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a b s t r a c t

Based on the von Karman plate theory of large deflection, we have derived a non-linear partial

differential equation for the vibration of a thin orthotropic plate under the combined action of a

transverse magnetic field and a transverse harmonic mechanical load. The influence of the magnetic

field is due to the magnetic Lorentz force induced by the eddy current. By employing the Bubnov–

Galerkin method, the non-linear partial differential equation is transformed into a third-order non-

linear ordinary differential equation. The amplitude-frequency equations are further derived by means

of the multiple-scale method. As numerical examples for an orthotropic plate made of silver, the

influence of the magnetic field, orthotropic material property, plate thickness, and the mechanical load

on the principal resonance behavior is investigated. The higher-order effect and stability of the solution

are also discussed.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetoelastic (ME) structures have been widely used in
various high technology apparatus and equipments. Due to the
inherent non-linear characteristics and the multi-physics cou-
pling effect in these structures, certain complicated static and
dynamic phenomena have been observed [1,2]. The ME structure
often experiences large deformation and vibration when a strong
magnetic field and/or mechanical excitation are applied during
the process of manufacturing or when the structure is in service.
Since the ME plate plays a significant role in these structures, it is
crucial to understand its non-linear vibration characteristics.

For a thin plate under large deformation, Nayfeh and Mook [3],
Sathyamoorthy [4], and Yang and Sethna [5] studied the non-
linear dynamic behavior of isotropic plates under various para-
metric loadings. Nayfeh and Pai [6] investigated the planar and
non-planar responses of a non-extensional cantilever beam, and
found that the hardening effect and non-planar responses for all
modes were due to the non-linear geometric terms involved.
Furthermore, vibration of orthotropic plates resting on elastic

foundations with classical boundary conditions and elastically
restrained edges was thoroughly analyzed [7,8]. Moorthy et al. [9]
investigated the parametric instability of laminated composite
plates with transverse shear deformation subjected to uniaxial
harmonic loading using the finite element method. Udar and
Datta [10] studied the resonance characteristics of simply sup-
ported laminated square plates subjected to non-uniform and
concentrated edge loading. Shih and Bloter [11] analyzed the non-
linear vibration of laminated thin rectangular plates on an elastic
foundation and discussed the influence of the excitation ampli-
tude, material lamination, and boundary conditions on its non-
linear frequency. Hsu [12] studied the vibration response of
orthotropic plates on non-linear elastic foundations using the
differential quadrature method.

With regard to the non-linear analysis of magnetoelastic
structures, Moon and Pao [13], and Pao and Yeh [14] studied
the magnetoelastic vibration of a ferromagnetic cantilever beam
under a magnetic field. Recently, Hasanyan et al. [15] proposed a
mathematical model for the non-linear vibration of a conductive
plate under an inclined magnetic field. Librescu et al. [16] studied
the geometric non-linearity of elastic isotropic plates subjected to
an external magnetic field. Belubekyan et al. [17] presented the
magnetoelastic vibration of a flat plate immersed in an external
magnetic field and found that the localized bending vibration can
be eliminated by means of an applied magnetic field. Hu et al. [18]
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studied the non-linear magnetoelastic vibration of a current-
conducting thin plate under a magnetic field. Gao and Qi [19]
obtained the magneto-elastic-plastic response of a ferromagnetic
beam-plate under magnetic pulses. Pratiher and Dwivedy [20]
studied the non-linear dynamics of a soft magneto-elastic manip-
ulator with large transverse deflection under a time varying
magnetic field and a harmonic (mechanical) excitation.

Until now, there are very few published literature on the non-
linear vibration behaviors of a magnetoelastic plate, especially with
consideration of both its orthotropic characteristics and the mag-
netic loading. In this paper, therefore, we study the non-linear
principal resonances of an orthotropic magnetoelastic plate under a
transverse magnetic field and a mechanical force using the multi-
scale method based on the perturbation approach [21]. First, based
on the von Karman’s orthotropic plate theory of large deflection and
the introduced magnetic Lorentz force, we derive the mathematical
model. Then, the amplitude-frequency response equation in the
steady state is obtained by means of the multiple scale method. The
principle resonance of the plate made of silver and an isotropic
material is analyzed. Numerical results show clearly the influence of
the magnetic field, material property, plate thickness, and external
force amplitudes on the principle resonance. The higher-order effect
and stability of the solution are also discussed.

2. Plate model and governing equations

2.1. Description of a general plate model with ME effect

We consider a simply supported, rectangular, and orthotropic
magnetoelastic thin plate, as shown in Fig. 1. The length, width,
and thickness of the plate are Lx, Ly, and h, respectively. The
coordinate plane Oxy is attached to the middle plane of the
plate with its z-axis normal to it. The plate is under a constant
magnetic field B(0, 0, Bz) and a time-harmonic mechanical load
q(t) in z-direction.

The constitutive relations for an orthotropic plate are

sx ¼ ExexþExyey, sy ¼ ExyexþEyey, txy ¼ Ggxy ð1Þ

where Ex, Ey, Exy, and G are the material coefficients.
We derive the governing equation by following the thin-plate

theory [22]. However, in order to include the in-plane force
effect, the non-linear terms in the equations of motion involving
products of the stress and plate slope are retained, and all other
non-linear terms are neglected. Based on the von Karman’s plate
theory of large deflection [23], the Lagrangian strains of the
plate are

ex ¼
@u

@x
þ

1

2

@w

@x

� �2

, ey ¼
@v

@y
þ

1

2

@w

@y

� �2

, gxy ¼
@v

@x
þ
@u

@y
þ
@w

@x

@w

@y

ð2Þ

where u, v, and w denote the displacement in the x-, y-, and
z-directions, respectively.

Taking the derivative of Eq. (2), we first obtain the strain
compatibility equation as follows:

@2ex

@y2
þ
@2ey

@x2
�
@2gxy

@x@y
¼

@2w

@x@y

 !2

�
@2w

@x2

@2w

@y2
ð3Þ

We further introduce the Airy stress function j, which
satisfies

sx ¼
@2j
@y2

, sy ¼
@2j
@x2

, txy ¼�
@2j
@x@y

Along with Eq. (1), Eq. (3) can be recast as

Ex

ExEy�E2
xy

@4j
@x4
þ

1

G
�

2Exy

ExEy�E2
xy

 !
@4j
@x2@y2

þ
Ey

ExEy�E2
xy

@4j
@y4
¼�

1

2
Lðw,wÞ

ð4Þ

where the non-linear operator L on the right-hand side is
defined as

Lða,bÞ ¼ a,xxb,yyþa,yyb,xx�2a,xyb,xy ð5Þ

The displacement vector of the thin plate u(x,y,z,t) is assumed
as [22]

u¼ �z
@w

@x

� �
iþ �z

@w

@y

� �
jþwðx,y,tÞk ð6Þ

Due to the magneto-electric property of the ME plate, an eddy
current will be induced by the relative motion between the plate
and the magnetic field. Based on the Ohm’s law [24], the induced
current density vector of the plate is

J ¼ s @u

@t
� B

� �
ð7Þ

where s and B are, respectively, the electric conductivity and
magnetic induction vector.

Therefore, the Lorenz force vector per unit area is

f ¼ s @u

@t
� Bzk

� �
� Bzk¼ s zBz

2 @
2w

@x@t
iþzB2

z

@2w

@y@t
j

 !
Þ � fxiþ fyj ð8Þ

and the corresponding electromagnetic moments are

mx ¼

Z ðh=2Þ

�ðh=2Þ
fxzdz¼

sh3B2
z

12

@2w

@x@t
, my ¼

Z h=2

�ðh=2Þ
fyzdz¼

sh3B2
z

12

@2w

@y@t

ð9Þ

The electromagnetic moments will influence the motion of the
plate in the z-direction with their equivalent magnetic force
being [25]

Fe
z ðx,y,zÞ ¼

@mx

@x
þ
@my

@y
¼
sh3Bz

2

12

@3w

@x2@t
þ
sh3Bz

2

12

@3w

@y2@t
ð10Þ

We assume also that the external excitation force as
q¼q0cosot in which q0 is the amplitude and o is the angular
frequency. Then, by considering the inertia force and the equiva-
lent magnetic force, the governing equation of the deflection for
the orthotropic ME plate becomes

Dx
@4w

@x4
þ2ðDxyþ2DGÞ

@4w

@x2@y2
þDy

@4w

@y4
¼ hLðw,jÞ�rh €wþFe

z þq0cosot

ð11Þ

where Dx ¼ Exh3=12, Dy ¼ Eyh3=12, Dxy ¼ Exyh3=12, and DG ¼

Gh3=12 are the stiffness coefficients of the plate, and r is the
density of the plate per unit area.

Lx

x

zy

Ly

o

q

Bz

Fig. 1. Diagram of a rectangular plate under transverse magnetic field B and

mechanical load q.
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2.2. Derivation of the governing equation for a simply supported

plate

For a simply supported ME plate, its lateral boundary
conditions are

x¼ 0 and x¼ Lx : w¼ 0,
@2w

@x2
¼ 0

y¼ 0 and y¼ Ly : w¼ 0,
@2w

@y2
¼ 0 ð12Þ

By the method of variables separation, the transverse displa-
cement w can be assumed as

wðx,y,tÞ ¼ T tð Þ sin
mpx

Lx

� �
sin

npy

Ly

� �
ð13Þ

where m and n are both positive integers denoting different
modes of the plate, and T(t) is the amplitude of w.

Substituting Eq. (13) into Eq. (4), we find the Airy function of
the plate in the following form:

j¼ 1

32
T2ðtÞ

ExEy�E2
xy

Ex

nLx

mLy
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þ
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� �2
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" #

ð14Þ

Furthermore, if we substitute Eqs. (10), (13), and (14) into the
governing equation of the plate, i.e. Eq. (11), we obtain

rh €T ðtÞþk1
_T ðtÞþk2TðtÞþk3T3ðtÞ

h i
sin

mpx

Lx
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npy

Ly
¼ q0 cosot

ð15Þ

where

k1 ¼
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z
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After applying the Bubnov–Galerkin method to Eq. (15) and
integrating the result over the whole plate area, we obtain

rh €T ðtÞþk1
_T ðtÞþk2TðtÞþk4T3ðtÞ ¼

16q0

p2
cosot ð16Þ

where

k4 ¼
3

4h2
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Fig. 2. Frequency response of the principal resonance of the orthotropic plate under different magnetic induction Bz for three modes (h¼1.0 mm, q0¼0.01 MPa, e¼0.01):

(m,n)¼(1,1) in (a), (m,n)¼(2,1) in (b), and (m,n)¼(1,2) in (c).
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We now introduce the following dimensionless parameters/
variables: t¼o0t, o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=rh

p
, o¼o=o0, f¼T/h, _f ¼ df=dt, and

€f ¼ d2f=dt2.
with o0 being the natural frequency of the system. Then the

non-dimensional governing equation of the plate becomes the
Duffing-type equation with hard-spring characteristics:

€f ðtÞþd_f ðtÞþ f ðtÞþa3f 3ðtÞ ¼ K cosot ð17Þ

with

d¼
sh2B2

z

12ro0

mp
Lx

� �2

þ
np
Ly

� �2
" #

ð18aÞ

a3 ¼
3

4rho2
0

mp
Lx

� �4 DxDy�D2
xy

Dy
þ

np
Ly

� �4 DxDy�D2
xy

Dx

" #
ð18bÞ

K ¼
16q0

rp2o0
2h2

ð18cÞ

where d is the effective damping coefficient, a3 is the coefficient
of the cubic non-linearity, and K is the amplitude of the equiva-
lent excitation.

3. Principal resonance of the ME plate

3.1. Amplitude-frequency response of the ME plate

To solve Eq. (17), we employ the method of multiple
scales [3,26]. For the principle resonance analysis, the excitation
frequency is close to the linear natural frequency of the system,
i.e. oEo0. We assume that if K¼O(e) where e51, then f¼O(1).
We further assume that both the damping and non-linearity
terms to be in the order of O(e). Then, the magnitude ordering
can be derived from Eq. (17) as in the following form:

€f þ f ¼�ea3f 3�ed_f þeK cosot ð19Þ

The first asymptotic solution of this equation can be assumed
as

f ðt,eÞ ¼ f0ðT0,T1Þþef1ðT0,T1ÞþOðe2Þ ð20Þ

where T0¼t and T1¼et are the fast and slow time-scales, respec-
tively; and f0 and f1 are unknown functions to be determined.
Since oEo0, we can assume

o¼ 1þey ð21Þ

where y is the detuning parameter and e again is a small
perturbation variable.

We now substitute Eqs. (20) and (21) into Eq. (19). Letting the
coefficients of the like powers of e to be zero, we find the

following equations for different orders. To order e0, we have

D2
0f0þ f0 ¼ 0 ð22aÞ

and to order e1, we have

D2
0f1þ f1 ¼�2D0D1f0þK cos oT0�dD0f0�a3f 3

0 ð22bÞ

where Dn ¼ @=@Tn (n¼0,1) denotes the partial differential
operator.

We assume the general solution of Eq. (22a) as

f0 ¼ AðT1Þe
iT0þAðT1Þe

�iT0 ð23Þ

Then, substituting this equation into Eq.(22b) gives

D2
0f1þ f1 ¼

1
2KeiyT1�i2A0�3a3A2A�idA
� �

eiT0�a3A3ei3T0þcc ð24Þ

where cc denotes the complex conjugate of the preceding terms.
In order to eliminate the secular terms in f1, we let

1
2KeiyT1�i2A0�3a3A2A�idA¼ 0 ð25Þ

Then the solution of Eq. (24) can be found as

f1 ¼
a3

8
A3ei3T0þcc ð26Þ

Assuming A¼ aeij=2, aðT1Þ,fðT1ÞAR, and substituting it into
Eq. (25), upon further separating its real and imaginary parts of
the result, we derive the following pair of modulation equations:

da
dT1
¼� d

2 aþ K
2 sin b

a db
dT1
¼ y a� 3a3

8 a3þ K
2 cos b

8<
: ð27Þ

where b¼ yT1�f. The amplitude-frequency response equation in
the steady state can be obtained by assuming da/dT1¼0 and
db/dT1¼0, with the result being

e2d2

4
þ ey�e3a3

8
a2

� �2
" #

a2 ¼
e2K2

4
ð28Þ

We point out that higher-order asymptotic solution of f can be
also found by following a similar procedure [27]. For instance, the
second-order asymptotic solution of f can be assumed as

f t,eð Þ ¼ f0ðT0,T1,T2Þþef1ðT0,T1,T2Þþe2f2ðT0,T1,T2ÞþO e3
� �

ð29Þ

where T0¼t, T1¼et, and T2¼e2t are independent time-scales, and
f0, f1 and f2 are the unknown functions to be determined.

After some tedious but straightforward derivations, the sec-
ond-order amplitude-frequency response equation in the steady
state can be obtained. Actually, by assuming da/dt¼0, db/dt¼0
(where d/dt¼D0+eD1+e2D2+O(e3)), we derive the following pair
of modulation equations:

1�
9

16
ea3a2�

ey
2

� �
K sin bþ

de
4

K cos b¼ da�
3

8
ea3da3 ð30aÞ

3

16
ea3a2þ

ey
2
�1

� �
K cos bþ

de
4

K sin b¼ 2ay�
3

4
a3a3þ

d2ae
4
þ

15

128
ea5a2

3

ð30bÞ

After eliminating the phase b, we obtain the following higher-
order (or second-order) expression:

It can be shown numerically that if e is relatively small (say,
er0.01), the solution based on the first-order approximation
Eq. (28) agrees well with the solution based on this second-order
expression. Thus, in the following sections, we will concentrate
only on the first-order solution since the second-order solution is
important only when e is relatively large.

K2 ¼
1

2
ad

512�576ea3a2þ123e2a2
3a4þ96e2a3a2yþ32e2d2

256�288ea3a2�256eyþ81e2a2
3a4þ144e2a3a2yþ64e2y2

þ16e2d2

 !2

þ
1

8
a

�1104ea2
3a4þ1536ea3a2yþ1536a3a2þ135a3

3a6e2þ120e2a2
3a4yþ96e2a3a2d2

�4096yþ256ye2da2þ2048ed2

256�288ea3a2�256eyþ81e2a2
3a4þ144e2a3a2yþ64e2y2

þ16e2d2

0
BBBB@

1
CCCCA

2

ð31Þ
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3.2. Stability of the first-order solution

We first discuss the stability of the stationary solution. Let us
assume that

a¼ a0þa1

b¼ b0þb1

(
ð32Þ

where a0 and b0 are the solutions of Eq. (27), and a1 and b1 are
two small quantities. Substituting Eq. (32) into Eq. (27) and
keeping only the first-order terms of a1 and b1, we find

da1

dT1
¼� d

2 a1þ
K
2 b1 cos b0

db1

dT1
¼ y

a0
�

9a3
8 a0

� �
a1þ �

K
2a0

sin b0

� �
b1

8><
>: ð33Þ

The stability of the stationary solution is determined by the
Jacobian eigenvalues of the right-hand side of Eq. (33). Thus the
Jacobian of the modulation Eq. (27) becomes

� d
2�l � ya0�

3a3
8 a3

0

� �
y
a0
�

9a3
8 a0 � d

2�l

						
						¼ 0 ð34Þ

This gives

l2
þdlþ y�

3a3

8
a2

0

� �
y�

9a3

8
a2

0

� �
þ
d2

4
¼ 0 ð35Þ

Therefore, if

y�
3a3

8
a2

0

� �
y�

9a3

8
a2

0

� �
þ
d2

4
o0 ð36Þ

then the stationary solution is unstable; otherwise the solution is
stable [26].

The above analyses are for the orthotropic plate case. For the
corresponding isotropic plate, we set Ex ¼ Ey ¼ E=ð1�n2Þ,
Exy ¼ nE=ð1�n2Þ, and G¼ 0:5E=ð1þnÞ. Therefore, the corresponding
coefficients in Eq. (17) are reduced to

d¼
sh2Bz

2

12ro0

mp
Lx

� �2

þ
np
Ly

� �2
" #

ð37aÞ

a3 ¼
3DMð1�n2Þ

4rho0
2

mp
Lx

� �4

þ
np
Ly

� �4
" #

ð37bÞ

K ¼
16q0

rp2o0
2h2

ð37cÞ

where

o0
2 ¼

DM

rh

mp
Lx

� �2

þ
np
Ly

� �2
" #2

, DM ¼
Eh3

12ð1�n2Þ

and n is the Poisson’s ratio.
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Fig. 3. Comparison of the frequency responses of the principal resonance of orthotropic and isotropic plates for three modes (h¼1.0 mm, Bz¼10 T, q0¼0.01 MPa, e¼0.01):

(m,n)¼(1,1) in (a), (m,n)¼(2,1) in (b), and (m,n)¼(1,2) in (c).
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4. Numerical results

We first point out that when there is no magnetic induction, our
solution reduces exactly to that of the corresponding purely elastic
plate [26], which verifies the formulations derived in this paper.
Next, the derived solutions are applied to a rectangular plate made
of orthotropic (silver) or isotropic materials. The plate has the side
lengths of Lx¼0.1 m, Ly¼0.05 m, density r¼10.5�103 kg/m3, and
electric conductivity s¼63.0�106(O m)�1. The elastic moduli for
silver are: Ex¼12.4�1010 Pa, Ey¼12.4�1010 Pa, Exy¼9.34�
1010 Pa, and G¼4.61�1010 Pa. Under the isotropic assumption,
the effective elastic constants of the isotropic plate are: Young’s
modulus E¼11.58�1010 Pa and Poisson’s ratio n¼0.26. Also in the
numerical simulation, the small perturbation parameter is set to be
e¼0.01 unless specified otherwise. The numerical results of the
frequency responses of the principal resonance of the ME plate are
shown in Figs. 2–6. In these figures, the dashed lines correspond to
the unstable parts of the solution.

The influence of the magnetic induction Bz on the frequency
response of the resonances of the orthotropic plate is shown
in Fig. 2. Three different vibration modes ((m,n)¼(1,1);
(m,n)¼(2,1); (m,n)¼(1,2)) are considered. Other fixed parameters
are h¼1.0 mm and q0¼0.01 MPa. The typical non-linear charac-
teristics of the Duffing system with bending hardening phenom-
ena, including also multi-values, jump, delay, etc., are observed in
the fundamental mode ((m,n)¼(1,1)), as shown in Fig. 2a. With

increase in magnetic field, the non-linear hardening is reduced
(Fig. 2a). However, no obvious bending hardening effect is
observed in the higher modes ((m,n)¼(2,1) and (m,n)¼(1,2)), as
shown in Fig. 2b and c. On the other hand, the resonance
amplitude decreases with increase in magnetic induction
intensity for the three modes. Actually, according to Eq. (18a),
the effective damping ratio increases quadratically with the
magnetic induction Bz. Therefore, the resonant amplitudes
decrease significantly with increase in magnetic field. However,
the width of the resonance region is not influenced. It is inter-
esting to point out (Fig. 2) that instability of the solution appears
only in the fundamental mode ((m,n)¼(1,1)) and only when
the magnetic induction Bz is relatively small (Bz¼10 T in the
example).

In Fig. 3, we compare the frequency responses of the resonance
of the orthotropic plate for the three modes ((m,n)¼(1,1), (2,1),
and (1,2)) to those of the corresponding isotropic plate. The fixed
parameters are: h¼1.0 mm, Bz¼10 T, and q0¼0.01 MPa. It is
observed clearly from Fig. 3a that, for the fundamental mode
(1,1), the non-linear hardening effect of the principal resonance
for the isotropic plate is much stronger than that of the corre-
sponding orthotropic silver plate where the unstable parts of the
solution are also shown by dashed lines. However, material
anisotropy has only very weak effect on the non-linear hardening
in the higher modes (Fig. 3b and c). It is found that, for the
isotropic plate case, the resonance amplitude increases slightly
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and its width broadens as compared to the corresponding
orthotropic plate case.

The effect of the plate thickness h on the frequency-amplitude
response of the orthotropic plate for the three modes ((1,1), (2,1),
and (1,2)) is demonstrated in Fig. 4. The fixed parameters are
Bz¼8 T and q0¼0.02 MPa. It is obvious from Fig. 4 that both the
resonant amplitude and the non-linear bending hardening
decrease with increase in plate thickness. It is also found that
the widths of the resonant region become narrow in these modes
with increase in plate thickness. It should be further noted that,
with increase in plate thickness, the size of the unstable parts of
the solutions, which appear even in the higher modes, decreases.

Fig. 5 depicts the effect of the external mechanical load q0 on the
principal resonant response of the ME plate for the three modes
((1,1), (2,1) and (1,2)). The fixed parameters are h¼1.0 mm and
Bz¼6 T. It is clear that with decreasing mechanical load, the height
of the resonance peak, and consequently the non-linear bend of the
peak, decreases. This phenomenon is consistent with Eq. (17) where
K in Eq. (18c) is involved. Also, the width of the resonant region
shrinks when q0 is reduced. The amplitude a in Fig. 5a is the largest
among the three modes whilst the amplitude a in Fig. 5c is the
smallest. The effect of the mechanical loading on the size of the
unstable part of the solution, which appears in the higher modes
and in the fundamental mode, can be also clearly observed.

In the numerical examples presented above, we applied the
first-order solution (28) with the perturbation parameter being
fixed at e¼0.01. Actually, the second-order solution (31) was also

applied in the study of the principal resonance response. We
found that when the perturbation parameter is small, say eo0.01,
the solutions based on the first- and second-orders are
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undistinguishable. Even when e is increased to 0.2, the difference
between the first- and second-order solutions is only very slight.
This is demonstrated in Fig. 6 for the principal resonance
responses of the fundamental mode of the orthotropic plate
under different magnetic induction Bz based on the first- and
second-order solutions with e¼0.2. The other fixed parameters in
this example are h¼1.0 mm and q0¼0.01 MPa.

5. Conclusions

Non-linear principal resonances of an orthotropic ME thin
plate with large deflection are investigated in this paper. The
governing equation of the Duffing type and its corresponding
asymptotic solution based on the multiple-scale method are
derived. For a plate made of orthotropic silver, the influence of
the applied magnetic field, plate modes, thickness, and external
force is demonstrated. It is found that the amplitude of the
principal resonance can be greatly affected by the magnetic-
field-induced damping force. Furthermore, by carrying out a
comparison study between the isotropic and the orthotropic
plates, we demonstrated that it is possible to tune the principal
resonance via material anisotropy of the ME plate. Stability of the
solution and different orders of approximation are also discussed.
These significant and interesting features will be useful in the
analysis and design of magnetoelastic-related structures.
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