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a b s t r a c t

In this paper, a boundary element method (BEM) is proposed to analyze the stress field in

nanoinhomogeneities with surface/interface effect. To consider this effect, the continuity conditions

along the internal interfaces between the matrix and inhomogeneities are modeled by the well-known

Gurtin–Murdoch constitutive relation. In the numerical analysis, the interface elastic moduli and the

geometry of the nanoscale inhomogeneity are varied to show their influence on the induced stress field.

The interaction between nanoscale inhomogeneities and the effect of different geometric shapes of

inhomogeneities, including ellipse, triangle, and square are also investigated for different interface

material parameters. It is shown that the elastic field can be greatly influenced by the interfacial energy

and geometry of nanoscale inhomogeneities. The proposed BEM formulation is very general, including

the complete Gurtin–Murdoch model and is further convenient for arbitrary shapes of inhomogeneity.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Nanocomposites have been widely applied to the microelec-
tromechanical system, bioengineering, and optics/photonics
devices due to their unique mechanical, electronic, and optical
properties [1–4]. Unlike bulk materials, the effective elastic proper-
ties of nanomaterials strongly depend on the material and geo-
metric parameters of the nanostructure as well as on the interface
diffusion between the nanoinhomogeneity and matrix. While the
surface/interface stresses of the nanostructure can be determined
either experimentally [5,6] or computationally [7,8], its size-
dependent properties can be explained by considering the effect
of the surface/interface stresses, which comes from the excess free
energy along the surface/interface (e.g., Refs. [9,10]).

A linearized stress–strain constitutive relation in surface
elasticity was proposed by Gurtin and Murdoch [11], Murdoch
[12], and Gurtin et al. [13]. This so-called Gurtin–Murdoch model
has become increasingly popular and is now widely applied to
investigate the mechanical behavior of nanoscale inhomogene-
ities. For instance, the size-dependent problem of the mechanical
behavior of nanoscale inhomogeneities, Eshelby’s tensor for
embedded nanoinclusions, and the effective elastic constants of
nanoscale inhomogeneities have been studied using the Gurtin–
Murdoch model [10,14,15].

A couple of other recent studies represent the increasing
interests in this direction: He and Li [16] considered the effect of
the surface stress on the stress concentration near a spherical void
in an elastic medium using the Papkovitch–Neuber displacement
potential and Gurtin–Murdoch model. Also using the Gurtin–
Murdoch model, Lim et al. [17] studied the influence of the
interfacial stress on the elastic field in an infinite solid containing
a nanoscale spherical inclusion with an axisymmetric eigenstrain.
Tian and Rajapakse [18,19] presented analytical solutions for a
single circular/elliptical nanoinhomogeneity embedded in an infi-
nite isotropic elastic matrix. The corresponding finite-element
method was also introduced to analyze the effect of surface and
interfacial energy on the field quantities [20,21]. By incorporating
surface/interface tension, Sharma and Wheeler [22] investigated
the size-dependent elastic field of an ellipsoidal nanoinclusion
under a pure dilatation eigenstrain. Ou et al. [23] discussed the
effect of the residual surface tension on the stress concentration
around a nanoscale spheroidal cavity under arbitrary uniform
remote loadings. Luo and Wang [24] studied the anti-plane elastic
field of an infinite matrix containing a nanoscale elliptical
inhomogeneity.

In most of the works cited above, the simplified Gurtin–
Murdoch stress–strain constitutive relation was used where the
whole or part of the displacement–gradient term was neglected
[25,26]. Using the complex variable method, Mogilevskaya et al.
[27] recently studied the multiple interactions between the
circular nanoinhomogeneities and nanopores using the ‘‘com-
plete’’ Gurtin–Murdoch model. In their formulation, the precise
component form of the three-dimensional Gurtin–Murdoch
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equation for the interface between the matrix and an arbitrarily
shaped inhomogeneity was employed.

This paper studies the mechanical behavior of nanoscale
inhomogeneities with surface and interface effect. The boundary
element method (BEM) is introduced to handle the problem, and
the precise component form of the Gurtin–Murdoch constitutive
relation along the surfaces/interfaces is employed. The proposed
numerical algorithm requires only discretization on the interfaces
between the nanoinhomogeneities and matrix, and can be further
applied easily to the inhomogeneities of arbitrary shape. The
paper is organized as follows. In Section 2, the problem is
described with the basic integral equations being introduced. In
Section 3, the boundary element formulations for the matrix and
nanoinhomogeneities are presented along with their continuity
conditions on the interfaces. In Section 4, the effect of the surface/
interface parameters, the shape and size of the nanoinhomogene-
ities on the stress field is investigated in details. A summary of the
present work is given in Section 5.

2. Problem description and basic integral equations

2.1. Problem description

We consider the plane–strain problem where an elastic iso-
tropic infinite matrix is subjected to a remote stress field. The
matrix contains a total of K nanocavities and/or nanoinhomo-
geneities of arbitrary shape. The k-th surface of the nanocavity or
the k-th interface between the nanoinhomogeneity and matrix is
denoted by Gk (k¼1 to K), which will be also called boundary Gk

hereafter. All the surfaces and/or interfaces (or boundaries) follow
the Gurtin–Murdoch constitutive relation.

2.2. Boundary integral equations of the matrix

The displacement integral equations at point P within the
matrix can be given as follows [28] (for a¼1,2):

uaðPÞ ¼ u0
aðPÞþ

XK

k ¼ 1

Z
Gk

UabðP,qkÞt
k
bðqkÞdGðqkÞ

�
XK

k ¼ 1

Z
Gk

TabðP,qkÞu
k
bðqkÞdGðqkÞ ð1Þ

where qk is the field point on the k-th boundary Gk. uk
b and tk

b are,
respectively, the displacements and tractions on Gk. u0

a (a¼1, 2)
are the displacements at point P related to the remote stress field
in an infinite homogeneous matrix. Uab and Tab are the funda-
mental displacement and traction solutions in the corresponding
elastic isotropic infinite plane [29].

We now let the internal point P approach point pk on the k-th
boundary Gk. Then Eq. (1) becomes

ck
abubðpkÞ ¼ u0

aðpkÞþ
XK

i ¼ 1

Z
Gi

Uabðpk,qiÞtbðqiÞdG

�
XK

i ¼ 1, ak

Z
Gi

Tabðpk,qiÞubðqiÞdG�
Z c

Gk

Tabðpk,qkÞubðqkÞdG

ð2Þ

where ck
ab depends on the geometry at the boundary point pk. The

symbol
R

c denotes the Cauchy principal integral.

2.3. Boundary integral equations of the inhomogeneity

If the k-th boundary is an interface between the matrix and
nanoinhomogeneity, we will then also need the boundary integral
equation on the interface from the inhomogeneity side. Therefore

on the k-th interface from the inhomogeneity side, the corre-
sponding displacement boundary integral equation can be given
as [29]

ck
abðpÞu

k
bðpÞ ¼

Z
Gk

Uk
abðp,qÞtk

bðqÞdGðqÞ�
Z c

Gk

Tk
abðp,qÞuk

bðqÞdGðqÞ ð3Þ

The notations used in Eq. (3) bear the same physical meanings
as those in Eq. (2). The only difference is that in Eq. (3), a
superscript k is added to the fundamental displacement and
traction solutions to emphasize that these solutions are asso-
ciated with the k-th inhomogeneity.

2.4. Continuity conditions along the interface between the matrix

and inhomogeneity

Along the k-th surface/interface, the Gurtin–Murdoch model
will be followed [30]. These conditions are discussed below.

(a) Continuity of displacements (on the k-th interface in terms of
the Cartesian (x,y)-components)

uinh
kx ¼ umat

kx ¼ ukx, uinh
ky ¼ umat

ky ¼ uky ð4Þ

where the superscripts inh and mat indicate the elastic fields on
the interface from the inhomogeneity and matrix side, respec-
tively. Eq. (4) is required only if one deals with an interface.

(b) Interface equilibrium conditions (on the k-th interface in
terms of the normal and tangential (n,l)-components of the
interface) [30]

sinh
kl �s

mat
kl ¼

@ssur
k

@s
þ
sk0osur

k

rk

sinh
kn �s

mat
kn ¼�

ssur
k

rk

þsk0

@osur
k

@s
ð5Þ

where s is the arc length of the undeformed interface. It should
be pointed out that in the above equations, if the k-th boundary
is the surface of a nanocavity, then sinh

kl and sinh
kn equal zero. Also

in Eq. (5), sk0 and rk are, respectively, the residual interface
tension on, and the curvature radius of, the k-th interface. The
subscripts l and n indicate the unit tangential direction (counter-
clockwise) and unit outward normal direction along the nanoin-
homogeneity boundary Gk. ssur

k is the surface/interface stress,
which will be further discussed below, and

osur
k ¼�

ukl

rk

þ
@ukn

@s
ð6Þ

where ukl, ukn are the tangential and normal components of the
displacement in the local (n,l)-coordinate system.

(c) Constitutive equation for the surface/interface
The surface/interface stress ssur

k on the k-th boundary can be
related to the surface/interface strain esur

k as

ssur
k ¼ sk0þð2mk0þlk0Þesur

k ð7Þ

where mk0, lk0 are the Lame constants on the k-th surface/
interface, and the strain esur

k can be further related to the local
(n,l)-displacement components via the following form:

esur
k ¼

ukn

rk

þ
@ukl

@s
ð8Þ

3. Boundary element formulations

3.1. Boundary element formulation of the matrix

Three nodal quadratic elements are adopted to discretize
Eq. (2) on the matrix side. The discretized version of Eq. (2) can
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be written as

hmat
1 hmat

2 � � � hmat
K

h i umat
1

umat
2

^

umat
K

8>>>><
>>>>:

9>>>>=
>>>>;

¼ gmat
1 gmat

2 � � � gmat
K

h i tmat
1

tmat
2

^

tmat
K

8>>>><
>>>>:

9>>>>=
>>>>;
þ

f 0
1

f 0
2

^

f 0
K

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð9aÞ

where uk and tk are the nodal displacement and traction matrices
on the k-th boundary (from the matrix side); hk and gk are the
influence matrices on the k-th boundary associated, respectively,
to the fundamental displacement and traction solutions U and T
(in the matrix); f 0

k is a known vector associated with the
homogeneous displacement field u0

k in Eq. (2).
Equation (9a) can be simply expressed in a condensed matrix

form as follows:

hmum ¼ gmtmþf 0
ð9bÞ

where

hm ¼ hmat
1 hmat

2 � � � hmat
K

h i
, gm ¼ gmat

1 gmat
2 � � � gmat

K

h i
;

um ¼ umat
1 umat

2 � � � umat
K

h iT
; tm ¼ tmat

1 tmat
2 � � � tmat

K

h iT

and f 0
¼ f 0

1 f 0
2 � � � f 0

K

h iT
:

3.2. Boundary element formulation of the inhomogeneity

Similarly, the discretized system corresponding to Eq. (3) can
be written as (on the k-th interface of the inhomogeneity and
matrix, and from the inhomogeneity side)

hinh
k uinh

k ¼ ginh
k tinh

k ð10aÞ

where the matrices hk, gk, uk, and tk have the same meanings as in
Eq. (9a) but are associated with the k-th inhomogeneity.

The condensed matrix form of Eq. (10a) is

hcuc ¼ gctc ð10bÞ

where

hc ¼

hinh
1 0 � � � 0

0 hinh
2 � � � 0

^ ^ & ^

0 0 � � � hinh
K

2
666664

3
777775; gc ¼

ginh
1 0 � � � 0

0 ginh
2 � � � 0

^ ^ & ^

0 0 � � � ginh
K

2
66664

3
77775,

uc ¼ uinh
1 uinh

2 � � � uinh
K

h iT
and tc ¼ tinh

1 tinh
2 � � � tinh

K

h iT

3.3. Discretized interface conditions

On the k-th boundary (or on the inhomogeneity–matrix inter-
face) Gk, the following conditions hold. For the displacements,
we have

uinh
k ¼ umat

k ¼ uk ðk¼ 1,2, . . . ,KÞ ð11Þ

For the tractions, we have, for points on the k-th nanoinho-
mogeneity boundary,

tinh
kx ¼ ninh

kx s
inh
kn �ninh

ky s
inh
kl

tinh
ky ¼ ninh

ky s
inh
kn þninh

kx s
inh
kl ð12aÞ

and for points on the matrix boundary

tmat
kx ¼ nmat

kx smat
kn �nmat

ky smat
kl

tmat
ky ¼ nmat

ky sinh
kn þnmat

kx smat
kl ð12bÞ

where nmat
kx ¼�ninh

kx , nmat
ky ¼�ninh

ky .

From Eq. (12), we have the following relationship:

tinh
kx þtmat

kx ¼ ninh
kx ðs

inh
kn �s

mat
kn Þ�ninh

ky ðs
inh
kl �s

mat
kl Þ

tinh
ky þtmat

ky ¼ ninh
ky ðs

inh
kn �s

mat
kn Þþninh

kx ðs
inh
kl �s

mat
kl Þ ð13Þ

where sinh
kl �s

mat
kl and sinh

kn �s
mat
kn can be evaluated using Eq. (5).

Applying Eq. (13) to nodal point qkmAGk (km¼ 1,2, � � � ,KM) on the
k-th interface Gk, we have

tinh
k ðqkmÞþtmat

k ðqkmÞ ¼

ninh
kx ðqkmÞ �ninh

ky ðqkmÞ

ninh
ky ðqkmÞ ninh

kx ðqkmÞ

2
4

3
5 sinh

kn ðqkmÞ�smat
kn ðqkmÞ

sinh
kl ðqkmÞ�smat

kl ðqkmÞ

( )

ð14Þ

where tI
k ¼ ½ t

I
kðq1Þ tI

kðq2Þ � � � tI
kðqkMÞ �

T (I denotes the inhomo-

geneity ‘‘inh’’ or the matrix ‘‘mat’’) are the traction vectors in
Eqs. (9) and (10).

From Eq. (14), together with Eqs. (4)–(8), we have

T inh
þTmat

¼ CUþF0 ð15Þ

where C is a reduced matrix from Eq. (14) and Eqs. (4)–(8); F0 is a
given vector from the residual stress tension over the interface
between the nanoinhomogeneity and matrix.

Based on Eqs. (11) and (14), the final system of equations can
be obtained from Eqs. (9b) and (10b) as

AU ¼ F ð16Þ

where A¼ g-1
m hmþg-1

c hc�C, F ¼ F0þg�1
m f 0.

Therefore, once Eq. (16) is solved, all the interface displace-
ments can be found. Subsequently, all the interface tractions can

σ0

σ0

Matrix

Xa

b

y

Fig. 1. An infinite plane with a nanosize elliptical hole under a far-field stress.
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be calculated using Eqs. (9b) and (10b). The stress along the
circumferential direction of the interface between the nanoinho-
mogeneity and matrix can be evaluated using the constitutive and

strain-displacement relations. If needed, the stresses at any point
within the matrix or nanoinhomogeneity can be calculated using
the conventional stress integral equations.
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Fig. 2. (a) Stress concentration factor on the surface of the hole at y¼0 vs. hole size R [¼(aþb)/2] and for different interfacial moduli Ks. The elliptical ratio is fixed at

a/b¼1.5 and the matrix is under far-field stress s1yy ¼ s0. (b) Oscillation of the stress concentration factor on the surface of the hole at y¼0 vs. hole size R [¼(aþb)/

2]r5 nm and for different interfacial moduli. The elliptical ratio is fixed at a/b¼1.5 and the matrix is under far-field stress s1yy ¼s0. (c) Variation of the stress component

sxx along x-axis for fixed R ¼6 nm (a/b¼1.5) and for different interfacial moduli Ks under far-field stress s1yy ¼ s0. (d) Variation of the stress component syy along x-axis for

fixed R¼6 nm (a/b¼1.5) and for different interfacial moduli Ks under far-field stress s1yy ¼ s0. (e) Variation of the stress components sxx and syy along x-axis for fixed

R¼6 nm (a/b¼1.5) with materials Al [1 0 0] and Al [1 1 1] under residual surface stress s0.
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4. Numerical examples

The formulations presented in the previous sections have been
programmed and the corresponding code has been validated with
existing solutions. For example, for an infinite plane with a
circular nanocavity or nanoinhomogeneity under a remote load-
ing, our BEM results are in good agreement with the analytical
solutions in Ref. [18]. Also, for both nanocavity and nanoinhomo-
geneity in an infinite plane under a remote loading, our BEM
results are consistent with those in Ref. [27]. Therefore, in what
follows, we will analyze a couple of new problems.

4.1. An infinite plane with an elliptical nanocavity

An infinite plane of aluminum with an elliptical hole under
the remote loading s1yy ¼ s0 is shown in Fig. 1. The bulk material
properties of the aluminum are lM¼58.17 GPa and mM¼26.13 GPa
[31]. The surface elastic constants of the nanocavity are lS

¼3.4939 N/
m, mS

¼�5.4251 N/m, s0
¼0.5689 N/m for Al [1 0 0] surface and

lS
¼6.8511 N/m, mS

¼�0.3760 N/m, and s0
¼0.9108 N/m for Al

[1 1 1] surface [7]. We use 32 quadratic elements to discretize the
elliptical hole boundary. The surface modulus Ks (¼2mS

þlS) and the
nominal radius R (¼(aþb)/2) are used to analyze the surface stress
effect. Fig. 2a–d shows the variation of different stress components
where the residual surface stress s0 is assumed to be zero. While
Fig. 2a demonstrates that a positive and negative surface modulus Ks

would affect the hoop stress in opposite ways [19], Fig. 2b shows that
for a negative surface modulus (Ks¼�7.92 N/m in this example), the
circumferential stress on the hole (say at y¼0) may even oscillate
with varying nominal radius R. This oscillatory behavior was also
observed in Ref. [19]. For a/b¼1.5 (R¼6 nm), the stresses sxx and syy

along the x-axis for different Ks are showed, respectively, in Fig. 2c
and d, which are similar to the analytical solutions [19]. Fig. 2e shows
the distribution of the stresses sxx and syy along the x-axis for Al
[1 0 0] and Al [1 1 1] with consideration of the residual surface stress
s0, where a/b¼1.5 (R¼6 nm) and the symbols sxx and syy denote
stresses sxx and syy. It is observed from this figure that the induced
stress field in the Al [1 1 1] system is larger than that in the Al [1 0 0]
system.

4.2. An infinite plane with a nanocavity and a nanoinhomogeneity

An infinite plane containing both nanocavity and nanoinhomo-
geneity subjected to remote loadings is shown in Fig. 3. The geometry
parameters are given as R1¼5 nm, R2¼100 nm, and o1o2¼107 nm.
The elastic constants of the matrix are m¼34.7 GPa and n¼0.3. The

σ0yy

σ0yy

θ1 θ2
σ0xx σ0xx

inhomogeneityMatrix
cavity

y

01 02

R1

R2

x

Fig. 3. An infinite plane with a nanocavity and a nanoinhomogeneity under a far-

field stress.
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Fig. 4. (a) Variation of the hoop stress along the nanocavity boundary when a stiff

nanoinhomogeneity is nearby (m2/m¼2.0, s1xx ¼ s1yy ¼ 100MPa). (b) Variation of

the hoop stress along the nanocavity boundary when a soft nanoinhomogeneity is

nearby (m2/m¼0.5, s1xx ¼ s1yy ¼ 100MPa). (c) Variation of the hoop stress along

the interface (on the matrix side) of the matrix and stiff nano-inhomogeneity

(m2/m¼2.0, s1xx ¼ s1yy ¼ 100MPa). (d) Variation of the hoop stress along the inter-

face (on the matrix side) of the matrix and soft nanoinhomogeneity (m2/m¼0.5,

s1xx ¼ s1yy ¼ 100MPa).
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surface elastic constants and the residual surface tension of the
nanocavity are m10¼�6.2178 N/m, l10¼3.48912 N/m, and s10¼

0.72 N/m. Poisson’s ratio of the nanoinhomogeneity is taken to be
n2¼0.3, and the shear modulus m2 is 17.35 GPa for a soft inhomo-
geneity and 69.4 GPa for a stiff inhomogeneity. Three cases of
parameters are assumed along the interface of the nanoinhomo-
geneity and matrix. Case I: no surface effects (m20¼l20¼s20¼0);
Case II: surface elasticity only (m20¼m10, l20¼l10, s20¼0); Case III:
surface elasticity and surface tension (m20¼m10, l20¼l10, s20¼s10).
In the numerical calculation, we use 32 and 64 quadratic boundary
elements to discretize, respectively, the boundaries of the nanocav-
ity and nanoinhomogeneity. When the matrix is under a remote
loading in the x- or y-direction, our BEM results are in good
agreement with those in Ref. [27].

Fig. 4a and b shows the hoop stress variation along the nanocavity
boundary when a stiff and soft nanoinhomogeneities are, respec-
tively, nearby. The matrix is under a hydrostatic remote loading
s1xx ¼ s1yy ¼ 100MPa. The legends ‘‘Cases I, II, and III’’ in Fig. 4a and b
represent the results corresponding to the three Cases specified
above. Comparing Fig. 4a and b, it is observed that their variation
trends are opposite to each other (maximum (minimum) location in
Fig. 4a corresponds to minimum (maximum) location in Fig. 4b).

Fig. 4c and d depicts the variation of the hoop stress along the
interface (on the matrix side) of the matrix and nanoinhomo-
geneity with both stiff and soft moduli. The matrix is again under
a hydrostatic remote loading s1xx ¼ s1yy ¼ 100MPa. The hoop stress
under the hydrostatic loading for the three surface material Cases
is nearly identical. Furthermore, a large tensile stress (Fig. 4d) or
an oscillatory tensile stress (Fig. 4c) can be observed near the
cavity side (y2ffi1801). Along the whole interface, the influence of
the surface tension and surface elasticity on the stress is negli-
gible. The hoop stress variation on the stiff and soft inhomogene-
ity side is similar to Fig. 4d, with slightly different magnitude.

4.3. An infinite plane with a square and an equilateral triangle

nanoinhomogeneity

A square and an equilateral triangle nanoinhomogeneity made
of InAs are embedded in an infinite plane of GaAs subjected to a

σ0
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b
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y

Fig.5. An infinite plane with a square and an equilateral triangle inhomogeneity

under a far-field stress.

Fig.6. (a) Tangential stress distribution along the interface between the equilat-

eral triangle nanoinhomogeneity and matrix under far-field stress s1yy ¼ s0, for

three interfacial stiffness cases and on both the matrix and inhomogeneity sides,

with fixed L¼1 nm. (b) Tangential stress distribution along the interface between

the square nano-inhomogeneity and matrix under far-field stress s1yy ¼ s0, for

three interfacial stiffness cases and on both the matrix and inhomogeneity sides,

with fixed L¼1 nm. (c) Tangential stress distribution along the interface between

the equilateral triangle nano-inhomogeneity and matrix under far-field stress

s1yy ¼ s0, for three interfacial stiffness cases and on both the matrix and

inhomogeneity sides, with fixed L¼2 nm. (d) Tangential stress distribution along

the interface between the square nanoinhomogeneity and matrix under far-field

stresss1yy ¼s0, for three interfacial stiffness cases and on both the matrix and

inhomogeneity sides, with fixed L¼2 nm.
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remote loading s1yy ¼ s0 (Fig. 5). The bulk elastic constants are:
lI¼50.66 GPa, mI¼19.0 GPa for InAs, and lM¼64.43 GPa,
mM¼32.9 GPa for GaAs. The elastic constants along the interface
of the nanoinhomogeneity and matrix are taken to be
lS
¼6.8511 N/m, mS

¼�0.376 N/m (so that Ks¼6.10 N/m), and
lS
¼3.4939 N/m, mS

¼�5.4251 N/m (so that Ks¼�7.92 N/m) [7].
The side length of the square and triangle is assumed to be the
same and is denoted by L. The distance between the two
nanoinhomogeneities is taken to be L/2 (Fig. 5). Three interfacial
stiffness cases are considered, namely, Ks¼0 (corresponding to
the traditional no-interface stress case), Ks¼6.10 N/m (positive),
and Ks¼�7.92 N/m (negative).

We discretize each straight line of the interface between the
nanoinhomogeneities and matrix by 6 quadratic elements. The
tangential stress along the interface and on both sides of the
inhomogeneity and matrix is calculated, and the result is shown
in Fig. 6a–d. Fig. 6a shows the tangential stress along the
equilateral triangle interface for fixed L¼1 nm. In this figure,
the labels 01, 12, and 23 on the x-axis denote the triangle side ab,
bc, and ca, respectively. Similarly, Fig. 6b shows the tangential
stress distribution along the square interface for fixed L¼1 nm,
where 01, 12, 23, and 34 on the x-axis denote the interfaces AB,
BC, CD, and DA, respectively. The effect of the interfacial stiffness
(Ks¼0, 6.10, and Ks¼�7.92 N/m) on the stress distribution is
clearly demonstrated in these figures. Particularly, it is observed,
similar to the previous example, that a negative interfacial
stiffness could induce a stress oscillation. For L¼2 nm, Figs. 6c
and 6d show, respectively, the tangential stress distribution along
the triangle and square sides. Along the triangle, the labels 02, 24,
and 46 on the x-axis denote the interfaces ab, bc, and ca,
respectively, and along the square, the labels 02, 24, 46, and 68
on the x-axis denote the interfaces AB, BC, CD, and DA, respec-
tively. Compared to the small nanoinhomogeneity case in Fig. 6a
and b (where L¼1 nm), we observe that with the increasing size
in inhomogeneities, the interface effect decreases.

5. Conclusions

In this paper, the BEM formulation is extended to include the
Gurtin–Murdoch constitutive relation along the interface to study
the effect of the surface/interface stresses. Numerical results are
compared to existing ones, demonstrating the efficiency and
accuracy of the proposed BEM formulation where a nanoinhomo-
geneity of arbitrary shape can be easily studied. Various nano-
cavity and nanoinhomogeneity problems are further investigated
numerically, including also the interactions between the cavity
and inhomogeneity and between a triangle and a square inho-
mogeneity. These results showed clearly that when the cavity
and/or inhomogeneity size is small (say, a couple of nanometers),
the surface/interface properties should be incorporated in the
study of the elastic behavior of nanoinhomogeneities. Our BEM
program can be further extended to the corresponding three-
dimensional case for analyzing the effect of the surface and/or
interfacial stress in nanoinhomogeneities with complicated
shapes.
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