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Abstract
The present paper concentrates on the basic equations of three-dimensional problems for
nonlinear piezoelectric materials of hexagonal systems with symmetry class 6mm and of cubic
systems with symmetry class m3. Emphasis is placed on developing the nonlinear constitutive
relations between extended traction (including elastic stress and polarization) and extended
strain (including elastic strain and electric field). The corresponding one-dimensional
mathematical models for piezoelectric ceramic with symmetry classes 6mm and m3 are also
given. Numerical examples are also carried out for the impact problem to show the important
effect of the piezoelectric nonlinearity on the stress wave. Therefore, the derived concise
equations can directly be applied to evaluate the nonlinear piezoelectric effects of
piezoelectricity by the nonlinear finite element method.

1. Introduction

The phenomenon of piezoelectricity was first discovered
by the Curie brothers, Pierre and Jacques, in 1880.
Piezoelectricity is currently enjoying a great resurgence in both
fundamental research and technical applications (Chen 1971,
Chizhikov et al 1982, Maugin 1988, Ashida and Tauchert
1998, Chandrasekharaiah 1998). Although the behavior of
piezoelectric materials in non-structural applications has been
investigated extensively, the treatment is often simplistic. In
particular, most of the achievements have only been made in
the frame of linear constitutive relations.

The rapid development of computer science and nonlinear
finite element applications reveals the importance of estab-
lishing the nonlinear basic theory for piezoelectricity. Nelson
(1978), Toupin (1983), Tiersten (1981) studied the nonlinear
theory of dielectrics. Norwood et al (1991), Kulkami and
Hanagud (1991) used a Neo-Hookean constitutive relation
to model the response of piezoelectric ceramics. Pai et al
(1992) considered the dependence of the piezoelectric strain
parameters upon the strain in formulating a plate theory of
piezoelectric laminates. Joshi (1992) considered the nonlinear
constitutive relations for piezoelectric materials, where a
concise expression was given. Tiersten (1993) investigated

4 Author to whom any correspondence should be addressed.

the nonlinear problems of thin plates subjected to large driving
voltages. However, most of these studies considered only the
case of small deformations, and second-order items were often
neglected. Later on, based on the theory of invariants, from
invariant polynomial constitutive relations, Yang and Batra
(1995) investigated the second-order theory for piezoelectric
materials with symmetry class 6mm and class mm2, where
only nine independent stiffness constants were introduced for
the nonlinear items.

In this paper, we develop the basic constitutive equations
for three-dimensional nonlinear problems of piezoelectric
materials. The polynomial constitutive relations for the
6mm crystal class and m3 crystal class are derived using
an invariant integrity basis. Furthermore all the basic
equations are specialized to those corresponding to the one-
dimensional model. This one-dimensional model is then
solved by implementing the governing equations in the
COMSOL Multiphysics software (COMSOL 2008). These
numerical examples of the impact problem show the influence
of the piezoelectric nonlinearity on the stress wave. Since
the present theory is not restricted to small applied loads
or electric fields, it should therefore be very useful to
researchers for the investigation of the mechanics and physics
of piezoelectricity undergoing large nonlinear deformations
(Cheng 1996, Hokstad 2004).
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2. Statement of dynamic problems for a nonlinear
piezoelectric material

Let the coordinates of a material particle with respect to
a rectangular Cartesian coordinate system be X K in the
reference configuration (undeformed configuration) and its
spatial coordinates in the current configuration (deformed
configuration) be xk .

2.1. Governing equations

For a nonlinear piezoelectric material, in the absence of
body force and free charge density, the moving equation and
the quasistatic approximation to Maxwell’s equations in the
reference configuration can be written as (Yang and Batra
1995, Pao 1978, Kiral and Eringen 1990)

[TK L xk,L + J F−1
Kl ε0(F−1

Mk F−1
Nl − 1

2 F−1
Mm F−1

Nmδkl)EM EN ],K

= ρ0δkK üK , (1)

�K ,K + Jε0 F−1
K k (F−1

Mk EM),K = 0, (2)

where
J = det (F) , (3)

F = ∂x
∂X

, (4)

TK L is the second Piola–Kirchhoff (PK2) stress tensor, uK

the mechanical displacement vector, �K the material electric
polarization, EK the electric field, ρ0 the mass density in
the reference configuration, ε0 the permittivity of free space,
δkK the shifter, and δkl the Kronecker delta. Throughout this
paper, a repeated index implies summation over the range
of the index, and a comma followed by K (i) implies partial
differentiation with respect to X K (xi). A dot above a quantity
signifies its material time derivative. In addition, the PK2 stress
tensor TK L can be written as

TK L = J X K ,k X L ,l (σkl + Pk El) , (5)

where σkl , Pk and Ek are, respectively, the Cauchy
stress, electric polarization, and electric field in the current
configuration.

For an isothermal or adiabatic process, in the material
configuration, the energy density function in the absence of
heat conduction or heat sources can be defined as (Pao 1978)

� = � (	K L , EK ) , (6)

where 	K L is the Green–Lagrange strain tensor, and EK the
electric field in the material form.

Also, the displacement–strain and electric potential–
electric field can be expressed as

	K L = 1
2

(
xk,K xk,L − δK L

) = 1
2

(
uK ,L + uL ,K + uM,K uM,L

)
,

(7)
EK = −φ,K . (8)

In addition, the basic equations (1) and (2) are
accompanied by the following constitutive relations (Pao 1978)

TK L = ∂�

∂	K L
, (9)

�K = − ∂�

∂ EK
. (10)

2.2. Boundary and initial conditions

(a) Mechanical boundary conditions

uK = ūK X ∈ S1, (11)

n0
K xl,L

(
TK L − ρ0 J −1�K EL

)
δlM = p̄M X ∈ S2,

(12)
where S1 ∪ S2 = S, S1 ∩ S2 = 0, and S covers the
total boundary; ūK and p̄M are, respectively, the given
displacement and traction on the boundary in the reference
configuration; n0

K (X) is the unit normal to the body in the
reference configuration.

(b) Electrical boundary conditions

φ = φ̄ X ∈ S3, (13)

n0
K

(
J −1ρ0�K + ε0 EK

) = D̄n0 X ∈ S4, (14)

where S3 ∪ S4 = S, S3 ∩ S4 = 0; φ̄ and D̄n0 are,
respectively, the known electric potential and normal
electric displacement on the boundary in the reference
configuration.

(c) Initial conditions

uK (X, 0) = u0
K (X) , (15)

u̇K (X, 0) = u̇0
K (X) , (16)

where u0
K is the known initial displacement and u̇0

K the
known initial velocity.

3. Transversely isotropic materials with symmetry
class 6mm

3.1. Polynomial integrity basis

Two basic requirements of invariance that must be imposed
upon the constitutive equations are spatial invariance and
material invariance (Jordan and Eringen 1964). For 6mm
piezoelectricity with both the elastically symmetric axis and
the poling direction as the X3-axis, the polynomial integrity
basis, the degree of which is less than three, can be given in the
following concise form (Kiral and Eringen 1990).

Elements in 	I J only:

Degree 1: 	33, 	11 + 	22, (17)

Degree 2: 	11	22 − 	2
12, 	2

13 + 	2
23, (18)

Degree 3: 	11
(
	2

11 + 6	11	22 − 12	2
12 + 9	2

22

)
,

	11	
2
23 + 	22	

2
13 − 	13	23	12. (19)

Elements in EI only:

Degree 1: E3, (20)

Degree 2: E2
1 + E2

2 . (21)

Elements in 	I J and EI only:

Degree 2: 	31 E1 + 	23 E2, (22)

Degree 3: (E1	23 + E2	31)	12− E1	22	31− E2	11	23,

(23a)
	11 E2

2 + 	22 E2
1 − 2E1 E2	12. (23b)

2
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3.2. Polynomial free energy function

In order to derive the second-order nonlinear constitutive
equations, the energy density function � should be formed as
a third-order polynomial function of 	I J and EI . Neglecting
the initial stress and initial polarization, i.e. assuming that the
energy density function of the piezoelectricity is zero when it
is in a free state, from equations (17) to (23), after complicated
symbolic mathematical manipulations using the Mathematica
software package, the energy density function � can finally be
obtained in the following form

� = �a + �ε + �e + �C + �η + �g + �Q, (24)

where

�a = a1
(
	11	22 − 	2

12

) + a2
(
	2

23 + 	2
31

) + a3	
2
33

+ a4 (	11 + 	22) 	33 + a5 (	11 + 	22)
2 , (25a)

�ε = ε1
(
E2

1 + E2
2

) + ε2 E2
3 , (25b)

�e = e1 (	31 E1 + 	23 E2) + e2	33 E3

+ e3 (	11 + 	22) E3, (25c)

�C = C1	11
(
	2

11 − 12	2
12 + 6	11	22 + 9	2

22

)

+ C2
(
	11	

2
23 + 	31 (	22	31 − 	12	23)

)

+ C3
(
	11	22 − 	2

12

)
	33 + C4

(
	2

23 + 	2
31

)
	33

+ C5 (	11 + 	22)
(
	11	22 − 	2

12

)

+ C6 (	11 + 	22)
(
	2

23 + 	2
31

) + C7	
3
33

+ C8 (	11 + 	22) 	2
33 + C9 (	11 + 	22)

3

+ C10 (	11 + 	22)
2 	33, (25d)

�η = η1
(
E2

1 + E2
2

)
E3 + η2 E3

3 , (25e)

�g = g1 (	12	23 E1 − 	22	31 E1 − 	11	23 E2 + 	12	31 E2)

+ g2	33 (	31 E1 + 	23 E2)

+ g3 (	11 + 	22) (	31 E1 + 	23 E2)

+ g4
(−	2

12 + 	11	22
)

E3 + g5
(
	2

23 + 	2
31

)
E3

+ g6	
2
33 E3 + g7 (	11 + 	22)

2 E3

+ g8 (	11 + 	22) 	33 E3, (25 f )

�Q = Q1
(
	22 E2

1 − 2	12 E1 E2 + 	11 E2
2

)

+ Q2	33
(
E2

1 + E2
2

) + Q3 (	11 + 	22)

× (
E2

1 + E2
2

) + Q4 (	31 E1 + 	23 E2) E3

+ Q5	33 E2
3 + Q6 (	11 + 	22) E2

3 . (25g)

Equation (24) indicates that the energy density consists
of seven parts. Obviously, �a , �ε, and �e correspond to
the linear constitutive relations, and �C , �η, �g , and �Q

correspond to the nonlinear constitutive relations. Also, it is
easily observed that there are a total of 36 independent material
constants for the 6mm crystal class, which is in agreement
with the early literature (Landolt 1966), and that there are ten
independent constants for the corresponding linear material,
which is further in agreement with the well-known results.

3.3. Second-order constitutive theory

Substituting equation (24) together with equation (25) into
equations (9) and (10), we obtain the elastic stress and electric

polarization as follows

TI J = TI J a + TI J e + TI J C + TI Jg + TI J Q, (26)

�I = �Iε + �Ie + �Iη + �Ig + �I Q , (27)

where

T11a = a1	22 + a4	33 + 2a5 (	11 + 	22) , (28a)

T11e = e3 E3, (28b)

T11C = 3C1
(
	2

11 − 4	2
12 + 4	11	22 + 3	2

22

)

+ C2	
2
23 + C3	22	33 + C5

(
2	11	22 + 	2

22 − 	2
12

)

+ C6
(
	2

23 + 	2
31

) + C8	
2
33 − 3C9 (	11 + 	22)

2

+ 2C10 (	11 + 	22) 	33, (28c)

T11g = −g1	23 E2 + g3 (	31 E1 + 	23 E2)

+ g4	22 E3 + 2g7 (	11 + 	22) E3 + g8	33 E3, (28d)

T11Q = Q1 E2
2 + Q3

(
E2

1 + E2
2

) + Q6 E2
3 , (28e)

T22a = a1	11 + a4	33 + 2a5 (	11 + 	22) , (29a)

T22e = e3 E3, (29b)

T22C = 6C1	11 (	11 + 3	22) + C2	
2
31

+ C3	11	33 + C5
(
2	11	22 + 	2

11 − 	2
12

)

+ C6
(
	2

23 + 	2
31

) + C8	
2
33 + 3C9 (	11 + 	22)

2

+ 2C10 (	11 + 	22) 	33, (29c)

T22g = −g1	31 E1 + g3 (	31 E1 + 	23 E2)

+ g4	11 E3 + 2g7 (	11 + 	22) E3 + g8	33 E3, (29d)

T22Q = Q1 E2
1 + Q3

(
E2

1 + E2
2

) + Q6 E2
3 , (29e)

T33a = 2a3	33 + a4 (	11 + 	22) , (30a)

T33e = e2 E3, (30b)

T33C = C3
(
	11	22 − 	2

12

) + C4
(
	2

23 + 	2
31

)

+ 3C7	
2
33 + 2C8 (	11 + 	22) 	33

+ C10 (	11 + 	22)
2 , (30c)

T33g = g2 (	31 E1 + 	23 E2) + 2g6	33 E3

+ g8 (	11 + 	22) E3, (30d)

T33Q = Q2
(
E2

1 + E2
2

) + Q5 E2
3 , (30e)

T23a = a2	23, (31a)

T23e = 0.5e1 E2, (31b)

T23C = C2 (	11	23 − 0.5	12	31)

+ C4	23	33 + C6 (	11 + 	22) 	23, (31c)

T23g = 0.5g1 (	12 E1 − 	11 E2) + 0.5g2	33 E2

+ 0.5g3 (	11 + 	22) E2 + g5	23 E3, (31d)

T23d = 0.5Q4 E2 E3, (31e)

T31a = a2	31, (32a)

T31e = 0.5e1 E1, (32b)

T31C = C2 (	22	31 − 0.5	12	23) + C4	31	33

+ C6 (	11 + 	22) 	31, (32c)

T31g = 0.5g1 (	12 E2 − 	22 E1) + 0.5g2	33 E1

+ 0.5g3 (	11 + 	22) E1 + g5	31 E3, (32d)

T31Q = 0.5Q4 E1 E3, (32e)

3
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T12a = −a1	12, (33a)

T12C = −12C1	11	12 − 0.5C2	23	31

− C3	12	33 − C4	12 (	11 + 	12) , (33b)

T12e = 0, (33c)

T12g = 0.5g1 (	23 E1 + 	31 E2) , (33d)

T12Q = −Q1 E1 E2, (33e)

�1ε = −2ε1 E1, (34a)

�1e = −e1	31, (34b)

�1η = −2η1 E1 E3, (34c)

�1g = −g1 (	12	23 − 	22	31) − g2	31	33

− g3 (	11 + 	22) 	31, (34d)

�1Q = 2Q1 (	22 E1 − 	12 E2) − 2Q2	33 E1

− 2Q3 (	11 + 	22) E1 − Q4	31 E3, (34e)

�2ε = −2ε1 E2, (35a)

�2e = −e1	23, (35b)

�2η = −2η1 E2 E3, (35c)

�2g = −g1 (	12	31 − 	11	23) − g2	23	33

− g3 (	11 + 	22) 	23, (35d)

�2Q = 2Q1 (	11 E2 − 	12 E1) − 2Q2	33 E2

− 2Q3 (	11 + 	22) E2 − Q4	23 E3, (35e)

�3ε = −2ε2 E3, (36a)

�3e = −e2	33 − e3 (	11 + 	22) , (36b)

�3η = −η1
(
E2

1 + E2
2

) − 3η2 E2
3 , (36c)

�3g = −g4
(
	11	22 − 	2

12

) − g5
(
	2

23 + 	2
31

)

− g6	
2
33 − g7 (	11 + 	22)

2 − g8 (	11 + 	22) 	33, (36d)

�3Q = −Q4 (	31 E1 + 	23 E2) − 2Q5	33 E3

− 2Q6 (	11 + 	22) E3. (36e)

Equations (28)–(36) can easily be written in matrix forms.
Thus, we have obtained the concise expressions of nonlinear
constitutive equations for the 6mm crystal class, which is the
basis for analyzing the nonlinear problems of piezoelectric
materials with this kind of symmetry.

It should also be pointed out that the corresponding results
of small deformations and weak electric fields (Yang and Batra
1995) and the corresponding results of small deformations and
strong fields (Tiersten 1993, Yang and Batra 1995) can easily
be deduced from equations (26)–(36).

4. Cubic materials with symmetry class m3

For m3 piezoelectricity, the polynomial integrity basis, the
degree of which is less than three, is given by (Kiral and
Eringen 1990).

Elements in 	I J only:

Degree 1: 	11 + 	22 + 	33, (37)

Degree 2: 	11	22 + 	22	33 + 	33	11,

	2
23 + 	2

31 + 	2
12,

(38)

Degree 3: 	11	22	33, 	23	31	12,

	11	
2
23 + 	22	

2
31 + 	33	

2
12,

(39a)

	11
(
	2

31 − 	2
12

) + 	22
(
	2

12 − 	2
23

) + 	33
(
	2

23 − 	2
31

)
, (39b)

	11	22 (	11 − 	22) + 	22	33 (	22 − 	33)

+ 	33	11 (	33 − 	11) . (39c)

Elements in EI only:

Degree 2: E2
1 + E2

2 + E2
3 . (40)

Elements in 	I J and EI only:

Degree 3: E2 E3	23 + E3 E1	31 + E1 E2	12,

E2
1	11 + E2

2	22 + E2
3	33, (41a)

E2
1 (	22 − 	33) + E2

2 (	33 − 	11) + E2
3 (	11 − 	22) . (41b)

Similarly, the polynomial energy density function can be
expressed as

� = �a + �ε + �C + �Q, (42)

where

�a = a1 (	11 + 	22 + 	33)
2

+ a2 (	22	33 + 	33	11 + 	11	22)

+ a3
(
	2

23 + 	2
31 + 	2

12

)
, (43a)

�C = C1 (	11 + 	22 + 	33)
3 + C2 (	11 + 	22 + 	33)

× (	22	33 + 	33	11 + 	11	22)

+ C3 (	11 + 	22 + 	33)
(
	2

23 + 	2
31 + 	2

12

)

+ C4	11	22	33 + C5	12	23	31

+ C6
(
	11	

2
23 + 	22	

2
31 + 	33	

2
12

)

+ C7(	
2
12	22 − 	2

23	22 + 	2
31	11 − 	2

12	11 + 	2
23	33

− 	2
31	33) + C8 (	11 − 	22) (	11 − 	33) (	22 − 	33) ,

(43b)

�ε = ε1
(
E2

1 + E2
2 + E2

3

)
, (43c)

�Q = Q1 (	11 + 	22 + 	33)
(
E2

1 + E2
2 + E2

3

)

+ Q2 (	12 E1 E2 + 	31 E1 E3 + 	23 E2 E3)

+ Q3((	22 − 	33) E2
1 + (	33 − 	11) E2

2

+ (	11 − 	22)E2
3) + Q4

(
	11 E2

1 + 	22 E2
2 + 	33 E2

3

)
.

(43d)

Substituting equations (42) and (43) into equations (9)
and (10), we finally obtain the elastic stress and electric
polarization as follows

TI J = TI J a + TI J C + TI J Q, (44)

�I = �Iε + �I Q , (45)

4
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Figure 1. A one-dimensional piezoelectric model of 6mm crystal
class loaded at the left end along the poling direction.

where

T11a = 2a1 (	11 + 	22 + 	33) + a2 (	22 + 	33) , (46a)

T11C = 3C1 (	11 + 	22 + 	33)
2

+ C2((	22 + 	33) (	11 + 	22 + 	33) + 	11	22

+ 	11	33 + 	22	33) + C3
(
	2

12 + 	2
23 + 	2

31

)

+ C4	22	33 + C6	
2
23 + C7

(
	2

31 − 	2
12

)

+ C8
(
2	11	22 − 2	11	33 + 	2

33 − 	2
22

)
, (46b)

T11Q = Q1
(
E2

1 + E2
2 + E2

3

) + Q3
(
E2

3 − E2
2

) + Q4 E2
1 ,

(46c)

T23a = a3	23, (47a)

T23C = C3	23 (	11 + 	22 + 	33) + 0.5C5	31	12

+ C6	11	23 + C7	23 (	33 − 	22) , (47b)

T23Q = 0.5Q2 E2 E3, (47c)

�1ε = −2ε1 E1, (48a)

�1Q = −2Q1 (	11 + 	22 + 	33) E1 − Q2 (	12 E2 + 	31 E3)

− 2Q3 (	22 − 	33) E1 − 2Q4	11 E1. (48b)

The other stress and polarization components can be
obtained by simple index permutations, which are omitted here
for brevity.

As shown in equations (46)–(48), for linear cubic
piezoelectricity, there are five independent material constants,
which is in agreement with the well-known results. It is
interesting to note that for the nonlinear m3 crystal class, the
squared terms of strain and/or electric field components have
no effects on the electric polarization, whilst the products of
strain and electric field components have no contribution to
the stress distribution. In addition, the analysis on the cubic
system with m3 crystal class also shows that even for nonlinear
materials, there are only a total of 16 independent material
constants.

Furthermore, we remark that if C7, C8, and Q3 are all
set to be zero, then equations (46)–(48) directly reduce to the
corresponding constitutive equations of the cubic system with
the symmetry class m3m.

5. One-dimensional models of nonlinear impacts for
the 6mm crystal class

As shown in figures 1 and 2, a bar of rectangular cross-section
with length l is fixed at the right end. In this section, we
will derive the simplified equations of one-dimensional impact
problems under two kinds of mechanical impact loadings.

Figure 2. A one-dimensional piezoelectric model of 6mm crystal
class loaded at the left end normal to the poling direction.

5.1. Mechanical loads parallel to the poling direction

In this case, as shown in figure 1, x3 = X3 + w(X3, t) =
Z + w(Z , t), u3 = w(Z , t), φ = φ(Z , t), the constitutive
equations can be directly simplified from the three-dimensional
ones as

T33 = a33	33 − e33 E3 + 1
2 C333	

2
33 − 1

2 Q333 E2
3 − g333	33 E3,

(49)
�3 = e33	33 + ε33 E3 + 1

2 g333	
2
33 + 1

2η333 E2
3 + Q333	33 E3,

(50)
where a33, e33, ε33, C333, g333, Q333, and η333 are the new
and independent material constants, which are introduced for
clarity. Also,

	33 (Z , t) = ∂w

∂ Z
+ 1

2

(
∂w

∂ Z

)2

, (51)

E3 (Z , t) = − ∂φ

∂ Z
. (52)

The governing equations can finally be expressed as

T33,Z

(
1 + dw

∂ Z

)
+ T33

d2w

∂ Z 2
+ ε0 E3 E3,Z

(
1 + dw

∂ Z

)−2

− ε0 E2
3

d2w

∂ Z 2

(
1 + dw

∂ Z

)−3

= ρ0ẅ, (53)

�3,Z − ε0

(
1 + dw

dZ

)−2 d2w

d Z 2
E3

+ ε0

(
1 + dw

dZ

)−1

E3,Z = 0. (54)

For the mechanical impact only, the mechanical and
electric boundary conditions are given as

T33 (0, t)

(
1 + dw (0, t)

dZ

)
− ρ0 (0) �3 (0, t) E3 (0, t)

= −σ0 H (t) , (55a)

w (l, t) = 0, (55b)

(
1 + dw (0, t)

dZ

)
ρ0 (0)�3 (0, t) + ε0 E3 (0, t) = 0, (56a)

(
1 + dw (l, t)

dZ

)
ρ0 (l) �3 (l, t) + ε0 E3 (l, t) = 0, (56b)

where σ0 is the known constant and H (t) the Heaviside unit
step function.
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Table 1. Nonlinear piezoelectric coefficients for quartz.

Name Present D&Ga Value

Second-order elastic stiffness (GPa) a33 C E
33 8.6736 × 1010 b

Piezoelectric coupling (C m−2) e33 e33 0.171c

Dielectric constant (ε0d) ε33 ε
η

33 4.40e

Third-order elastic (GPa) C333 C E
333 −30.0 × 1010f

Third-order piezoelectric (ε0 m V−1) g333 1/2ei jklm −1.31g

Electrostrictive (ε0 F m−1) Q333 f333 −4.40h

Third-order dielectric (F V−1) η333 ε
η

333 O(−3.5 × 10−17)i

a D & G*: Davison and Graham (1979). b Value for quartz from COMSOL 3.5a
Material Library. c Value from D&G.
d ε0 = 8.854 × 10−12 F m−1 (electric constant in vacuum).
e Relative dielectric constant value, references to Bechmann (1958) and Fontanella
and Andeen (1974).
f Same order as the (second-order) elastic stiffness but significantly large for finite
strain, reference to D&G.
g The contribution is typically several orders smaller than other terms, reference to
D&G.
h The electrostrictive coefficient is typically the same order as the second-order
dielectric but of opposite sign.
i Several orders smaller than other coefficients and can be neglected unless the
E-field is extremely high, e.g. several orders larger than the strain.

The initial conditions can be expressed in terms of the
known displacement w0(Z) and velocity ẇ0(Z) as follows

w(Z , 0) = w0(Z), (57a)

ẇ(Z , 0) = ẇ0(Z). (57b)

It should be noted that, as shown in equations (49)
and (50), when the loading direction is in the poling direction,
there are a total of seven independent material constants, which
include three linear coefficients (i.e. a33, e33, and ε33) and four
nonlinear coefficients (i.e. C333, g333, Q333, and η333).

5.2. Mechanical loads vertical to the poling direction

In this case, as shown in figure 2, x2 = Y + v(Y, t ), u2 =
v(Y, t), φ = φ(Y, t), the constitutive equations are obtained as

T22 = a11	22 + 1
2 C222	

2
22 − 1

2 Q222 E2
2, (58)

�2 = ε11 E2 + Q222	22 E2, (59)

where a11, ε11, C222, and Q222 are the new material constants
introduced here for clarity. Also,

	22 (Y, t) = ∂v

∂Y
+ 1

2

(
∂v

∂Y

)2

, (60)

E2 (Y, t) = − ∂φ

∂Y
. (61)

The governing equations can finally be expressed as

T22,Y

(
1 + dv

∂Y

)
+ T22

d2v

∂Y 2
+ ε0 E2 E2,Y

(
1 + dv

∂Y

)−2

− ε0 E2
2

d2v

∂Y 2

(
1 + dv

∂Y

)−3

= ρ0v̈, (62)

�2,Y − ε0

(
1 + dv

dY

)−2 d2v

dY 2
E2

+ ε0

(
1 + dv

dY

)−1

E2,Y = 0. (63)

Correspondingly, the conditions of unique solution can be
described as

T22 (0, t)

(
1 + dv (0, t)

dY

)
− ρ0 (0)�2 (0, t) E2 (0, t)

= −σ0 H (t) , (64a)

v (l, t) = 0, (64b)
(

1 + dv (0, t)

dY

)
ρ0 (0) �2 (0, t) + ε0 E2 (0, t) = 0, (65a)

(
1 + dv (l, t)

dY

)
ρ0 (l) �2 (l, t) + ε0 E2 (l, t) = 0, (65b)

v (Y, 0) = v0 (Y ) , (66a)

v̇ (Y, 0) = v̇0 (Y ) , (66b)

where v0(Y ) and v̇0(Y ) are, respectively, the known initial
displacement and velocity.

As shown in equations (58) and (59), when the loading
direction is vertical to the poling direction, there are a total of
four independent material constants, which include two linear
coefficients (i.e. a11 and ε11) and two nonlinear coefficients
(i.e. C222 and Q222).

6. One-dimensional model of nonlinear impacts for
the m3 crystal class

For the one-dimensional m3 crystal class structure, if the
applied mechanical loads are parallel to the X3(Z) axis (see
figure 3), we have x3 = X3 + w(X3, t) = Z + w(Z , t),
u3 = w(Z , t), φ = φ(Z , t).

Similar to the 6mm crystal class, the governing
equations (53) and (54), the extended geometry equations (51)
and (52), and the conditions of unique solution (55)–(57) all
remain the same. The constitutive equations can be expressed
as

T33 = a33	33 + 1
2 C333	

2
33 − 1

2 Q333 E2
3, (67)

6
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Figure 3. A one-dimensional piezoelectric model of m3 crystal class
loaded at the left end.

�3 = ε33 E3 + Q333	33 E3. (68)

As shown in equations (58) and (59), for the one-
dimensional m3 crystal class structure, there are a total of
four independent material constants, which include two linear
coefficients (a33 and ε33) and two nonlinear coefficients (C333

and Q333).

7. Numerical results

From the governing equations, equations (1) and (2), it is seen
that for a one-dimensional response, the only change between
crystal classes is the non-zero constants in the constitutive
law which are different for different crystal classes. This has
been explicitly shown for the 6mm and 3m crystal classes
in section 6. We point out that experimental values for the
nonlinear coefficients are, in general, not readily available for
most materials. However, values for quartz, which is in the
32 crystal class, are available (Davison and Graham 1979).
Consequently, for the illustrative purpose, equations (53)
and (54) were solved numerically using quartz properties.
Although, in general, the coefficients in equations (28)–
(36), even for small deformations, are not the same as the
classical constitutive coefficients (Feng et al 2009), in the one-
dimensional case, however, there is a direct correspondence.
This correspondence between those adopted in this paper and
those in Davison and Graham (1979) is shown in table 1.
These values were used when solving equations (53) and (54)
using the COMSOL solver (COMSOL 2008) via the nonlinear
constitutive relations (49) and (50). To reduce numerical noise,
Rayleigh damping was added via an additional weak form
term. In the numerical solutions, three different models are
considered: (1) the Dubner–Abate–Crump (DAC) model for
the linear small strain solved via Laplace transform techniques
using a modified DAC algorithm (Laverty and Gazonas 2005);
(2) the finite strain model where the finite strain terms in the
governing equations and constitutive relations equation (49)–
(51) are included in the solution but nonlinear effects due to the
electric field are ignored; (3) the full nonlinear model where the
fully nonlinear governing equations (53) and (54), along with
the nonlinear constitutive relations (equations (49) and (50)),
are solved using the corresponding material properties in
table 1. As mentioned, the solutions for the second and third
models were obtained by implementing the relevant equations
in COMSOL (COMSOL 2008).

First, a step pressure load of σ0 = 1 GPa is applied at
the left end of the piezoelectric quartz bar and the stress wave

(a)

(b)

Figure 4. One-dimensional stress wave response in the midpoint to a
step pressure loading in the nonlinear piezoelectric quartz bar: a load
of σ0 = 1 Pa based on the DAC, linear strain, and finite strain models
in (a), and a load of σ0 = 10 GPa based on the DAC, finite strain, and
full nonlinear models in (b).

(This figure is in colour only in the electronic version)

response at the middle point (l/2) is calculated (figure 1) at
different times. The results for the three models are shown
in figure 4(a). It is observed that, for the infinitesimal strain
deformation, the numerical result via COMSOL is identical to
the analytical solution using the modified DAC. This indicates
that the addition of the Rayleigh damping does not adversely
affect the solution. It is also noted that the solution based on
the finite strain model via the COMSOL solver is also very
close to the linear strain modified DAC solution although there
is a slight phase shift in the response. This clearly illustrates
that quartz continues to respond linearly up to moderately large
pressures.

Second, the pressure load is increased to σ0 = 10 GPa,
which corresponds to a pressure value that is typical of shock
loading, and the stress wave responses in the middle point
of the bar are calculated (figure 4(b)) for the three models.
It is seen that at this loading level the response exhibits a
significant phase shift, due to the coupling and nonlinearity in

7
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the constitutive relations (Lysne 1972). It is further observed
that at a high loading, the amplitude of the stress wave can also
be significantly increased due to the piezoelectric nonlinearity.
It is further interesting to observe from figure 4(b) that the
finite strain model has a wave speed slower than that in the
full nonlinear model, and that waves in both nonlinear models
are slower than that in the corresponding linear strain model.
Whether this predicted effect on the wave speed occurs at finite
strains remains to be experimentally validated.

8. Conclusions

In this paper, we have derived the three-dimensional constitu-
tive equations for second-order nonlinear piezoelectricity with
6mm crystal class and m3 crystal class. As an application,
the mathematical models of one-dimensional impact problems
are also completely described. The one-dimensional nonlinear
equations were then solved numerically via COMSOL and
a significant effect of the piezoelectric nonlinearity on the
phase and amplitude of the stress wave was clearly observed.
Therefore, this work forms the basis for the development of
nonlinear finite element codes for the analysis of dynamically
loaded structures composed of piezoelectric ceramic with the
symmetry class 6mm and/or symmetry class m3.
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