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An interface crack with a frictionless contact zone at the right crack-tip between two dissimilar magnetoelectroelastic materials 
under the action of concentrated magnetoelectromechanical loads on the crack faces is considered. The open part of the crack 
is assumed to be magnetically impermeable and electrically permeable. The Dirichlet–Riemann boundary value problem is 
formulated and solved analytically. Stress, magnetic induction and electrical displacement intensity factors as well as energy 
release rate are thus found in analytical forms. Analytical expressions for the contact zone length have been derived. Some 
numerical results are presented and compared with those based on the other crack surface conditions. It is shown clearly that 
the location and magnitude of the applied loads could significantly affect the contact zone length, the stress intensity factor and 
the energy release rate. 
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1  Introduction 

Magnetoelectroelastic materials have been widely used in 
electronics industry. The technical applications include 
waveguides, sensors, phase invertors, transducers, etc. [1]. 
In the design of magnetoelectroelastic structures, it is im-
portant to take into account the defects/imperfections, such 
as cracks, which are often pre-existing or are generated by 
external loads during the service life. Therefore, in recent 
years, research on fracture mechanics of magnetoelectroe-
lastic materials has drawn much attention [2–19]. 

For two-dimensional (2-D) plane crack problems, Liu et 
al. [20] derived the general Green’s function for an infinite 

magnetoelectroelastic plane containing an elliptic cavity 
where they reduced it to solve a permeable crack in the sys-
tem. Gao et al. [21,22] analyzed single and collinear cracks 
in an infinite magnetoelectroelastic material and obtained 
the extended stress intensity factors. Song and Sih [23] and 
Sih et al. [24] investigated the influence of both magnetic 
and electric fields on the crack growth, in particular, on the 
crack initiation angle under various crack surface conditions 
for Mode-I, Mode-II, and mixed mode crack models. Tian 
and Gabbert [25,26] studied the interaction of multiple arbi-
trarily oriented and distributed cracks and of macrocrack- 
microcrack in homogeneous magnetoelectroelastic materials. 
Wang and Mai [27] discussed the effects of four kinds of 
ideal magnetoelectrical crack-face conditions on fracture 
properties of magnetoelectroelastic materials. Zhong and Li 
[28] obtained the T-stress for a Griffith crack in an infinite 
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magnetoelectroelastic medium based on magnetic and elec-
tric boundary conditions which are nonlinearly dependent 
on the crack opening displacement. Zhou et al. [29,30] in-
vestigated the static fracture behaviors of cracks in piezo-
electric/piezomagnetic materials by the Schmidt method. 
Chen [31] considered the energy release rate and path-inde-                  
pendent integral in the dynamic fracture of magneto-electro- 
thermo-elastic solids. Zhong et al. [32] investigated the 
transient response of a magnetoelectroelastic solid with two 
collinear dielectric cracks under impacts. 

However, all the above-mentioned work is related to 
cracks in a homogenous magnetoelectroelastic medium. 
Due to the oscillating singularity on the crack tip [33,34], 
the study of interface crack between dissimilar magneto-
electroelastic materials is very limited. Gao et al. [35] and 
Gao and Noda [36] derived the exact solution for a perme-
able interface crack between two dissimilar magnetoelec-
troelastic solids under general loads. Li and Kardomateas 
[37] investigated the interface crack problem of dissimilar 
piezoelectromagneto-elastic anisotropic bimaterials under 
in- plane deformation taking the electric-magnetic field in-
side the interface crack into account. Feng et al. [38,39] 
considered both the static and dynamic fracture problems of 
interface cracks between two dissimilar magnetoelectroelas-
tic layers. Li et al. [40] analyzed the magnetoelectroelastic 
field induced by a crack terminating at the interface of a 
bi-magnetoelectrical material. It is worth mentioning that 
recently Zhao et al. [41] further analyzed the planar inter-
face crack behavior in three-dimensional (3-D) transversely 
isotropic magnetoelectroelastic bimaterials, and that Zhu et 
al. [42] investigated the mixed-mode stress intensity factors 
of 3-D interface crack in fully coupled magneto-electro- 
thermo-elastic multiphase composites, where the extended 
hypersingular intergal-differential equation method was 
used. 

On the other hand, as is well known, by introducing the 
contact zone model, the oscillating singularity can be effec-
tively eliminated [43–46]. Qin and Mai [47], Herrmann and 
Loboda [48] and Herrmann et al. [49] developed the contact 
zone model for solving the interface crack problems of pie-
zoelectric bimaterials. However, to the best of our knowl-
edge, up to now, there is only one paper on the contact zone 
model for an interface crack between two dissimilar mag-
netoelectroelastic materials [50], where two kinds of mag-
netoelectrical boundary conditions, i.e., magnetoelectrically 
permeable, magnetically impermeable and electrically per-
meable, were considered. For the crack problems under 
concentrated loads, only the magnetoelectrically permeable 
interface crack model was analytically investigated [50]. 

In this paper, therefore, we analyze the interface crack 
problem under the action of concentrated magnetoelectro-
mechanical loads by introducing the contact zone model, 
where the magnetically impermeable and electrically per-
meable crack surface condition is assumed. After some 
complicated mathematics manipulations, the contact zone 

length, field intensity factors (including stress, magnetic 
induction and electrical displacement intensity factors) and 
energy release rate are derived analytically, and numerical 
results are further presented to show the effect of the loca-
tion and magnitude of the loading on these important 
physical quantities. The solutions and numerical results 
presented below are applicable to the magnetically imper-
meable and electrically permeable case unless otherwise 
indicated.  

2  Basic equations for a magnetoelectroelastic 
solid 

In the Cartesian coordinate system ix (i=1,2,3), the gov-

erning equations for magnetoelectroelastic materials can be 
written as [36]: 
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where ,ij  ,iD  iB  are the components of the stresses, 

electrical displacements and magnetic inductions; ,ij  ,iE  

iH  are the components of strains, electrical and magnetic 

fields; ,iu  ,  are the mechanical displacement compo-

nents, electrical and magnetic potentials; ,ijksc ,ikse ,iksh isd  

are the elastic, piezoelectric, piezomagnetic, and electro-
magnetic constants; ,is si  are the dielectric permittivity 

and magnetic permeability coefficients; Indices , , ,i j k s  

range from 1 to 3, with repeated ones implying summation, 
and the comma stands for the differentiation with respect to 
the coordinate variables. We further point out that in writing 
eqs. (1)–(3), we have assumed that the system is free of any 
mechanical, electric or magnetic source, and that the defor-
mation is linear. 

From eqs. (1)–(3), one gets the following governing 
equations: 
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We now further assume that all the field quantities are 
independent of the second coordinate x2. Then, making use 
of the Lekhnitskii-Eshelby-Stroh representation and 
extending it to the magnetoelectroelastic material, a general 
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solution to eq. (4) can be presented in the form [36]: 

     ,z z V Af Af  (5) 

    ,z z  t Bf Bf  (6) 

where the prime ( )  denotes differentiation with respect to 

the argument, and an overbar stands for the complex 
conjugate. Also in eqs. (5) and (6): 

  T1 2 3 ,, , , ,u u u  V  (7) 
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with the superscript ‘T’ standing for the transposed matrix 
and  1 3 1,2, ,5j jz x p x j    . The matrix A has the 

following expression:  

  T1 2 3 4 5 ,, , , ,A A A A A A  (10) 

with jp  and 
T

1 2 3 4 5, , , ,j j j j j ja a a a a   A  being, 

respectively, the eigenvalue and eigenvector of the system: 

  T 2 0.j j jp p     Q R R T A  (11) 

In eq. (11), the elements of the 5×5 matrices Q, R and T are 
defined as: 
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and 
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The 5×5 matrix B can be found by  

 ( ) B R PT A  (14) 

with  1 2 3 4 5diag , , , , .p p p p pP  

We consider the transversely isotropic magnetoelectroe-
lastic material which is poled in the x3-direction. Then, the 
displacement V3 of the vector-function V decouples, in the 

(x1,x3)-plane, from the components  1 3 4 5, , , .V V V V  

Thus, in the following sections, our attention will be fo-
cused on this generalized plane strain problem for the com-

ponents  1 3 4 5, , , .V V V V  

3  Statement of the problem and solutions 

3.1  A magnetoelectroelastic bimaterial plane with an 
interface crack 

A bimaterial composed of two dissimilar magnetoelec-          
troelastic semi-infinite planes 3 0x   and 3 0x   with 

material properties defined, respectively, by the following 

material constants (1) ,ijksc  
(1) ,ikse  

(1) ,iksh  
(1) ,isd  

(1) ,is  
(1)
si  and 

(2)
ijksc , (2)

ikse , (2)
iksh , (2)

isd , (2)
is , (2)

si , is considered (Figure 1, 

with superscripts “(1)” and “(2)” denoting, respectively, the 
field quantities in materials 1 and 2). We assume that the 
extended vector t is continuous across the whole bimaterial 

interface, that the part    , ,L c b    of the interface 

1 3,x x    =0 is magnetoelectromechanically bounded, 

and that the crack surfaces are extended traction-free for 

 1 1,x c a L   whilst they should be in frictionless contact 

for  1 2, ,x a b L   and the position of the point a is 

arbitrarily chosen for the time being. Furthermore, we 
assume that a pair of oppositely directed concentrated forces 

   T

0 0 0 0 1, , ,d b x d    Χ  are applied at x1=d 

on the crack faces, where 0 0 0 0,  ,  ,  d b   are, respectively, 

the applied uniform normal stress, uniform shear stress, 
uniform electrical displacement and uniform magnetic 
induction. In addition, we assume that the influence of one  

 

Figure 1  An interface crack with a contact zone between two dissimilar 
semi-infinite magnetoelectroelastic planes under concentrated magneto-
electromechanical loads. 
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contact zone upon the other is negligibly small [46,51], and 
thus, in the present study only the contact zone at the right 
crack tip is considered. Certainly, a contact zone at the left 
crack-tip can be treated similarly [50]. 

For the present interface crack problem, the continuity 
and boundary conditions at the interface can be written in 
the following form: 

    1 1 1,  ,  ,x x x L        V t0 0  (15a) 
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where  
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In eq. (16), the signs “+” and “” denote the value on the 
upper and lower face of the interface. 

It should be pointed out that the electrical displacement 
on the crack surfaces 1 1x L  consists of two parts. The 

first is the imposed  0 1 ,d x d   and the second is the 

unknown caused by  

    T

0 0 0 1, , .b x d     

3.2  The magnetoelectroelastic solution  

Similar to eq. [50], from eqs. (5), (6) and (15), the following 
expressions at the interface are obtained 
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   W  is an 

introduced unknown vector function, and  1xW  

 1 i0 ,x W     1 1 i0 ;x x  WW  the matrix G  is 

related to the following known matrix G  defined by 
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with 
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It is worth noticing that the matrix G  and the vector 

 zW  are related to the matrix H  (or N ) and the vector 

function  zω  (or  ' zΦ ) in [36] (or [37]) by 1i  G  

 1H N   and       'i ,z z z  W ω Φ  respectively, 

where all the quantities with the overhead sign “” denote 
the corresponding quantities in refs. [36] and/or [37]. In 
addition, it should be pointed out that the matrix G  has the 
following structure [50]: 
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where all ijg  are real, and 31 13 ,g g    41 14 ,g g    51g  

15 ,g    43 34 ,g g   53 35g g  , 54 45 .g g   And it is easily 

known from eqs. (17) and (18) that for the considered crack 
surface conditions,    4 1 4 1 0.W x W x    
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where 

         1 1 3 3 5 5ij j j jz n W z n W z n W z     (25) 
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5i ,jY  ˆ .j jY S G  j  and 
TT

1 3 5, ,j j j jS S S   S  

 1,3,5j   are, respectively, the eigenvalues and eigen-

vectors of the matrix  TTˆ ˆ G G  with  
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In addition, as shown in ref. [50], here ,jlm  jln  

 , 1,3,5j l   are all real. 

Using eqs. (23) and (24) for 1,5,j   and the corre-

sponding interface conditions and boundary conditions at 
infinity, one can derive the following combined Dirichlet- 
Riemann boundary value problem: 
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where “Im” stands for the imaginary part of the complex 
quantity. 

The exact analytical solutions to eqs. (26) and (27) for 
1,5j   under the conditions at infinity (28) can be ex-

pressed as follows: 
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Using eqs. (29), (23) and (24) for 1j  , one can get the 

following expressions at the interface, for 1x b  (ahead of 

the contact zone): 
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for 1 2x L  (within the contact zone): 
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for 1 1x L (in the open part of the crack): 
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For the magnetically impermeable and electrically per-
meable interface crack, eqs. (32)–(34) are not sufficient for 
obtaining all necessary characteristics at the interface. 
Therefore, eqs. (23) and (24) for j=5 should be considered. 
Since m51 and n51 are all equal to zero, the following ex-
pressions at the interface can be further obtained: 
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where    01 01Re , ImI I  can be expressed as: 
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with 5 0 55 0 .m b    

The stress (1)
33  and magnetic induction (1)

3B  at z   

1 i0x   can be easily determined from eqs. (32) and (38) 

for 1x b  and from eqs. (33a) and (38) for 1 2x L . 

Introducing the following field intensity factors (FIFs): 
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Making use of eqs. (34) and (39) gives the expressions 
for  3u  and  ,  which for 1 0x a   have the fol-

lowing form: 
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Further, we introduce the energy release rates (ERRs) 
related to the points a and b: 
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along with the corresponding expressions for  (1)
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The total ERR G is the sum of G1 and G2. 

With      2 1 1 1 1 1u x W x W x       being considered, 

the three components in eq. (18) can be written in the form: 
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The first and third equations of eq. (50) can be solved for 
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leads to the expression of  (1)

3 1,0D x  in terms of 

 (1)
33 1,0 ,x   (1)

3 1,0B x  and  1 1 .u x    Thus, the follow-

ing expression for electrical displacement intensity factor at 
x1=a+0 can be finally derived: 

    
1

4 1 3 1 1 1 5 5
0

2 ,0 ,lim
x a

K x a D x K K 
 

      (51) 

where 

    1 41 3 5 41 3 150 01 2,g p g p mp p          (52) 

with 
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(54) 

It is worth mentioning that all the normal stress, electri-
cal displacement and magnetic induction are also singular in 
the left crack tip 1 0.x b   By introducing the following 

FIFs: 

  
 
 
 1

1 33 1

4 1 3 1
0

5 3 1

,0

2 ,0lim
,0

b

b

x b
b

K x

K b x D x

K B x



 

   
        
     

 (55) 

and using  (1)
33 1,0 ,x   (1)

3 1,0B x  obtained from eqs. (33) 

and (38) and with consideration of eq. (50), one can get 
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Eq. (56) implies that all FIFs 1
bK , 4

bK  and 5
bK  are 

completely defined by the shear SIF 2K  at 1 0.x b   In 

addition, it can be easily proved that all the normal stress, 
electrical displacement and magnetic induction in the right 
crack-tip 1 0x b   are nonsingular, which is in agreement 

with the interface crack problem for purely elastic bimateri-
als [43,53]. 

By following the same procedure, solutions to other 
crack surface conditions can be derived similarly. These 
solutions, along with the physical meanings of different 
crack surface conditions are given in Appendix A. 

3.3  Determination of the contact zone 

The solution to the interface crack problem obtained in the 
previous section is mathematically correct for any crack tip 
location 1 .x a  However, it only becomes physically 

valid if the following inequalities are satisfied: 

 
 

 
(1)
33 1 1 2

3 1 1

,0 0, ,

0, .

x x L

u x L

  
  

 (57) 

An analytical analysis and numerical verifications show 
that these inequalities hold true only if a  is taken from the 

segment  1 2,a a  providing 1 2a a , where 

 1 1 2 2, ,a b l a b l      (58) 

1  is the maximum root in the interval  0,1  of the equa-

tion ( 1K  in eq. (42a)): 

 1 0K   (59) 

and 2  is the similar root of the equation (  3u  in eq. 

(43a)): 
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  1 3 1,0 0.a x u x     (60) 

Therefore, eqs. (59) and (60), connecting to eqs. (42a) and 
(43a), can be solved numerically for 1  and 2 . 

In addition, usually the real contact zone length 

0

b a

l
 

  is uniquely defined by inequalities (57), and 

then the contact zone model in the Comninou [43] sense 
will take place. For the case considered, a set of positions 

 1 2,a a a  providing  1 2a a  satisfy the inequalities 

(58). In other words this set can be defined as follows: 

  1 2 .a a a a a     (61) 

Obviously, if ,a   the contact zone model consid-

ered here does not exist. Thus, the most interesting situation 
is associated with a    and it is clear that for any of 

such cases a unique contact zone defined by a real position 
of the point a should exist. 

4  Numerical results and discussions 

In this section, some typical numerical calculations are car-
ried out. In all our numerical procedures, 0  and 0  are, 

respectively, normalized by 0   and 0  , where 

without loss of generality, 6 24.2 10 N m ;    and B   

 (1) (1)
0 33 33b h   is the loading combination parameter intro-

duced to reflect the corresponding loading combination be-
tween magnetic and mechanical loads. In addition, in our 
numerical examples, the interface crack between two dis-
similar CoFe2O4-BaTiO3 composites is considered. Their 
material properties as volume percentage (or volume frac-
tion) vf of BaTiO3 were given by Sih and Song [54] in detail. 
In what follows, material 1 and material 2 correspond to 
CoFe2O4-BaTiO3 composites with vf =0.1 and vf =0.9, re-
spectively. For convenience, their material constants are 
listed in Table 1 [54,50]. The crack length l=2 mm is as-
sumed. Numerical results are plotted in Figures 2–10, where 

0 0.5K l  and 2
0 0 /4.G K  

Figures 2–4 show the effects of the location of the ap-
plied concentrated loads on the contact zone length 0 ,  the 

normalized Mode-II SIFs K2/K0 and the normalized total 
energy release rate G/G0 for different shear loads with fixed 
0/=1 and B=0, respectively. It is observed clearly from 
these figures that with increasing  (i.e., decreasing d), the 
contact zone length increases, and both the Mode-II SIF and 
energy release rate decrease. Furthermore, Figures 3 and 4  

 

Figure 2  Contact zone length 0 (=(ba)/l) versus the location of the 
applied concentrated loads (=(bd)/(bc)) for different shear loads as 
0/=1 and B=0 (Equivalent to b0=0). 

 

Figure 3  Normalized Mode-II SIFs K2/K0 (at x1=b+0) versus the position 
of the applied concentrated loads for different shear loads as 0/=1 and 
B=0. 

Table 1  Material constants for BaTiO3-CoFe2O4 composites with different volume fractions (vf ) [50,54] 

Material constants vf=0.1 vf=0.9 Material constants vf=0.1 vf=0.9 

c11 (GPa) 274 178.0 11×1010 (C2/N m2) 11.9 100.9 

c13 (GPa) 161 87.2 33×1010 (C2/N m2) 13.4 113.5 

c33 (GPa) 259 172.8 h32 (N/A m) 522.3 58.03 

c44 (GPa) 45 43.2 h33 (N/A m) 629.7 69.97 

e31 (C/m2) 4.4 3.96 h15 (N/A m) 495.0 55.00 

e33 (C/m2) 1.86 16.74 11×106 (N s2/C2) 531.5 63.5 

e15 (C/m2) 1.16 10.44 33×106 (N s2/C2) 142.3 24.7 
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Figure 4  Normalized total energy release rates versus the position of the 
applied concentrated loads for different shear loads as 0/=1 and B=0. 

imply that for the present load cases, the total energy release 
rate and Mode-II SIF can both be used equivalently as frac-
ture parameter. Thus, according to the maximum energy 
release rate criterion, the nearer to the left crack-tip the ap-
plied concentrated combined mechanical loads approach, 
the easier growth and propagation the crack right tip is. We 
point out that for the electrically impermeable and magneti-
cally permeable case and the electromagnetically permeable 
case, similar behaviors (but with slightly different ampli-
tudes) can be obtained with Figures 2 and 3 being further 
close to those in ref. [50] for the electromagnetically per-
meable case.  

Figures 5–7 show the effects of the magnetical load B 
on the contact zone length 0, the normalized Mode-II SIF 
K2/K0 and the normalized total energy release rate G/G0 for 
different locations of the concentrated loads with fixed 
0/=1 and 0/0=5, respectively. Figures 5–7 indicate that 
with increasing B, the contact zone length generally de-
creases whilst the Mode-II SIFs increase. It is also interest-
ing that the directions of the magnetic load could slightly 
affect the energy release rates. On the other hand, it should 
be noted that the effects of magnetic loads on any one of the 
contact zone length, Mode-II SIF and energy release rate  

 

Figure 5  Contact zone lengths versus the applied magnetic load B for 
different positions of the applied concentrated loads as 0/=1 and 0/0=5. 

 
Figure 6  Normalized Mode-II SIFs K2/K0 (at x1=b+0) versus the applied 
magnetic load B for different positions of the applied concentrated loads 
as 0/=1 and 0/0=5. 

 
Figure 7  Normalized total energy release rates versus the applied mag-
netic load B for different positions of the applied concentrated loads as 
0/=1 and 0/0=5. 

are insignificant. This feature holds also for the electrically 
impermeable and magnetically permeable case.  

Figures 8–10 display the effects of the normalized ap-
plied shear load on the contact zone length 0, the normal-
ized Mode-II SIFs K2/K0 and the normalized total energy 
release rate G/G0 for different magnetic loads with fixed  

 

Figure 8  Contact zone lengths versus the normalized applied shear load 
for different magnetic loads as 0/=1 and =0.3. 
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Figure 9  Normalized Mode-II SIFs K2/K0 (at x1=b+0) versus the normal-
ized applied shear load for different magnetic loads as 0/=1 and =0.3. 

 
Figure 10  Normalized total energy release rates versus the normalized 
applied shear load for different magnetic loads as 0/=1 and =0.3. 

0/=1 and =0.3, respectively. As shown in these figures, 
for a fixed position of the applied concentrated loads, in 
general, 0, K2 and G all increase with the increase of ap-
plied shear load. Figures 8–10 also imply that magnetic 
loads have negligible effects on 0, K2 and G. Figure 10 
further indicates that according to the energy release rate 
criterion, the crack easily initiates and grows with increas-
ing shear load. 

For the electromagnetically permeable case, Figures 
11–13 show, respectively, the variation of the contact zone 
length 0, the normalized Mode-II SIF K2/K0, and the nor-
malized total energy release rate G/G0 vs. the normalized 
applied shear load, for different  with fixed 0/=1. It is 
shown clearly that the contact zone length increases with 
increasing applied load and with increasing  (or decreasing 
d). Both the Mode-II SIF and total energy release rate also 
increase with increasing applied load but with decreasing  
(or increasing d). 

5  Conclusions 

An interface crack with a contact zone in an infinite mag-            

 

Figure 11  Contact zone length versus the normalized applied shear load 
for the electromagnetically permeable case with fixed 0/=1 but different 
. 

 

Figure 12  Normalized Mode-II SIFs K2/K0 (at x1=b+0) versus the nor-
malized applied shear load for the electromagnetically permeable case with 
fixed 0/=1 but different . 

 

Figure 13  Normalized total energy release rates versus the normalized 
applied shear load for the electromagnetically permeable case with fixed 
0/=1 but different . 

netoelectroelastic bimaterial under the concentrated magne-
toelectromechanical loads at the crack faces has been con-
sidered. For the open part of the crack faces, magnetically 
impermeable and electrically permeable crack surface con-
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dition is adopted. First, the matrix-vector representations 
(17) and (18) for the stresses, electrical displacement and 
magnetic induction as well as for the derivatives of the 
jumps of the displacements, electrical and magnetic poten-
tials via a sectionally-holomorphic vector-function are given. 
Next, the combined Dirichlet-Riemann boundary value 
problems (26)–(28) are derived and solved. Then, the stress, 
electrical displacement and magnetic induction intensity 
factors as well as the energy release rate have been obtained 
in a concise and analytical form. The transcendental equa-
tions for the determination of real contact zone length have 
been obtained as well. Finally, some typical numerical re-
sults are given for the material combination of BaTiO3- 
CoFe2O4 composites. From the theoretical and numerical 
results, the following conclusions can be drawn: 

(1) For the magnetically impermeable and electrically 
permeable interface crack with a contact zone under con-
centrated magnetoelectromechanical loads, all the normal 
stress, electrical displacement and magnetic induction at the 
right crack-tip a exhibit a square-root singularity, and the 
electrical displacement intensity factor at x1=a+0 depends 
on the Mode-I stress and magnetic induction intensity fac-
tors at x1=a+0. 

(2) Although all the normal stress, electrical displace-
ment and magnetic induction at the right crack-tip x1=b+0 
are nonsingular, all of them are singular at the left crack tip 
x1=b0. Furthermore, all the field intensity factors 1

bK , 

4
bK  and 5

bK  at the left crack-tip x1=b0 are completely 

defined by the shear SIF 2K  at x1=b+0, which reflects the 

intensity of square-root singularity of the shear stress there. 
(3) For the crack model with contact zone, the Mode-II 

SIF plays a very important role in the fracture analysis of 
the interface crack because it is nearly equivalent to total 
energy release rate.  

(4) For a fixed size of the applied magnetoelectrome-
chanical load, the contact zone length generally increases 
with decreasing load location parameter d. For a fixed loca-
tion of the concentrated loads, the contact zone length in-
creases with increasing shear load. 

(5) According to the maximum energy release rate crite-
rion, in general, the nearer to the left crack-tip x1=c the 
concentrated combined mechanical loads, the easier to grow 
and propagate the crack right-tip x1=b is. Moreover, the 
crack easily initiates and grows with increasing applied 
shear load. 

(6) For the present crack model, in general, the magnetic 
loads have a negligible effect on the contact zone length, 
Mode-II SIF and energy release rate. 

(7) Solutions to the other interface crack conditions are 
also presented and the corresponding numerical results are 
further discussed to illustrate the possible effect of different 
electromagnetic conditions on the field quantities. 

Appendix A  Solutions to interface crack conditions 

There exist various interface crack surface conditions which 
are very useful in practical engineering analysis. For exam-
ple, for the one we discussed mostly in this paper, the mag-
netically impermeable condition is actually magnetically 
open whilst the electrically permeable is electrically closed 
(i.e., it is an electrical wall). This and other electromagnetic 
conditions are quite common in electromagnetic studies 
[55–58]. As such, we add below the results for other two 
common crack surface electromagnetic conditions for easy 
future reference. 

A1  The electrically impermeable and magnetically 
permeable interface crack  

Following the same procedure, we find that 
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where  

    1 1 11 0cos sin ,m         

    2 1 11 0sin cos ,m           

 1 0 14 0 ,m d    4 0 44 0 .m d    

Also, similar to the electrically permeable and magneti-
cally impermeable case, we have 4 4 ,j jm S  1 1i ,j jm S   

1 1,j jn Y 3 3i ,j jn Y   4 4i ,j jn Y   
ˆ ,j jY S G  with j  and 

 TT
1 3 4, , 1,3,4j j j jS S S j   S  being, respectively, the 

eigenvalues and eigenvectors of the matrix  TTˆ ˆ G G  

where  
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Again, as shown in ref. [50], jlm , jln   , 1,3, 4j l   are 

all real values. 
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The energy release rate for the case can be expressed as:  
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In addition, the magnetic induction intensity factor at 
x1=a+0 can be finally derived as follows: 

 5 1 1 4 4 ,K K K    (a6) 

where 

    1 51 3 4 51 3 140 01 2,g p g p mp p          

with 
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Furthermore, all the FIFs 1
bK , 4

bK  and 5
bK  are com-

pletely defined by the shear SIF 2K  at 1 0.x b   In 

other words 

 

 
   

   

11 44 1
1 2

14 44 1

1
5

44

11
4 51 3 2 1 1 2 5

11 1

1
,

1

,

2
.

1

b

b
b

b b b

m m
K K

m m

K
K

m

m
K g p K p K p K

n









 

 

    




 (a7) 

A2  The electrically permeable and magnetically per-
meable interface crack  

For this case, we find that 
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The energy release rate can be written as: 
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The electric displacement intensity factor and the mag-
netic induction intensity factor at x1=a+0 can be finally de-
rived as follows: 
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Simultaneously, all the FIFs 1 ,bK  4
bK  and 5

bK  are com-

pletely defined by the shear SIF 2K  at 1 0,x b   i.e. 
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