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a  b  s  t  r  a  c  t

Based  on  the von  Karman  plate  theory  of  large  deflection,  we  derive  the  nonlinear  partial  differential  equa-
tion for  a rectangular  magnetoelectroelastic  thin  plate  under  the  action  of  a transverse  static  mechanical
load.  By  employing  the Bubnov–Galerkin  method,  the  nonlinear  partial  differential  equation  is trans-
formed  to  a  third-order  nonlinear  algebraic  equation  for the  maximum  deflection  where  a coupling
factor  is  introduced  for determining  the  coupling  effect  on  the  deflection.  Numerical  results  are  carried
out  for  the  thin  plate  made  of  piezoelectric  BaTiO3 and  piezomagnetic  CoFe2O4 materials.  Some  inter-
esting  results  are  obtained  which  could  be useful  to  future  analysis  and  design  of multiphase  composite
plates.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Materials made of piezoelectric and piezomagnetic phases have
the ability of converting energy from one form to the other (among
magnetic, electric, and mechanical energies). Such materials are
currently being used in ultrasound medical devices, automobiles,
and aircrafts, among many other areas. Furthermore, compos-
ites made of piezoelectric and piezomagnetic materials exhibit
a magnetoelectric effect that is not present in the single-phase
piezoelectric or piezomagnetic material (Harshe et al., 1993; Nan,
1994; Benveniste, 1995). Avellaneda and Harshe (1994) con-
sidered the magnetoelectric effect in multilayer composites. Li
and Dunn (1998) investigated the inclusion and inhomogene-
ity problems in magnetoelectroelastic (MEE) composites. Pan
(2001) derived an exact closed-form solution for the simply
supported and multilayered plate made of anisotropic piezo-
electric and piezomagnetic materials under a static mechanical
load. By introducing five potential functions, Wang and Shen
(2002) obtained the general solution of the three-dimensional
problem in a transversely isotropic MEE  media. Chen et al.
(2002) established a micromechanical model for the evaluation
of the effective properties in layered composites with piezo-
electric and piezomagnetic phases. Crack problems were also
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investigated in order to obtain the crack-tip stress, electric,
and magnetic field intensity factors (Feng et al., 2007a,b, 2008;
Tupholme, 2008). Recently, Wu  et al. (2010) extended the Pagano
method for the three-dimensional plate problem to the analy-
sis of a simply-supported, functionally graded rectangular plate
under magneto-electro-mechanical loads. Liu and Chang (2010)
studied the vibration of a MEE  rectangular plate. So far, how-
ever, the nonlinear behavior of a MEE  plate has not been
investigated.

This paper thus proposes a nonlinear (or large-deflection) model
for the MEE  thin plate deformation under a static mechanical
load. Based on the proposed model, the corresponding solutions
will be also derived for a simply-supported rectangular MEE  plate
and numerical results will be further given. This paper is orga-
nized as follows. The basic equations are presented in Section
2; The large deflection solution is derived in Section 3; Numer-
ical results are given in Section 4 and conclusions are drawn in
Section 5.

2. Basic equations

We consider a rectangular transversely isotropic MEE thin plate
in the Cartesian coordinate system (x, y, z), as shown in Fig. 1. The
length, width and thickness of the plate are, respectively, Lx, Ly,
and h. The coordinate plane Oxy is attached to the middle plane of
the plate with a static mechanical load q in z-direction. If z-axis is

0093-6413/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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Fig. 1. A rectangular MEE  thin plate under the mechanical load q.

normal to the material plane of isotropy, the constitutive relations
can be written as (Pan, 2001; Liu and Chang, 2010)

�x = c11εx + c12εy + c13εz + e31
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∂�

∂z
+ q31

∂ 

∂z

�z = c13εx + c13εy + c33εz + e33
∂�

∂z
+ q33

∂ 

∂z

�xz = c44�xz + e15
∂�

∂x
+ q15

∂ 

∂x

�yz = c44�yz + e15
∂�

∂y
+ q15

∂ 

∂y

�xy = c66�xy

(1)

Dx = e15�xz − �11
∂�

∂x
− d11

∂ 

∂x

Dy = e15�yz − �11
∂�

∂y
− d11

∂ 

∂y

Dz = e31εx + e31εy + e33εz − �33
∂�

∂z
− d33

∂ 
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where �ij and �ij are the normal and shear stresses, and εi and � ij are
the normal and shear strains; �,  , Di and Bi are, respectively, the
electric potential, magnetic potential, electric displacement com-
ponents, and magnetic induction components; cij, �ij, eij, qij, dij and
	ij are, respectively, the elastic, dielectric, piezoelectric, piezomag-
netic, magnetoelectric, and magnetic constants. For a transversely
isotropic material, the relation c11 = c12 + 2c66 holds.

The equations of equilibrium (including the balances of the elec-
tric and magnetic quantities) are

∂�x
∂x

+ ∂�xy
∂y

+ ∂�xz
∂z

= 0

∂�xy
∂x

+ ∂�y
∂y

+ ∂�yz
∂z

= 0

∂�xz
∂x

+ ∂�yz
∂y

+ ∂�z
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(4)

∂Dx
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+ ∂Dy
∂y

+ ∂Dz
∂z

= 0 (5)

∂Bx
∂x

+ ∂By
∂y

+ ∂Bz
∂z

= 0 (6)

The following basic assumptions are made (see, e.g., Chia, 1980):

1. The plate is thin; i.e., the thickness h is much smaller than the
other physical dimensions (thus the normal stress component
�z is negligible).

2. In order to include in-plane force effects, nonlinear terms in the
equations of equilibrium involving products of stresses and plate
slopes are retained. All other nonlinear terms are neglected.

3. Points of the plate lying initially on a normal-to-the-middle
plane of the plate remain on the normal-to-the-middle plane
after deformation. This means that the vertical shear strains �xz

and �yz are negligible. The deflection of the plate is thus associ-
ated principally with the bending strain. It is deduced, therefore,
that the normal strain εz, resulting from transverse loading, may
also be omitted.

Based on these assumptions, the displacement components (u,
v, w) should satisfy the following differential relations

∂w

∂z
= 0,

∂w

∂x
+ ∂u

∂z
= 0,

∂w

∂y
+ ∂v
∂z

= 0 (7)

In addition, if the MEE  plate is thin, the in-plane electric fields
and magnetic fields can be ignored, i.e., Ex = Ey = 0 and Hx = Hy = 0 (Liu
and Chang, 2010). This means that only the transverse electric field
component Ez and magnetic field component Hz need to be con-
sidered in the present study. According to the gradient relations
between the electric/magnetic fields and the electric/magnetic
potentials, we have:

∂�

∂x
= 0,

∂�

∂y
= 0, Ez = −∂�

∂z
, (8)

∂ 

∂x
= 0,

∂ 

∂y
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∂z
, (9)

Therefore, the relations between the stress and strain compo-
nents for the case of plane stress in the x–y plane can be represented
by the following equations:
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Using the von Karman’s theory of large deflection of plates, the
Lagrangian strain displacement relations are given by Timoshenko
and Woinowsky-Krieger (1959)
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∂x
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2

(
∂w

∂x

)2
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+ 1
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∂y

(13)

where again u, v, and w are the elastic displacement components
in x-, y-, and z-directions, respectively.
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3. Large deflection solutions

Based on the discussion in Section 2, we can assume the
unknown elastic displacement vector u as (see, e.g., Chia, 1980):

u =
(
u0(x, y) − z

∂w(x, y)
∂x

)
i +

(
v0(x, y) − z

∂w(x, y)
∂y

)
j

+ w(x, y)k (14)

where u0 and v0 are the tangential displacements in the middle-
plane, and again w the displacement in the z-direction of the middle
plane of the plate (or the deflection of the plate). Then, substituting
Eqs. (11), (12), (13) and (14) into Eqs. (5) and (6) gives

−e31
∂2w

∂x2
− e31

∂2w

∂y2
− �33

∂2�

∂z2
− d33
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∂z2
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These two equations can be further written as
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Thus, we can solve the electric and magnetic potentials in terms
of the deflection of the plate
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where
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It can be derived from Eq. (19) that

∂�(x, y, z)
∂z

=  −
1



z∇2w(x, y) + �0(x, y)

∂ (x, y, z)
∂z
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2



z∇2w(x, y) +  0(x, y)

(21)

where �0(x, y) and  0(x, y) are functions that are independent of
variable z.

By taking the second derivatives of Eq. (13) and combing the
resulting expressions, it can be shown that
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∂x2
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∂x∂y

=
(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2
(22)

where
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The solution of this equation can be greatly simplified by intro-
ducing the stress function

�x = ∂2F

∂y2
+ e31

∂�

∂z
+ q31

∂ 

∂z
, �y = ∂2F

∂x2
+ e31
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∂ 
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,

�xy = − ∂2F
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(24)

where F is the Airy stress function of x and y. Substituting Eq. (24)
into Eq. (23), then into Eq. (22), we  obtain

c11

c2
11 − c2

12

·
(
∂4F

∂x4
+ ∂4F

∂y4

)
+

(
1
c66

− 2c12

c2
11 − c2

12

)
· ∂4F

∂x2∂y2

= −1
2
L(w, w) (25)

where we have introduced the operator L(˛, ˇ) =
(∂2˛/∂x2)(∂2ˇ/∂y2) + (∂2˛/∂y2)(∂2ˇ/∂x2) − 2(∂2˛/∂x∂y)(∂2ˇ/∂x∂y),
so that

L(w, w) = 2
∂2w

∂x2

∂2w

∂y2
− 2

(
∂2w

∂x∂y

)2

(26)

We now consider a simply-supported plate. For this case, the
mechanical boundary conditions on the sides of the plate are

x = 0, x = Lx : w = 0,
∂2w

∂x2
= 0

y = 0, y = Ly : w = 0,
∂2w

∂y2
= 0

(27)

The elastic displacement w can be assumed as:

w(x, y) = hWm · sin
(
�x

Lx

)
sin

(
�y

Ly

)
(28)

in which Wm is the maximum nondimensional deflection at the
center of the plate.

Substituting Eq. (28) into Eq. (25), we obtain

F = 1
32
c2

11 − c2
12

c11
h2W2

m

[(
Lx
Ly

)2

cos
2�x
Lx

+
(
Ly
Lx

)2

cos
2�y
Ly

]
(29)

Recalling that the resultant force and moment are defined as
follows

Nx =
∫ h/2

−h/2

�x dz, Ny =
∫ h/2

−h/2

�y dz, Nxy =
∫ h/2

−h/2

�xy dz

Mx =
∫ h/2

−h/2

�xzdz, My =
∫ h/2

−h/2

�yzdz, Mxy =
∫ h/2

−h/2

�xyzdz

(30)

we can now integrate Eq. (4) with respect to z to arrive at the
following equation of static equilibrium:

∂2Mx
∂x2

+ 2
∂2Mxy
∂x∂y

+ ∂2My
∂y2

+ Nx
∂2w

∂x2
+ Ny

∂2w

∂y2
+ 2Nxy

∂2w

∂x∂y
+ q = 0

(31)

where q is density of the load which is assumed to be uniform over
the surface of the plate.

Substituting Eq. (24) into Eq. (30), then into the equation of
equilibrium (31) gives us

h3
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(
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(
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∂x4
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)
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∂4w
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1
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2



∇4w

)
= hL(w, F) + q (32)
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where

∇4 = ∂4w

∂x4
+ ∂4w

∂y4
+ 2

∂4w

∂x2∂y2
(33)

Substituting Eqs. (28), (29) into Eq. (32), and noticing that
c11 = c12 + 2c66, we have

˚(w)≡ h
3

12

[(
�
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)2

+
(
�

Ly

)2
]2 (

c11+e31
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[
h

8

(
�
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8

(
�
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)4
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]
· h3Wm

3 · sin
�x

Lx
sin

�y

Ly

−q = 0 (34)

We now apply the Bubnov–Galerkin method to Eq. (34). That is,
we integrate both sides of Eq. (34) over the whole plate area by the
optimal weighting function sine as∫ Lx

0

dx

∫ Ly

0

˚(w) sin
�x

Lx
sin

�y

Ly
dy = 0 (35)

Then, the following nonlinear equation for the maximum nondi-
mensional deflection of the plate can be found

k1 · Wm + k3 · W3
m = Q (36)

where

k1 = h4

12

[(
�

Lx

)2
+

(
�

Ly

)2
]2

(1 + k2),

k3 = (c2
11 − c2

12)h4

16c2
11

[(
�

Lx

)4
+

(
�

Ly

)4
]
,

Q = 16q0

c11�2

(37)

The expression for k1 involves another parameter k2 defined
below, which represents the piezoelectric and piezomagnetic cou-
pling contribution to the purely elastic deflection.

k2 = e31

c11


1



+ q31

c11


2



(38)

It can be shown that for a given physical problem, the only real
solution of Eq. (36) can be expressed explicitly as

Wm =
[

Q
2k3

−
√(

Q
2k3

)2
+

(
k1

3k3

)3
]1/3

+
[

Q
2k3

+
√(

Q
2k3

)2
+

(
k1

3k3

)3
]1/3

(39)

Thus, we have derived an exact close-form expression for the
maximum deflection of the nonlinear thin-plate under a static
mechanical load. In the following section, we  will present some
numerical results to show the effect of the coupling factor as well
as nonlinearity on the deflection.

4. Numerical results

In the numerical analysis, the coupled MEE plate is assumed
to be made of phases BaTiO3 and CoFe2O4. In the first example,
four cases are selected to study the effect of various couplings
on the nonlinear deflections: magnetoelectroelastic (MEE, eij /= 0,
qij /= 0), piezoelectric (PE, derived from MEE  by letting qij = 0),
piezomagnetic (PM, derived from MEE  by letting eij = 0), and purely
elastic (Elastic, derived from MEE  by letting eij = qij = 0). The MEE

Table 1
Material coefficients of the MEE  material obtained by the simple rule of mixture
with 50% BaTiO3 and 50% CoFe2O4 (elastic constants cij in 109 N/m2, piezoelectric
constants eij in C/m2, piezomagnetic constants qij in N/Am, dielectric constants �ij

in 10−9 C2/Nm2, magnetic constants 	ij in 10−4 Ns2/C2).

c11 c12 c13 c33 c44

225 125 124 216 44
e31 e33 e15 �11 �33

−2.2 9.3 5.8 5.64 6.35
	11 	33 q31 q33 q15

2.97 0.835 290.2 350 275
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Fig. 2. Nonlinear load–deflection curves for the plate made of elastic, piezoelectric
(PE), piezomagnetic (PM) and magnetoelectroelastic (MEE) materials. Other fixed
parameters are Lx/h = 20 and Ly/h = 10.

properties listed in Table 1 are obtained by the simple rule of mix-
ture (Aboudi, 2001; Sih and Chen, 2003; Chen et al., 2010) with 50%
BaTiO3 and 50% CoFe2O4.

Numerical results for the load–deflection curves of the MEE
plate are shown in Figs. 2–5.  The nonlinear relationship between
the central deflection Wm and uniformly distributed (nondimen-
sional) load density Q of the MEE  plate is shown in Fig. 2. Other fixed
parameters are Lx/h = 20 and Ly/h = 10. It is observed from Fig. 2, that
the load–deflection curves for these four different cases are nearly
identical, with the purely elastic result being the same as that in
Chia (1980). The zoom-in result in Fig. 2 further indicates that the
differences among these different coupling cases are negligible. The
reason for this feature is that the coupling factor k2 for this MEE

0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Q

W
m

linear
nonlinear

Fig. 3. Linear and nonlinear load–deflection curves for the coupled MEE  plate with
fixed parameters Lx/h = 20 and Ly/h = 10.
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0 0.005 0.01 0.015 0.02
0
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3

3.5

4

4.5
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Q

W
m

Ly/Lx=0.5, linea r
Ly/Lx=0.5  ,nonl inear       
Ly/Lx=0.75 ,line ar       
Ly/Lx=0.75 ,nonl inear            
Ly/Lx=1,l inear        
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Fig. 4. Linear and nonlinear load–deflection curves for the coupled MEE  plate. While
h/Lx = 1/20 is fixed, the ratio of Ly/Lx varies as 0.5, 0.75, and 1.

composite is very small. In other words, even for this piezoelectric
and piezomagnetic coupled plate, the load–deflection curve is still
dominated by the elastic part.

Fig. 3 shows the difference of the load–deflection curves
between the large (nonlinear) and small (linear) deflection theo-
ries. The fixed geometric ratios are Lx/h = 20 and Ly/h = 10, and the
plate is the one made of coupled MEE  in Table 1. It is obvious that
the small deflection curves, represented by the straight lines, can
be very wrong even when the nondimensional load density is very
small (say, 10−2).

For the same coupled MEE  plate, the lateral geometry influence
of the plate on the load–deflection curve is shown in Fig. 4 for both
linear and nonlinear cases. While h/Lx = 1/20 is fixed, the ratio of
Ly/Lx varies as 0.5, 0.75, and 1. It is observed that, for fixed load
density Q, the maximum nondimensional deflection increases with
increasing Ly/Lx.

Also for the same coupled MEE  plate with fixed lateral size,
Fig. 5 shows the influence of the plate thickness on the nonlinear
load–deflection curve. While the plate thickness ratio h/Lx varies
as 0.025, 0.0375, and 0.05, its lateral dimension ratio is fixed at
Ly/Lx = 0.5. It is very clear that, for a given load density, the deflection
decreases with increasing plate thickness.
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Fig. 5. Nonlinear load–deflection curves for the coupled MEE  plate. While the plate
thickness ratio h/Lx varies as 0.025, 0.0375, and 0.05, its lateral dimension ratio is
fixed at Ly/Lx = 0.5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

7

8

9

10

Q

W
m

BaTiO3
MEE
CoFe2O4

Fig. 6. Nonlinear load–deflection curves for the plate made of MEE, piezoelectric
BaTiO3 and piezomagnetic CoFe2O4 materials. Other fixed parameters are Lx/h = 20
and  Ly/h = 10.

As a second example, the nonlinear load–deflection curves for
the plate made of coupled MEE  (as listed in Table 1), piezoelec-
tric BaTiO3 and piezomagnetic CoFe2O4 materials (Pan, 2001) are
shown in Fig. 6. Other fixed parameters are Lx/h = 20 and Ly/h = 10.
It is observed that, for fixed load density Q, the deflection corre-
sponding to the piezoelectric BaTiO3 plate is the largest among the
three, while that corresponds to the piezomagnetic CoFe2O4 is the
smallest.

5. Conclusions

A  nonlinear large-deflection model is proposed for magneto-
electroelastic rectangular thin plates. For a simply-supported plate
made of piezoelectric and piezomagnetic materials under a uni-
form mechanical load, a coupling factor is identified which can be
used to characterize the contribution of the multiphase coupling to
the plate deflection. Numerical results are carried out for the thin
plate made of magnetoelectroelastic (MEE), piezoelectric (PE) and
piezomagnetic (PM) materials. It is found that: (1) Even under a rel-
atively small mechanical load, the large-deflection solution should
be used for the prediction of the plate deflection since the linear
small model could be inaccurate; (2) The nonlinear deflections of
the thin plate are different for different coupled materials (BaTiO3,
CoFe2O4 and the composite MEE, as shown in Fig. 6); (3) However,
for the MEE  made of different volume fractions of piezoelectric and
piezomagnetic phases, the coupling effect on the deflection is neg-
ligible. This is due to the fact that the coupling factor k2 is very small
for this material system.
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