∂z
S − d33

∂


∂z
S

(8e)

Br = q15

(
UL
∂S

∂r
+ ∂UM

∂z

∂S

∂r
+ ∂UN

∂z

∂S

r∂θ

)

− d11�
∂S

∂r
− μ11


∂S

∂r

Bθ = q15

(
UL

r

∂S

∂θ
+ ∂UM

∂z

∂S

r∂θ
− ∂UN

∂z

∂S

∂r

)

− d11
�

r

∂S

∂θ
− μ11




r

∂S

∂θ

Bz = −λ2q31UM S + q33
∂UL

∂z
S − d33

∂�

∂z
S − μ33

∂


∂z
S.

(8 f )

Substituting equation (8) into (2), we obtain five equilibrium
equations in terms of the expansion coefficients. Comparing
equations (8) and (7) provides another five equations.
Therefore, there are in total ten equations, which can be further
recast into two independent sets of linear differential equations
called Group I and Group II. In Group I, these equations are

TL = −λ2c13UM + c33
∂UL

∂z
+ e33

∂�

∂z
+ q33

∂


∂z

TM = c44

(
UL + ∂UM

∂z

)
+ e15�+ q15


DL = −e31λ
2UM + e33

∂UL

∂z
− ε33

∂�

∂z
− d33

∂


∂z

BL = −q31λ
2UM + q33

∂UL

∂z
− d33

∂�

∂z
− μ33

∂


∂z

(9a)
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∂TL

∂z
− λ2TM = 0

∂TM

∂z
− λ2c11UM + c13

∂UL

∂z
+ e31

∂�

∂z
+ q31

∂


∂z
= 0

∂DL

∂z
− λ2e15

(
∂UM

∂z
+ UL

)
+ λ2ε11�+ λ2d11
 = 0

∂BL

∂z
− λ2q15

(
∂UM

∂z
+ UL

)
+ λ2d11�+ λ2μ11
 = 0

(9b)
and in Group II they are

∂TN

∂z
− λ2c66UN = 0 TN = c44

∂UN

∂z
. (10)

3. Propagating matrix in each layer

The local coordinates will be used in this section. As
mentioned before, due to the translation relationship between
the global and local coordinates, equations (1)–(10) hold if the
partial derivative ∂/∂z is replaced by ∂/∂ξ .

It is easy to find the general solution of equation (10) in
any layer (i.e. the kth layer) using the local coordinates. The
solution of Group II is

[
PII

k (ξ)
] = [

BII
k

]
diag

[
eλskξ , e−λskξ

] [
KII

k

]
(11)

where [
PII

k (ξ)
] ≡ [ U k

N (ξ) , T k
N (ξ) /λ ]T (12)

[
BII

k

] =
[

1 1
s̄k −s̄k

]
, sk =

√
ck

66/c
k
44,

s̄k =
√

ck
44ck

66,

(13)

and the subscript and superscript ‘k’ denotes the corresponding
variables or coefficients in the kth layer (e.g. ck

44 and ck
66 are the

elastic constants of the kth layer). Also in equation (11), [KII
k ]

is a 2 × 1 column matrix with the unknown coefficients being
determined by the boundary/interface conditions. Actually,
equation (11) can be equivalently expressed as

[PII
k (ξ)] = [BII

k ]diag[eλsk(ξ−hk ), e−λsk (ξ−hk )]
× [BII

k ]−1[PII
k (hk)]. (14)

Assuming that the continuity conditions hold at the interface
(z = zk−1) between the adjacent layers, we then have

[
PII

k (0)
] = [

PII
k−1 (hk−1)

]
. (15)

Hence, the propagating relation between two adjacent layers is

[
PII

k−1 (hk−1)
] = [

aII
k

] [
PII

k (hk)
]

(16)

with

[
aII

k

] =
[

cosh (λskhk) − sinh (λskhk) /s̄k

−s̄k sinh (λsk hk) cosh (λskhk)

]

being the propagator, or propagating matrix, which relates the
components UN and TN at the two interfaces z = zk−1 and zk .

Similar to equation (12), we define, for Group II,
[
PI

k

] ≡ [U k
L , λU k

M , T k
L /λ, T k

M ,�
k,
k, Dk

L/λ, Bk
L/λ]T. (17)

Then equations (9) can be expressed as
[
PI

k (ξ)
]
,z

= λ[Wk]
[
PI

k (ξ)
]

(18)

where [Wk] is an 8 × 8 matrix and its nonzero elements are
listed in the appendix. It should be noted that the matrix [Wk]
depends only on the material constants of the kth layer; in other
words, it is independent of the vertical coordinate z or ξ and the
transformation variables m and λ. Hence, the general solution
of equation (18) can be assumed as

[
PI

k (ξ)
] = [bk] exp

(
λνkξ

)
. (19)

Substituting equation (19) into (18), we have
{[Wk] − νk[I]} [bk] = 0 (20)

where [I] is an 8×8 identity matrix. Obviously, the eigenvalues
νk

i (i = 1, 2, . . . , 8) and corresponding eigenvectors bk
i (i =

1, 2, . . . , 8) of equation (20) depend on the property of the
matrix [Wk]. Assuming that the eigenvalues are distinct, the
general solution of equation (19) can be expressed as

[
PI

k (ξ)
] = [BI

k]〈eλv
k∗ξ 〉 [

KI
k

]
(21)

with
[BI

k] = [bk
1,bk

2,bk
3,bk

4,bk
5,bk

6,bk
7,bk

8]
〈eλνk∗ξ 〉
= diag

[
eλv

k
1ξ , eλv

k
2 ξ , eλv

k
3 ξ , eλv

k
4 ξ , eλv

k
5 ξ , eλv

k
6 ξ , eλv

k
7 ξ , eλv

k
8 ξ

]
(22)

where [KI
k] is an 8 × 1 coefficient matrix to be determined by

the interface and/or boundary conditions.
Similar to Group I, we can derive

[
PI

k−1 (hk−1)
] = [aI

k]
[
PI

k (hk)
]

(23)

with
[aI

k] = [BI
k]〈e−λvk∗hk 〉[BI

k]−1 (24)

being the propagator or propagating matrix which connects the
values [PI

k] at the two interfaces z = zk−1 and zk .
We can now propagate the propagating relations (16)

and (23) from the bottom layer to the top. By further making
use of equations (11) and (21) for the homogeneous half space
(i.e. the last layer), we obtain the following important relations
in the transformed domain

[PI
0(0)] = [aI

1][aI
2] · · · [aI

n−1][BI
n][KI

n] ≡ [�I][KI
n]

[PII
0 (0)] = [aII

1 ][aII
2 ] · · · [aII

n−1][BII
n ][KII

n ] ≡ [�II][KII
n ]

(25)

where n denotes the last layer and 0 the surface layer.
Equation (25) may be recast into

[
PI(0)
PII(0)

]
=

[
ΠI 0
0 ΠII

] [
KI

n
KII

n

]
(26)

with the unknown coefficients [KI
k] and [KII

n ] being determined
by the boundary conditions at the surface and the requirement
that the solution is finite in the homogeneous half space, as
discussed below.

4
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4. Solutions in transformed and physical domains

Applying equations (11) and (21) to the last layer, i.e. the nth
layer made of the homogeneous half space, and considering
the requirement that the solution should vanish as z or ξ
approaches +∞, we find that the undetermined coefficient
matrices should have the following structure

[KI
k] = [0, 0, 0, 0, p1, p2, p3, p4]T

[KII
k ] = [ 0, p5 ]T

(27)

where pi (i = 1–5) are the unknown coefficients to
be determined. These five unknown coefficients can be
determined by using the surface boundary conditions at z = 0.

Under a uniform vertical load within a circle of radius a as
in figure 1, the mechanical boundary conditions on the surface
are

σzz(r, θ, 0) = q, r ∈ [0, a]
σzz(r, θ, 0) = 0, r ∈ (a,∞)

σrz(r, θ, 0) = 0, r ∈ [0,∞)

σθ z(r, θ, 0) = 0, r ∈ [0,∞).

(28)

The electric and magnetic boundary conditions are

Dz(r, θ, 0) = 0, r ∈ [0, ∞)

Bz(r, θ, 0) = 0, r ∈ [0, ∞).
(29)

Based on the inverse transform of equation (7),
equations (28) and (29) can be transformed into

TL(0) =
√

2πa

λ
J1(aλ)

TM(0) = TN (0) = DL(0) = BL(0) = 0.

(30)

Substituting equation (30) into (26), we arrive at five
equations with the five unknown coefficients in equation (27)
being included, i.e.
⎡

⎢⎢⎢⎢⎢⎣

�II(3, 5) �II(3, 6) �II(3, 7) �II(3, 8) 0

�II(4, 5) �II(4, 6) �II(4, 7) �II(3, 8) 0

�II(7, 5) �II(7, 6) �II(7, 7) �II(7, 8) 0

�II(8, 5) �II(8, 6) �II(8, 7) �II(8, 8) 0

0 0 0 0 �I(2, 2)

⎤

⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎣

p1

p2

p3

p4

p5

⎤

⎥⎥⎥⎦ = √
2π

⎡

⎢⎢⎢⎣

a
λ2 J1(aλ)

0
0
0
0

⎤

⎥⎥⎥⎦ . (31)

Therefore, from equation (31), one can easily solve the
coefficients pi (i = 1–5). With these coefficients, solutions
at any z-level or any interface (z = zk ) can be solved.
For instance, the solution at any interface (z = zk) in the
transformed domain can be expressed exactly as

[PI
k(zk)] = [aI

k+1][aI
k+2] · · · [aI

n−1][BI
n][KI

n]
[PII

k (zk)] = [aII
k+1][aII

k+2] · · · [aII
n−1][BII

n ][KII
n ]

(32)

Table 1. Nonzero material coefficients of the piezoelectric BaTiO3

(ci j in 109 N m−2, ei j in C m−2, εi j in 10−9 C2 N−1 m−2, μi j in
10−6 N s2 C−2).

c11 c12 c13 c33 c44 μ11

166 77 78 162 43 5

e31 e33 e15 ε11 ε33 μ33

−4.4 18.6 11.6 11.2 12.6 10

and the solutions at any vertical level within, say the kth layer,
are

[PI
k(ξ)] = [BI

k]〈eλv
k∗(ξ−hk )〉[BI

k]−1[PI
k(zk)]

[PII
k (ξ)] = [BII

k ]diag[eλsk (ξ−hk ), e−λsk (ξ−hk )][BII
k ]−1[PII

k (zk)].
(33)

Recalling the definition for [PI
k] and [PII

k ], together with
equations (33), we can obtain the elastic displacements and
electric and magnetic potentials in the transformed domain.
Based on equations (8), the stress field and electric and
magnetic fields can also be determined.

The exact solutions obtained above in the transformed
domain need to be transformed inversely back to the physical
domain. The general transform expression for any given vector
function f is

f(r, θ, z) =
∑

m

∫ +∞

0
[FL(z, λ,m)L + FM (z, λ,m)M

+ FN (z, λ,m)N]λ dλ (34)

where f(r, θ, z) denotes the function in the physical domain,
FL , FM , and FN denote the corresponding components in the
transformed domain.

Using equation (34), together with equations (33), (6),
and (7), the solution in the physical domain can be derived.
Generally, due to the complicated properties of the layered
structure such as material anisotropy and coupling among
elastic, electric, and magnetic fields, numerical integrations are
needed in order to obtain the solution in the physical domain.
The numerical integral is carried out based on an adaptive
numerical quadrature scheme (see, e.g. Pan and Han 2005).

5. Numerical results and analyses

In our numerical studies, the layered magneto-electro-elastic
half space is made of two transversely isotropic materials. The
first layer is piezoelectric material BaTiO3 and the second layer
(i.e. the half space) is piezomagnetic material CoFe2O4. Their
material properties are given in tables 1 and 2 (Pan 2001). The
uniform vertical surface load is q = 1 MPa and the radius of
the loading circle is a = 1 m. The thickness of the first layer
is h1 = 1 m (unless it is redefined) and the thickness of the
second layer is h2 → +∞. Numerical results are shown in
figures 2–8.

5.1. Elastic displacements and electric and magnetic
potentials

Due to the axial symmetry, the displacements in any symmetric
plane are the same. Their contours in the (r, z)-plane are

5
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(a)

(b)

Figure 2. Contours of displacements (in μm) in the (r, z)-plane in a
two-layered BaTiO3/CoFe2O4 half space under the uniform vertical
load q = 1 MPa over the circle of radius a = 1 m. The radial
displacement is ur in (a) and the vertical displacement is uz in (b).

Table 2. Nonzero material coefficients of the magnetostrictive
CoFe2O4 (ci j in 109 N m−2, ei j in C m−2, εi j in 10−9 C2 N−1 m−2,
μi j in 10−6 N s2 C−2).

c11 c12 c13 c33 c44 μ11

286 173 170.5 269.5 45.3 590

q31 q33 q15 ε11 ε33 μ33

580.3 699.7 550 0.08 0.093 157

shown in figure 2. The radial displacement ur is shown
in figure 2(a) and vertical displacement uz in figure 2(b).
It is interesting to note that uz is always positive in our
calculation region, and decreases with increasing distance from
the loading region. Its maximum (about 14 μm) is obtained
at the center of the loading circle, i.e. at point (r, z) =
(0, 0) (figure 2(b)). Different from the positive feature of
uz , the radial displacement ur in figure 2(a) is negative in
the region near the loading surface and positive outside. In

Figure 3. Contours of the electric potential φ (in kV) in the
(r, z)-plane in a two-layered BaTiO3/CoFe2O4 half space under the
uniform vertical load q = 1 MPa over the circle of radius a = 1 m.

Figure 4. Contours of the magnetic potential ψ (in V s m−1) in the
(r, z)-plane in a two-layered BaTiO3/CoFe2O4 half space under the
uniform vertical load q = 1 MPa over the circle of radius a = 1 m.

other words, under the uniform vertical load, the structure
contracts at and near the loading region, and expands outside.
The minimum radial displacement is about −2.5 μm at point
(r, z) = (1 m, 0), while its maximum is about 0.84 μm at
point (r, z) = (1 m, 1 m). The radial displacement ur is zero
along the z-axis in figure 2(a), which satisfies the symmetric
condition of the problem. The densities of the displacement
contours near the surface are larger than those far from the
surface, which means that the elastic stress and strain fields
in the region near the surface are larger than those in the far
region.

Contours of the electric and magnetic potentials are
shown, respectively, in figures 3 and 4. The electric potential
decreases with increasing distance from the loading region, and
its maximum is at the center of the loading circle on the surface.
It is found that the density of the electric potential is quite

6
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(a)

(b)

Figure 5. Contours of the stresses (in MPa) in the (r, z)-plane in a
two-layered BaTiO3/CoFe2O4 half space under the uniform vertical
load q = 1 MPa over the circle of radius a = 1 m; σrz in (a) and σzz

in (b).

low in the second (i.e. the half space) layer with very small
magnitudes. This phenomenon is due to the fact that in the
half space, the piezoelectric and dielectric constants are small
as compared to those in the surface layer. While the electric
potential reaches its maximum value on the loading surface,
the magnetic potential obtains its maximum at the interface
z = 1 m (figure 4). The maximum magnetic potential of
9.6 A is reached at point (r, z) = (0, 1 m). The tangents of
these contours are all horizontal when r = 0 (figures 3 and 4),
consistent with the symmetry of the problem.

5.2. Stresses, electric fields, and magnetic inductions

Contours of the stresses, electric fields, and magnetic
inductions in the vertical (r, z)-plane are shown in figures 5–
7. According to the boundary condition on the surface, the
vertical normal stress σzz on the surface should equal the
applied load q inside the loading region and zero outside.
The relative difference between the applied exact value and
our numerical results is less than 10−5, and therefore the

Figure 6. Contours of the electric fields (in kV m−1) in the
(r, z)-plane in a two-layered BaTiO3/CoFe2O4 half space under the
uniform vertical load q = 1 MPa over the circle of radius a = 1 m;
Er in (a) and Ez in (b).

boundary conditions are satisfied. The continuity of the
traction (σrz, σzz) across the interface is also demonstrated in
figure 5. Furthermore, the shear stress in figure 5(a) shows a
concentration below the surface near the edge of the loading
circle with a maximum of about 0.27 MPa. The normal stress
σzz in figure 5(b) reaches its extreme magnitude of 1 MPa on
the surface and gradually relaxes with increasing distance from
the loading region.

The contours of the electric fields Er and Ez are shown in
figure 6. It is observed that the magnitude of the electric field in
the second layer is much smaller than that in the first layer, with
more than two orders of difference. This phenomenon is due
to the non-piezoelectricity and low permeability of the second
layer. Since ei j = 0 and di j = 0 in the second layer, there
will be no elastic- and magnetic-induced electric field in this
layer. On the other hand, our numerical results (figure 6) show
that electric field does exist in the second layer. Hence it is
concluded that the electric field in the second layer is induced
by the electric field in the first layer, i.e. the interplay of the

7
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Figure 7. Contours of the magnetic inductions (in mT) in the
(r, z)-plane in a two-layered BaTiO3/CoFe2O4 half space under the
uniform vertical load q = 1 MPa over the circle of radius a = 1 m;
Br in (a) and Bz in (b).

electric field between the adjacent layers is demonstrated. This
is actually the product property in this novel composite where
the mechanical strain serves as a bridge between the electric
and magnetic fields.

Similarly, because of the non-piezomagnetic property
(i.e. qi j = 0) and non-magneto-electric coupling (i.e. di j = 0)
in the first layer, the magnetic induction in the first layer is
induced by the magnetic induction in the second layer. This
indicates the interplay of the magnetic field between the two
adjacent layers. As shown in figure 7, the magnetic induction
in the first layer is much smaller than that in the second layer. It
is interesting that while Br decreases with increasing distance
from the interface (figure 7(a)), there is a maximum magnitude
of 0.30 mT in Bz at (r, z) = (0, 1.55 m) (figure 7(b)).

5.3. Influence of layer thickness

The influence of the thickness of the surface layer on the
stress, electric field, and magnetic induction at the interface

is investigated. Numerical results are shown in figure 8 for two
points on the interface (r/a = 0 and 1).

The magnitude of the vertical normal stress σzz at the
interface in general decreases with increasing thickness of the
surface layer (figure 8(a)). However, when the thickness is thin
enough, the stress σzz at the interface and below the loading
center (r/a = 0) behaves abnormally. For example, it reaches
its maximum magnitude 1.02 MPa when h/a = 0.26. Such
a thickness of the surface layer may be called the critical
thickness of the stress, denoted by hσcr. Thus, when 0 < h <
hσcr, the magnitude of the interfacial stress below the load center
increases with increasing layer thickness.

Figure 8(b) shows the variation of the interfacial electric
field Ez versus the normalized thickness of the first layer
h/a. Compared to the vertical normal stress σzz in figure 8(a),
the distribution of Ez is much more complicated. (1) This
vertical electric field is discontinuous across the interface. Its
magnitude is much smaller in the surface layer (i.e. layer 1)
than that in the half space (i.e. layer 2). (2) Even though
the interfacial electric field is small in the surface layer, a
critical thickness of the surface layer also exists. In other
words, the electric field Ez will first increase its magnitude
with increasing h/a. Once it reaches the maximum magnitude,
it will decrease. For instance, the magnitudes for r/a = 0 and
1 are, respectively, Ez max = 1.13 kV m−1 and 1.375 kV m−1

when h/a = 0.055 and 0.08. (3) The interfacial electric
field Ez in the surface layer will change sign (from negative
to positive) at a certain h/a ratio, and tends to zero gradually
with increasing h/a. The interfacial electric field Ez is much
larger in layer 2 (i.e. in the half space). It first decreases with
increasing h/a. Once it reaches a minimum (at h/a very close
to zero), it increases with h/a. After reaching its maximum, it
then gradually decreases to zero with increasing h/a.

Variation of the interfacial magnetic induction Bz is shown
in figure 8(c). The interfacial magnetic induction has the same
negative sign and reaches its maximum magnitude at h/a =
0.78 and h/a = 1.12, respectively, for r/a = 0 and 1 (with
magnitudes 4.8 × 10−5 T for r/a = 0 and 1.86 × 10−5 T for
r/a = 1). After reaching its minimum, the magnetic induction
will gradually decay to zero with increasing h/a.

6. Conclusions

In this paper, the magneto-electro-elastic responses of the
layered multiferroic structure under uniform vertical circular
load are presented. The semi-analytical solutions are obtained
by means of the vector functions and the corresponding
propagator matrix method. Numerical analyses for two-layered
structures are carried out. The coupling effects among the
elastic, electric, and magnetic fields are demonstrated. Two
interesting phenomena are found in the calculated structures.
One is the coupling effect between the adjacent layers, i.e. the
magnetic fields (electric field) in the first layer can be induced
by those in the second layer, even if the first layer has no
piezomagnetic (piezoelectric) properties. The other is that
an abnormal phenomenon will happen when the thickness
of the surface layer is ultrathin. Since the field at the
interface often plays a significant role in fracture analysis, these

8
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(a) (b)

(c)

Figure 8. Field quantities at the interface (r/a = 0 and r/a = 1) versus the thickness of the surface layer h/a: σzz versus h/a in (a), Ez

versus h/a in (b), and Bz versus h/a in (c).

interesting phenomena may provide future guidance for the
coating design. We further point out that the proposed solution
should be useful to the corresponding indentation problem and
to the arbitrary surface loading case.
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Appendix

The nonzero components of the matrix [Wk] in equation (18)
for the given layer k are

W12 =
c13d2

33+d33e33q31+d33e31q33−q31q33ε33−(e31e33+c13ε33)μ33

Q

W13 = d2
33 − ε33μ33

Q
, W17 = d33q33 − e33μ33

Q
,

W18 = d33e33 − q33ε33

Q
, W21 = −1, W24 = 1

c44
,

W25 = −e15

c44
, W26 = −q15

c44
, W34 = 1

W52 =
q33(c13d33−e33q31+e31q33)−c13e33μ33+c33(e31μ33−d33q31)

Q
,

W53 = d33q33 − e33μ33

Q
, W57 = c33μ33 + q2

33

Q
,

W58 = −c33d33 + e33q33

Q
,

W62 =
e33(c13d33+e33q31−e31q33)−c13q33ε33−c33(d33e31−q31ε33)

Q
,

W63 = e33d33 − q33ε33

Q
, W67 = W58,

9
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W68 = c33ε33 + e33e33

Q
, W74 = e15

c44
,

W75 = −
(

e2
15

c44
+ ε11

)
, W76 = −

(
d11 + e15q15

c44

)
,

W84 = q15

c44
, W85 = −

(
q15e15

c44
+ d11

)
,

W86 = −
(

q2
15

c44
+ μ11

)
,

W42 = c11 − c13W12 − e31W52 − q31W62,

W43 = −c13W13 − e31W53 − q31W63,

W47 = −c13W17 − e31W57 − q31W67,

W48 = −c13W18 − e31W58 − q31W68

where

Q = c33d2
33 + 2d33e33q33 − q2

33ε33 − (e2
33 + c33ε33)μ33

and all the material properties are those corresponding to the
kth layer.
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