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Rayleigh’s formalism is generalized for the evaluation of the effective material properties in

multicoated circular fibrous multiferroic composites. The derived solution is applied to the

special three-phase composite in which coated fibers are embedded in a matrix. For composites

made of piezoelectric (BaTiO3) and piezomagnetic (CoFe2O4 or Terfenol-D) phases, we find

that the magnetoelectric effect in the composite made of CoFe2O4 coated BaTiO3 in matrix

Terfenol-D is five times larger than that in the composite made of BaTiO3 coated Terfenol-D in

matrix CoFe2O4. Furthermore, in each case, with appropriate coating to the circular fiber, the

magnetoelectric effect in the coated composites can be enhanced by more than one order of

magnitude as compared to the corresponding noncoating composite.VC 2011 American Institute of
Physics. [doi:10.1063/1.3583580]

I. INTRODUCTION

This work is concerned with the magnetoelectric (ME)

effect of a periodic array of multicoated circular fibrous pie-

zoelectric-piezomagnetic composites. ME materials, which

simultaneously show two or more types of ferroelectric,

magnetic, or elastic orderings, have been the focus of

research due to the varieties of their microstructural phenom-

ena and macroscopic properties. These make them promising

for a wide range of applications, such as magnetic field

sensors, electrically controlled microwave phase shifters,

four-state memories, etc.1,2 However, this coupling is weak

in single-phase materials, and is often observed only at very

low temperatures. For instance, Cr2O3 has a ME voltage

coefficient of 0.02 V/cmOe below the antiferromagetic Néel

temperature of 307 K.3 This is insufficient for practical appli-

cations and thus has motivated the study of composites of

piezoelectric and piezomagnetic media, as reviewed recently

by Spaldin and Fiebig,4 Eerenstein et al.,1 Nan et al.,2 and

Srinivasan.5 The “product property” causes the ME effect in

multiferroic composites: an applied electric field creates a

strain in the piezoelectric material, which in turn creates a

strain in the piezomagnetic material, resulting in a magnetic

polarization.

A number of micromechanical models for two phase

composites were proposed to predict the effective moduli of

multiferroic composites. Among them, Nan6 and Huang and

Kuo7 used the Green’s function approach to study a fibrous

composite consisting of BaTiO3 and CoFe2O4. Benveniste
8

derived an exact expression for the effective magnetoelec-

troelastic moduli for transversely isotropic fibrous compo-

sites based on a formalism of Milgrom and Shtrikman.9

Harshe et al.10 used a cubic model, and Aboudi11 employed

a homogenization micromechanical method to investigate

the particulate composites. The classical Eshelby’s equiva-

lent inclusion approach and the Mori-Tanaka mean-field

model have been generalized to multiferroic composites by

Li and Dunn,12,13 Huang,14 Li,15 Wu and Huang,16 and Srini-

vas et al.17 The frequency-dependence of the ME coeffi-

cients of multiferroic laminates was studied by Bichurin

et al.18–20 A complete review of all of this literature can be

found in Nan et al.2 and Bichurin et al.19

Recently, some multi-phase piezoelectric and piezomag-

netic composites were made experimentally to enhance the

ME coupling. Nan et al.21,22 prepared three-phase ME partic-

ulate composites with Terfenol-D particles in a lead zircon-

ate titanate (PZT)-polyvinylidene fluoride (PVDF) mixture,

and the measured ME coefficient was enhanced to 45 mV/

cm. Gupta and Chatterjee23 made a three-phase BaTiO3-

CoFe2O4-PVDF particulate composite and showed a maxi-

mum ME voltage coefficient around 26 mV/cmOe. Chau

et al.24 investigated the ME behavior of composites consist-

ing of Terfenol-D and PZT with the polymer PMMA, poly-

merized ethylene oxide (PEO), or Liþ-PEO and

demonstrated that higher matrix conductivity could enhance

the ME signals. Jadhav et al.25 prepared a three-phase com-

bination of Ni0.5Cu0.2Zn0.3Fe2O4/BaTiO3/PZT and measured

a maximum ME coefficient of 975 lV/cmOe.

The inhomogeneity-coating-matrix composite is a special

and interesting three-phase heterogeneous material. The coat-

ing, a thin layer of the third phase intervening between an

inclusion (or inhomogeneity) and the matrix, creates some im-

portant applications. For instance, to reduce the heat or stress

concentration along the interface, interphase layers are often

introduced to act as thermal barriers. To enhance the electric

conductivity of the electric composites, coated fibers are

designed to serve as reinforcements. Such coatings may have

constant or spatially varying properties.26 Research into

graded multiferroics has primarily been confined to the study
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of bilayer and multilayer structures. Among them, piezoelec-

tric or piezomagnetic coefficients are assumed to have linear

variation in the direction of the thickness,27–29 although an

exponentially graded assumption was also adopted

recently.30,31 Apart from these laminate structures, Wang and

Pan32 investigated how the imperfect interface affects the ME

effect in a multiferroic fibrous composite. Pan et al.33 showed
that the nonclassical interface condition exerts a significant

influence on the local and overall ME responses, especially

when the fibers are at the nanoscale. Wang et al.34 enhanced
the ME effect via the curvature of a heterogeneous cylinder.

Thostenson et al.35 experimentally coated carbon fibers with

carbon nanotubes (CNTs), which were then embedded in a

polymer matrix. They showed that CNT-coated carbon fiber

composites could improve the local interfacial load transfer,

and therefore were likely to reinforce the local strength along

the interface of the carbon fiber and the polymer matrix. Good

effective thermal conductivity for coated fiber filler compo-

sites was also analytically predicted by Hatta and Taya.36

They theoretically showed that the use of highly conductive

or resistive coating, even if its thickness is small, is quite effi-

cient in enhancing the overall thermal conductivity or resistiv-

ity. Nicrovici et al.37 studied the equivalence between a

coated three-phase composite and the corresponding two-

phase composite on the dielectric constants or the transport

coefficients.

In this paper, by generalizing Rayleigh’s classic

approach,38 we investigate the ME properties of circular fi-

brous composites under the generalized anti-plane shear de-

formation. The solution can be for any multicoated circular

fibers in a matrix. As a numerical example, we apply our so-

lution to the coated fiber in a matrix made of BaTiO3,

CoFe2O4, and Terfenol-D. This article is organized as fol-

lows: We consider, in Sec. II, a composite made of piezo-

electric and piezomagnetic phases arranged on a

microstructure consisting of parallel cylinders in a matrix.

The phases are transversely isotropic and under anti-plane

shear with in-plane electromagnetic fields. In this situation,

the fields are decoupled in the interior of every phase, and

the coupling between the fields occurs only through the inter-

face conditions. We exploit this in detail in Sec. III in order

to obtain a representation of the solution for the multicoated

circular cylinder. We obtain the effective properties in Sec.

IV, and show that the macroscopic (or overall effective)

properties depend only on a single expansion coefficient.

This methodology is illustrated in Sec. V using composites

made of BaTiO3, CoFe2O4, and Terfenol-D.

II. FORMULATION

Let us consider a composite consisting of a periodic rec-

tangular array of parallel and separated circular cylinders.

The domain of the cylinder is denoted by V. We assume that

the cylinders and the matrix are made of distinct phases. Fur-

ther, we assume that each phase is either piezoelectric or pie-

zomagnetic with transversely isotropic symmetry (i.e., has

6mm symmetry) about the fiber axis. We introduce a Carte-

sian coordinate system with the x- and y-axes in the plane of

the cross-section and the z-axis along the axes of the cylin-

ders. The origin of the coordinate is positioned at the center

O of one of the cylinders (Fig. 1). The sides of the unit cell

X parallel to the x- and y-axes are, respectively, denoted by a
and b, and the cylinders are of the same size.

Let the composite be subjected to anti-plane shear

strains ezx; ezy, in-plane electric fields Ex;Ey, and magnetic

fields Hx;Hy at infinity. Thus the heterogeneous material is

in a state of anti-plane shear deformation8 and can be

described by

ux ¼ uy ¼ 0; uz ¼ w x; yð Þ;
u ¼ u x; yð Þ;w ¼ w x; yð Þ; (1)

where ux, uy, and uz are the elastic displacements along the x-,
y-, and z-axes, and u and w are, respectively, the electric and

magnetic potentials.

The general constitutive laws for the nonvanishing field

quantities can be written in a compact form as

Rj¼ LZj; j ¼ x; y; (2)

where

Rj¼
rzj
Dj

Bj

0
@

1
A;L¼

C44 e15 q15
e15 �j11 �k11
q15 �k11 �l11

0
@

1
A;Zj ¼

ezj
�Ej

�Hj

0
@

1
A:

(3)

In Eq. (3), rzj, Dj, Bj, ezj, Ej, and Hj are the stress, electric dis-

placement, magnetic flux, strain, electric field, and magnetic

field, respectively. C44, j11, l11, and k11 are the elastic

FIG. 1. A schematic representation of the square-arrays composite in which

the unit cell is made of a coated cylindrical fiber within the matrix. The vol-

ume fraction of the inclusion f, is defined as the ratio of the volume of the

fiber plus the coating layer over the total volume of the unit cell (fiber plus

coating layer plus matrix). The radius ratio of the fiber over the coating shell

is defined as c.
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modulus, dielectric permittivity, magnetic permeability, and

ME coefficient, while e15 and q15 are the piezoelectric and

piezomagnetic coefficients. The shear strains ezx and ezy, in-
plane electric fields Ex and Ey, and in-plane magnetic fields

Hx and Hy are related to the gradient of the elastic displace-

ment, electric potential, and magnetic potential.

Making use of the equilibrium equations (in the absence

of body force, electric charge density, and electric current

density), the elastic displacement w and the electric and mag-

netic potentials u and w are found to satisfy

C44r2wþ e15r2uþ q15r2w ¼ 0;

e15r2w� j11r2u� k11r2w ¼ 0;

q15r2w� k11r2u� l11r2w ¼ 0;

(4)

where r2 ¼ @2=@x2 þ @2=@y2 represents the two-dimen-

sional Laplace operator for the variables x and y. Because L
is, in general, a nonsingular matrix, we can decouple Eq. (4)

into three independent Laplace equations,

r2w ¼ 0;r2u ¼ 0;r2w ¼ 0; (5)

which should be satisfied in the interior of each phase. In

other words, the three fields—elastic displacement, electro-

static potential, and magnetostatic potential—are completely

decoupled in the interior of each phase.

These differential equations can be solved, subject to

suitable interface and boundary conditions. We assume that

the interfaces are perfectly bonded, and therefore the field

quantities satisfy

Rjnj
� �� � ¼ LZj

� �
nj

� �� � ¼ 0; Zjtj
� �� � ¼ 0; (6)

where �½ �½ � denotes the jump in the associated quantities

across the interface, n is the unit outward normal to the inter-

face, t is the unit tangent to the interface, and the repeated

index j denotes the summation over the components x and y.
Because L is different in each phase, the fields w, u, and w
are generally coupled by the interface equations.

III. MULTICOATED CIRCULAR CYLINDERS

We consider the case in which the fibers are multicoated

circular cylinders with an outer radius a1. We denote the ma-

trix as phase 0, with material parameters C44
(0), e15

(0), q15
(0),

j11
(0), l11

(0), and k11
(0). The multicoated cylinder consists of

a core with radius r¼ aM, surrounded by (M� 1) coating

layers. The jth layer of the coatings occupies the annulus

Vj : ajþ15r5aj; j ¼ 1; 2; :::;M, in which V ¼ V1 [ V2[
::: [ VM. Because the innermost core is solid, we have

aMþ1¼ 0. We assume that the material properties of the jth
layer of the multicoated cylinder are C44

(j), e15
(j), q15

(j),

j11
(j), l11

(j), and k11
(j).

Furthermore, without a loss of generality, we consider

the situation in which the composite is subjected to a macro-

scopically uniaxial loading

wext ¼ ezxx;uext ¼ �Exx;wext ¼ �Hxx (7)

for constants ezx;Ex, and Hx. We may write this in short as

Uext ¼ Z
U
x x; (8)

where U represents the appropriate field: the anti-plane de-

formation w, the electric potential u, or the magnetic poten-

tial w.
The potential field (the elastic deformation w, electric

potential u, or magnetic potential w) for each layer of the

multicoated circular cylinder and its surrounding matrix can

be expanded with respect to its center O as39

UðjÞ r; hð Þ ¼ A
UðjÞ
0 þ

X1
n¼1

AUðjÞ
n rn þ BUðjÞ

n r�n
� �

cos nh (9)

for the jth layer, and

Uð0Þ r; hð Þ ¼ A
Uð0Þ
0 þ

X1
n¼1

AUð0Þ
n rn þ BUð0Þ

n r�n
� �

cos nh (10)

for the matrix. Here (r,h) is the polar coordinate centered on

the origin of the cylinder. The coefficients AUðjÞ
n and BUðjÞ

n are

unknowns, to be determined from the interface and boundary

conditions. Note that the sine terms that would be present in

a general expansion are missing because we impose a uniax-

ial loading along the x-direction only. Further, Uðr; hÞ has to
be antisymmetric with respect to the y-axis, and thus only

terms with an odd number are included. In addition, because

the potential at r! 0 should be finite, we can set BUðMÞ
n ¼ 0.

Using the orthogonality properties of trigonometric

functions, the interface conditions in Eq. (6) provide

aðj�1Þ
n

bðj�1Þ
n

� �
¼ kðjÞn

aðjÞn
bðjÞn

� �
; j ¼ 1; 2; :::;M; (11)

where

aðjÞn ¼
AwðjÞ
n

AuðjÞ
n

AwðjÞ
n

0
B@

1
CA;bðjÞn ¼

BwðjÞ
n

BuðjÞ
n

BwðjÞ
n

0
B@

1
CA;

kðjÞn �
I a�2n

j I

Lðj�1Þ �a�2n
j Lðj�1Þ

 !�1
I a�2n

j I

LðjÞ �a�2n
j LðjÞ

 !
;

(12)

and I is the 3� 3 identity matrix. Now repeated use of Eq.

(11) gives

að0Þn

bð0Þn

� �
¼ KðjÞ

n

aðjÞn
bðjÞn

� �
; j ¼ 1; 2; :::;M; (13)

with

KðjÞ
n � kð1Þn kð2Þn � � � kðjÞn : (14)

For j¼M, we have

að0Þn

bð0Þn

� �
¼ KðMÞ

n

aðMÞ
n

bðMÞ
n

� �
: (15)
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Furthermore, according to Eq. (15), and keeping in mind that

BUðMÞ
n ¼ 0, we have

að0Þn ¼ KðMÞ
n

h i
11

KðMÞ
n

h i�1

21
bð0Þn ; (16)

where [Kn
(M)]11 and [Kn

(M)]21 are, respectively, the upper-

left and lower-left (3� 3) submatrices of Kn
(M).

Finally, imposing the periodicity conditions yields a

generalized Rayleigh’s identity,39

AUð0Þ
n þ

X1
m¼1

SmþnB
Uð0Þ
m ¼ Z

U
x dn;1; (17)

with

Sm ¼
X
l 6¼o

Re Xl þ iYlð Þ�m
(18)

being the lattice sums characterizing the geometry of the per-

iodic structure, and (Xlþ iYl) the center of the lth cylinder

when measured at the central point O. The index l runs over
all the cylinders underlying the periodic array except for the

central one. A list of nonzero normalized lattices for square

arrays can be found in Berman and Greengard.40

Equations (16) and (17) constitute an infinite set of lin-

ear algebraic equations. Upon appropriate truncation of the

expansion terms, we can determine the expansion coeffi-

cients AUðjÞ
n and BUðjÞ

n . Once these coefficients are obtained,

we have the solutions for the elastic deformation w, electric
potential u, or magnetic potential w. By taking the deriva-

tives, we can finally obtain the field solutions in each phase

of the composite.

IV. EFFECTIVE MODULI

Our solutions above are now applied to derive the effec-

tive properties. Here we concentrate on a square array, i.e.,

a¼ b. Although in the case of elasticity a square arrange-

ment of circular cylinders results, in general, in a square

symmetry,41 it turns out that in the case of conduction,

square symmetry and transverse isotropy become identical.42

This statement is also correct for magnetoelectricity under

the generalized anti-plane shear deformation, which is the

case in our study. Therefore, there is no distinction between

the effective properties of the x- and y-axes.
We first recall the basic definition of the effective mag-

netoelectroelastic parameter L*, given by

Rj

	 
 ¼ L� Zj

	 

; (19)

where the angular brackets denote the area averages over the

unit cell X, i.e.,

Rj

	 
 ¼ 1

X

ð
X
Rjdv; Zj

	 
 ¼ 1

X

ð
X
Zjdv: (20)

For the given far-field in Eq. (7), we can compute the aver-

age Zx by noting that each component is a gradient and

applying the divergence theorem. We obtain

ZU
x

	 
 ¼ Z
U
x : (21)

Next, in order to find RU
x

	 

, we again use the divergence the-

orem, equilibrium condition, and interface conditions to

arrive at

RU
x

	 
 ¼ 1

X

ð
X
RU
x dv ¼

1

X

ð
X
r � xRU
� �

dv

¼ 1

X

ð
@X

x RU
� �

m
� nds; (22)

where

Rw ¼ ezx; ezy
� �

;Ru ¼ Dx;Dy

� �
;Rw ¼ Bx;By

� �
: (23)

We then use field expansions (9) and (10) to obtain

1

X

ð
@X

x ZU
� �

m
� nds ¼ Z

U
x � 2pBU 0ð Þ

1

ab
� (24)

Here

Zw ¼ ezx; ezy
� �

;Zu ¼ � Ex;Ey

� �
;Zw ¼ � Hx;Hy

� �
: (25)

Putting Eqs. (22) and (24) together, and recalling the consti-

tutive relation (2) for the matrix, we obtain

rzxh i
Dxh i
Bxh i

0
@

1
A ¼

C44 e15 q15
e15 �j11 �k11
q15 �k11 �l11

0
@

1
A

ð0Þ ezx � 2pBwð0Þ
1

ab

�Ex � 2pBuð0Þ
1

ab

�Hx � 2pBwð0Þ
1

ab

0
BBB@

1
CCCA:

(26)

Putting together Eqs. (19) and (26), and noting that the coef-

ficient B
Uð0Þ
1 depends linearly on the applied field, we obtain

the equations for the effective property L*.

V. RESULTS AND DISCUSSION

As a numerical example, we apply our solution to a sin-

gle coated fiber, i.e., M¼ 2, for which the radii of the (fiber)

core and coating shell are, respectively, a2 and a1. For the
piezoelectric material, we consider the widely used BaTiO3

(BTO). For the piezomagnetic material we consider CoFe2O4

(CFO) as well as the Terfenol-D alloy (TD). All of these are

transversely isotropic. The material properties are listed in

Table I in Voigt notation, where the xoy plane is isotropic

TABLE I. Material parameters of BaTiO3, CoFe2O4 (Ref. 12), and Terfe-

nol-D (Refs. 43 and 44).

Property BaTiO3 CoFe2O4 Terfenol-D

C44 (N/m
2) 43� 109 45.3� 109 13.6� 109

e15 (C/m
2) 11.6 0 0

q15 (N/Am) 0 550 108.3

j11 (C
2/Nm2) 11.2� 10�9 0.08� 10�9 0.05� 10�9

m11 (Ns
2/C2) 5� 10�6 590� 10�6 5.4� 10�6

k11 (Ns/VC) 0 0 0
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and the unique axis is along the z-direction. Note that in all

materials the ME coefficients are zero, i.e., k11¼ 0.

The ratio of the radius between the circular fiber and the

coating shell is defined as c¼ a2/a1, and the coated fibers are

embedded in the matrix in a square array pattern. It is

obvious that if c¼ 0, then a2¼ 0. In other words, there is no

fiber phase. On the other hand, if c¼ 1, it means that there is

no coating shell. In our study, we are particularly interested

in the ME voltage coefficient, which is the important figure

of merit for magnetic field sensors. It relates the overall elec-

tric field that is generated in the composite when it is sub-

jected to a magnetic field. It combines the coupling and

dielectric coefficients, and is defined by

a�11 ¼ k�11=j
�
11: (27)

Figure 2 shows the dependence of the ME coefficient in

coated fibrous composites on both the volume fraction f and
the ratio of the radii of the fiber and the shell c¼ a2/a1. The
volume fraction is defined as the volume of the fiber and the

coated shell over the total volume (i.e., the fiber, plus the

coated shell and the matrix). Figure 2(a) is for (fiber/coating/

matrix)¼ (BTO/TD/CFO). It is observed that, for a fixed

volume fraction, the ME effect increases when the radii’s ra-

tio c increases from 0 to 0.70; then it decreases with increas-

ing c. Furthermore, for a fixed c, the ME effect increases

with increasing volume fraction and, in most cases, reaches

its maximum where the volume fraction f is around 0.74.

Figure 2(b) shows the corresponding results when the fiber

and coating shell in Fig. 2(a) are switched. Compared to Fig.

2(a), it is obvious that although the magnitude of the ME is

about the same, the direction or the sign has been changed.

Furthermore, the maximum magnitudes are all reached

around f¼ 0.30, and the magnitude increases with increasing

c from 0 to 0.94 (the maximum ME effect is about

0.740 V/cmOe, slightly larger than in the first case).

Figure 2(c) shows the ME effect for the composite made

of (fiber/coating/matrix)¼ (BTO/CFO/TD). The ME effect

is positive, and for fixed f, it increases with increasing c
(from 0 to 0.84). It reaches its maximum value 3.304 V/cm

Oe at c¼ 0.84, and then it decreases. Furthermore, for any

fixed c, the ME effect reaches its maximum when f is around
0.70. Figure 2(d) shows the ME effect in the composite

when the coating shell and fiber in Fig. 2(c) are switched.

FIG. 2. (Color online) The effective ME voltage coefficient a11
* vs the volume fraction of the inclusion f and the radius ratio c. The composite is in a square

array where coated cylindrical fibers are embedded in the matrix. (a) BTO fiber coated by TD, with both in a CFO matrix. (b) TD fiber coated by BTO, with

both in a CFO matrix. (c) BTO fiber coated by CFO, with both in a TD matrix. (d) CFO fiber coated by BTO, with both in a TD matrix.
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Similarly, the ME effect increases from c¼ 0 to 0.96, and

then decreases. Also, in Figs. 2(c) and 2(d), the maximum

ME value is about 3.5 V/cmOe, and in Figs. 2(a) and 2(b) it

is only about 0.7 V/cmOe. Furthermore, as compared to the

uncoated case, where the ME value is either zero or very

small, the ME effect in the coated fibrous composites can be

enhanced by 10 times. Similar trends are also observed if we

replace BTO with PZT-5A.

VI. CONCLUSIONS

We have extended Rayleigh’s formalism on periodic

conductive composites to a magnetoelectroelastic composite

consisting of multicoated circular cylinders under anti-plane

shear deformation, in-plane electric field, and in-plane mag-

netic intensities. Expressions for the effective moduli of the

composite are derived. As a practical example, explicit nu-

merical calculations for the ME effects of a BTO/CFO/TD

coated composite are presented and discussed. These exam-

ples show that with a coating appropriate for the inhomoge-

neity (fiber), the effective ME effect can be enhanced by one

order of magnitude as compared to the noncoated counter-

part. While our numerical results are based on piezoelectric

BaTiO3 and piezomagnetic CoFe2O4 or Terfenol-D, the

enhancement of the ME effect based on other materials, such

as BiFeO3, NiFe2O4, etc., could be possible. Therefore, dif-

ferent material phases and volume fraction ratios are some

alterative channels for improving the effective material prop-

erties of multiferroic composites.
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