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Abstract
A simple nonlinear model is proposed in this paper to study the solitary wave in a circular
magneto-electro-elastic rod. Based on the constitutive relation for transversely isotropic
piezoelectric and piezomagnetic materials, combined with the differential equations of motion,
we derive the longitudinal wave motion equation in a long circular rod. The nonlinearity
considered is geometrically associated with the nonlinear normal strain in the longitudinal rod
direction and the transverse Poisson’s effect is included by introducing the effective Poisson’s
ratio. The nonlinear solitary wave equation is solved by the Jacobi elliptic function expansion
method and numerical examples demonstrate not only the existence of such a wave but also
some interesting characteristics of the solitary wave in the rod made of different multiphase
coupled materials.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A soliton is a solitary, traveling wave pulse which is the
solution to certain nonlinear partial differential equations. This
special wave could have various important applications due
to its remarkable stability properties [1]. In particular, while
most dispersive waves would scatter inelastically and lose
‘energy’ due to radiation, solitary waves remerge, retaining
their identities with nearly the same speed and shape after
full nonlinear interaction. For example, the propagation of a
powerful laser beam through an optical crystal/fiber is often
accompanied by the wave breaking phenomenon and formation
of an optical shock, which plays an important role in the
propagation of light pulses through digital communication
fiber optic systems.

The first observation of a solitary wave was documented
in 1834 by the Scottish engineer John Russell, who followed
a water wave traveling through a canal for as much as
two miles without experiencing any noticeable distortion
by dispersion [2]. Solitary wave solutions to nonlinear
wave equations have also been used to describe deep water

4 Author to whom any correspondence should be addressed.

waves [3], the nonlinear lattice of DNA double-strand
dynamics in biophysics [4], coupled waveguide arrays in
nonlinear optics [5], blood flow in arteries [6], and ultrashort
pulses in metamaterials [7].

In the last two decades, nonlinear elastic effects on
solitary waves have received considerable attention in solid
mechanics [8–11]. On the basis of classical linear theory,
Zhang [12] derived the nonlinear equations, for a thin elastic
rod, of the longitudinal, torsional and flexural waves using the
Hamilton variation principle. Liu [13] solved the nonlinear
wave equation in an elastic rod by the Jacobi elliptic function
expansion method. Christov et al [14] considered the
propagation of a stationary solitary wave in an elastic rod over
an elastic foundation.

With increasing usage of magneto-electro-elastic (MEE)
structures in various engineering fields (such as sensors,
actuators, etc), wave propagation in MEE media has also
attracted many researchers. Using the propagator matrix and
state-vector approaches, Chen et al [15] presented an analytical
treatment for the propagation of harmonic waves in MEE
multilayered plates. Chen and Shen [16] obtained the effective
wave velocity and attenuation factor when axial shear MEE

0964-1726/11/105010+07$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA1
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waves propagate in piezoelectric–piezomagnetic composites.
Wu et al [17] derived a dynamic solution for the propagation of
harmonic waves in inhomogeneous (functionally graded) MEE
plates.

So far, however, there has been no report on nonlinear
solitary waves in MEE solids, which motivates this study.
Therefore, in this paper we present the solution and the
corresponding numerical results for a solitary wave in a long
MEE circular rod. This paper is organized as follows. In
section 2, we review the basic equations for MEE materials.
In section 3, the longitudinal wave equations in a MEE circular
rod are derived. Based on these equations, the corresponding
solitary wave equation is derived in section 4. Numerical
examples are given in section 5 and conclusions are drawn in
section 6.

2. Basic equations

We assume that the rod is made of a transversely isotropic MEE
material with its axis of symmetry being along the z-direction
(i.e., the rod direction). Therefore, the constitutive relations in
the cylindrical coordinate system (r , θ , z) can be written as

σr = c11εr + c12εθ + c13εz − e31 Ez − q31 Hz,

σθ = c12εr + c11εθ + c13εz − e31 Ez − q31 Hz,

σz = c13εr + c13εθ + c33εz − e33 Ez − q33 Hz,

τrz = c44γrz − e15 Er − q15 Hr ,

τθ z = c44γθ z − e15 Eθ − q15Hθ ,

τrθ = c66γrθ ,

(1)

Dr = e15γrz + ε11 Er + d11 Hr ,

Dθ = e15γθ z + ε11 Eθ + d11 Hθ ,

Dz = e31εr + e31εθ + e33εz + ε33 Ez + d33 Hz,

(2)

Br = q15γrz + d11 Er + μ11 Hr ,

Bθ = q15γθ z + d11 Eθ + μ11 Hθ ,

Bz = q31εr + q31εθ + q33εz + d33 Ez + μ33 Hz,

(3)

where σi and τi j are the normal and shear stresses; εi and
γi j are the normal and shear strains; Ei , Hi , Di , and Bi

are, respectively, the electric field, magnetic field, electric
displacement, and magnetic induction; ci j , εi j , ei j , qi j , di j ,
and μi j are, respectively, the elastic, dielectric, piezoelectric,
piezomagnetic, magneto-electric, and magnetic coefficients. It
is noted that for the transversely isotropic material, the relation
c11 = c12 + 2c66 holds.

Furthermore, in the absence of body forces and without
electric and magnetic charges, the equations of motion in the
rod are

∂σr

∂r
+ ∂τrθ

r∂θ
+ ∂τrz

∂z
+ σr − σθ

r
= ρ

∂2Ur

∂ t2
,

∂τrθ

∂r
+ ∂σθ

r∂θ
+ ∂τθ z

∂z
+ 2τrθ

r
= ρ

∂2Uθ

∂ t2
,

∂τrz

∂r
+ ∂τθ z

r∂θ
+ ∂σz

∂z
+ τrz

r
= ρ

∂2Uz

∂ t2
,

(4)

Figure 1. Schematic of a long circular MEE rod.

∂Dr

∂r
+ ∂Dθ

r∂θ
+ ∂Dz

∂z
= 0, (5)

∂Br

∂r
+ ∂Bθ

r∂θ
+ ∂Bz

∂z
= 0, (6)

where Ur , Uθ , and Uz are, respectively, the mechanical
displacements in the r -, θ -, and z-directions.

The finite (nonlinear) elastic strain–displacement, electric
field-potential and magnetic field-potential relations can be
expressed as

εr = ∂Ur

∂r
, εθ = ∂Uθ

r∂θ
+ Ur

r
,

εz = ∂Uz

∂z
+ 1

2

(
∂Uz

∂z

)2

, γrθ = ∂Ur

r∂θ
+ ∂Uθ

∂r
− Uθ

r
,

γθ z = ∂Uz

r∂θ
+ ∂Uθ

∂z
, γrz = ∂Uz

∂r
+ ∂Ur

∂z
,

(7)

Er = −∂φ
∂r
, Eθ = − ∂φ

r∂θ
, Ez = −∂φ

∂z
, (8)

Hr = −∂ψ
∂r
, Hθ = − ∂ψ

r∂θ
, Hz = −∂ψ

∂z
, (9)

where φ and ψ are the electric and magnetic potentials,
respectively. It should be noted that in writing equations (7)
we have assumed that the normal strain component in the
longitudinal rod direction (z-direction) is finite.

3. Longitudinal wave equations in a MEE circular
rod

We consider the wave propagation in a long MEE circular rod
as shown in figure 1. In the cylindrical coordinate system (r ,
θ , z), z is along the rod direction, i.e., the wave propagation
direction, and θ ∈ [0, 2π], 0 � r � R. To facilitate our study,
the following assumptions are made: (1) the cross section of
the rod remains plane before and after the deformation; (2) the
lateral surface of the rod has axial symmetry, which implies
that Uθ = 0 and ∂/∂θ = 0; (3) to consider the Poisson’s effect,
the gradient of the longitudinal displacement Uz and the radial
displacement Ur are connected by Ur = −νeffr∂Uz/∂z, where
νeff is the effective Poisson’s ratio to be determined later.
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Furthermore, since the problem is one-dimensional, the
extended tractions on the lateral boundary of the rod should
be zero. In other words, one has σr = 0, τrz = 0, τrθ = 0,
Dr = 0, Br = 0, from which the following relations are
obtained:

γrz = γθ z = 0, Er = Eθ = 0,

Hr = Hθ = 0, Dθ = Bθ = 0,
(10)

εr = e31 Ez + q31 Hz − c12εθ − c13εz

c11
. (11)

We now let U = Uz be the longitudinal displacement, then the
equations of motion are reduced to

− σθ

r
= ρ

∂2Ur

∂ t2
,

∂σz

∂z
= ρ

∂2U

∂ t2
, (12a)

∂Dz

∂z
= 0, (12b)

∂Bz

∂z
= 0. (12c)

In terms of U , φ and ψ , these equations become

A1
∂φ

∂z
+ A2

∂ψ

∂z
− A3νeff

∂U

∂z
+ A4εz = νeffρr 2 ∂

3U

∂ t2∂z
, (13)

∂

∂z

[
B1
∂φ

∂z
+ B2

∂ψ

∂z
− A4νeff

∂U

∂z
+ B4εz

]
= ρ

∂2U

∂ t2
, (14)

∂

∂z

[
C1
∂φ

∂z
+ C2

∂ψ

∂z
+ A1νeff

∂U

∂z
− B1εz

]
= 0, (15)

∂

∂z

[
C2
∂φ

∂z
+ D2

∂ψ

∂z
+ A2νeff

∂U

∂z
− B2εz

]
= 0, (16)

where

A1 =
(

1 − c12

c11

)
e31, A2 =

(
1 − c12

c11

)
q31,

A3 = c11 − c2
12

c11
, A4 = c13

(
1 − c12

c11

)
,

(17a)

B1 = e33 − c13

c11
e31, B2 = q33 − c13

c11
q31,

B4 = c33 − c2
13

c11
,

(17b)

C1 = e31

c11
e31 + ε33, C2 = e31

c11
q31 + d33,

D2 = q31

c11
q31 + μ33.

(17c)

Taking the derivative of equation (13) with respect to z, we
obtain

A1
∂2φ

∂z2
+ A2

∂2ψ

∂z2
− A3νeff

∂2U

∂z2
+ A4

∂εz

∂z
= ρνeffr

2 ∂4U

∂ t2∂z2
.

(18)

Integrating both sides of equation (18) over the cross section of
the rod, we arrive at

A1
∂2φ

∂z2
+A2

∂2ψ

∂z2
−A3νeff

∂2U

∂z2
= −A4

∂εz

∂z
+1

2
ρνeff R2 ∂4U

∂ t2∂z2
.

(19)
Then, equations (15), (16) and (19) can be solved for φ, ψ and
U as

∂2φ

∂z2
= 
1



,

∂2ψ

∂z2
= 
2



,

∂2U

∂z2
= 
3



, (20)

where


 =
∣∣∣∣∣

A1 A2 −νeff A3

C1 C2 νeff A1

C2 D2 νeff A2

∣∣∣∣∣ , (21a)


1 =
∣∣∣∣∣∣

1
2ρνeff R2 ∂4U

∂ t2∂z2 − A4
∂εz

∂z A2 −νeff A3

B1
∂εz

∂z C2 νeff A1

B2
∂εz

∂z D2 νeff A2

∣∣∣∣∣∣ , (21b)


2 =
∣∣∣∣∣∣

A1
1
2ρνeff R2 ∂4U

∂ t2∂z2 − A4
∂εz

∂z −νeff A3

C1 B1
∂εz

∂z νeff A1

C2 B2
∂εz

∂z νeff A2

∣∣∣∣∣∣ , (21c)


3 =
∣∣∣∣∣∣

A1 A2
1
2ρνeff R2 ∂4U

∂ t2∂z2 − A4
∂εz

∂z

C1 C2 B1
∂εz

∂z

C2 D2 B2
∂εz

∂z

∣∣∣∣∣∣ . (21d)

Substituting equations (20) into equation (14) gives

1



(B1
1 + B2
2 − νeff A4
3) = ρ

∂2U

∂ t2
− B4

∂εz

∂z
. (22)

Finally, taking the derivation of equation (22) with respect
to z and making use of the finite elastic strain–displacement
relation in equations (7), we obtain the following longitudinal
wave equation for a MEE circular rod:

1



(B1


∗
1 + B2


∗
2 − νeff A4


∗
3) = ρ

∂2u

∂ t2
− B4

∂2

∂z2

(
u + 1

2
u2

)
,

(23)
where u = ∂U/∂z, and


∗
1 = 1

2
ρν2

eff R2(C2 A2 − A1 D2)
∂4u

∂ t2∂z2

+ νeff[−A4(C2 A2 − A1 D2)− B1(A
2
2 + A3 D2)

+ B2(A1 A2 + C2 A3)] ∂
2

∂z2

(
u + 1

2
u2

)
, (24a)


∗
2 = −1

2
ρν2

eff R2(C1 A2 − A1C2)
∂4u

∂ t2∂z2

+ νeff[A4(C1 A2 − A1C2)+ B1(A1 A2 + C2 A3)

− B2(A
2
1 + C1 A3)] ∂

2

∂z2

(
u + 1

2
u2

)
, (24b)


∗
3 = 1

2
ρνeff R2(C1 D2 − C2

2 )
∂4u

∂ t2∂z2

+ [−A4(C1 D2 − C2
2 )− B1(A1 D2 − C2 A2)

+ B2(A1C2 − C1 A2)] ∂
2

∂z2

(
u + 1

2
u2

)
. (24c)

3
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Equation (23) can be also changed to the following standard
nonlinear wave equation:

∂2u

∂ t2
− c2

0

∂2u

∂z2
= ∂2

∂z2

(
c2

0

2
u2 + N

∂2u

∂ t2

)
, (25)

with

c2
0 = νeff


ρ
{B1[−A4(C2 A2 − A1 D2)− B1(A

2
2 + A3 D2)

+ B2(A1 A2 + C2 A3)] + B2[A4(C1 A2 − A1C2)

+ B1(A1 A2 + C2 A3)− B2(A
2
1 + C1 A3)]

− A4[−A4(C1 D2 − C2
2 )− B1(A1 D2 − C2 A2)

+ B2(A1C2 − C1 A2)]} + B4/ρ, (26)

N = 1
2νeff R2[B1(C2 A2 − A1 D2)− B2(C1 A2 − A1C2)

− A4(C1 D2 − C2
2 )][A1(C2 A2 − A1 D2)

− A2(C1 A2 − A1C2)− A3(C1 D2 − C2
2 )]−1, (27)

where c0 is the linear longitudinal wave velocity for a MEE
circular rod and N is the dispersion parameter, both depending
on the material properties as well as the geometry of the rod.

Equation (25) is a nonlinear wave equation with dispersion
caused by the transverse Poisson’s effect. The material
properties c0 and N are for a circular rod made of general MEE
materials, and, therefore, contain the following special cases.

(1) The piezoelectric (PE) rod if we neglect the magnetic
coupling. For this case equations (26) and (27) are reduced
to

c2
0 = 1

ρ

(
B4 − A2

4C1 − A3 B2
1 + 2B1 A1 A4

A2
1 + A3C1

)
,

N = 1

2
νeff R2 B1 A1 + A4C1

A2
1 + A3C1

.

(28a)

(2) The piezomagnetic (PM) rod if we neglect the electric
coupling. For this case equations (26) and (27) are reduced
to

c2
0 = 1

ρ

(
B4 − A2

4 D2 − A3 B2
2 + 2B2 A2 A4

A2
2 + A3 D2

)
,

N = 1

2
νeff R2 B2 A2 + A4 D2

A2
2 + A3 D2

.

(28b)

(3) The purely elastic transversely isotropic (TI) rod if we
neglect both the electric and magnetic couplings. For this case
equations (26) and (27) are reduced to

c2
0 = 1

ρ

(
B4 − A2

4

A3

)
= 1

ρ

(
c33 − 2c2

13

c11 + c12

)
,

N = 1

2
νeff R2 A4

A3
= 1

2
νeff R2 c13

c11 + c12
.

(28c)

(4) The purely elastic and isotropic (EI) rod if we neglect both
the electric and magnetic couplings, and let c11 = c33 =
E(1−νeff)/((1+νeff)(1−2νeff)) and c12 = c13 = Eνeff/((1+
νeff)(1 − 2νeff)). For this case equations (26) and (27) are
reduced to

c2
0 = E

ρ
, N = 1

2
ν2

eff R2. (28d)

We point out that only the purely elastic isotropic rod case was
studied before and, furthermore, our results (equations (28d))
are exactly the same as in [13].

In deriving the nonlinear wave equation (25), we have
made use of the effective Poisson’s ratio νeff. Its expression
can be simply obtained from the conditions we derived above:
σθ = σr = 0, τrz = τrθ = τθ z = 0, Dr = Dθ = Dz = 0,
Br = Bθ = Bz = 0, which gives νeff as

νeff = −εr

εz
= [q33q31 + μ33c13

+ (d33q31 − e31μ33)(e33μ33 − q33d33)/(d
2
33 − ε33μ33)]

× [2q2
31 + μ33(c11 + c12)+ 2(d33q31 − e31μ33)

× (e31μ33 − q31d33)/(d
2
33 − ε33μ33)]−1. (29)

4. Solitary waves in a MEE circular rod

We assume that the traveling wave solution of equation (25) is
in the following form (recall that u = ∂U/∂z):

u = u(ξ), ξ = k(z − ct), (30)

where k and c are the wavenumber and wave velocity,
respectively. Then equation (25) can be transformed into an
ordinary differential equation:

k2uξξξξ − c2 − c2
0

Nc2
uξξ + c2

0

2Nc2
(u2)ξξ = 0. (31)

Integrating equation (31) twice with respect to ξ , and letting
the integral constants be zero for convenience, we then have

k2uξξ − c2 − c2
0

Nc2
u + c2

0

2Nc2
u2 = 0. (32)

The solution to equation (32) can be found in terms of the
Jacobi elliptic cosine function expansion (cn(ξ,m) ≡ cn(ξ)
for brevity). In other words, the solution of equation (32) can
be written as

u(ξ) =
n∑

j=0

a j cn jξ. (33)

To facilitate the following discussion, we list below a couple
of important relations for the three kinds of Jacobi elliptic
functions and their asymptotic behaviors:

sn2ξ + cn2ξ = 1, dn2ξ + m2sn2ξ = 1, (34)

d(snξ)/dξ = cnξdnξ, d(cnξ)/dξ = −snξdnξ,

d(dnξ)/dξ = −m2snξcnξ,
(35)

sn(ξ, 0) = sin ξ, cn(ξ, 0) = cos ξ, dn(ξ, 0) = 1,
(36)

sn(ξ, 1) = tanh ξ, cn(ξ, 1) = dn(ξ, 1) = sech ξ, (37)

where snξ and dnξ are, respectively, the Jacobi elliptic sine
function and the third kind of Jacobi elliptic function, and m is
the modulus (0 � m � 1).

From equation (33), we observe that the highest order of
u(ξ) is n, i.e.,

O(u(ξ)) = n. (38)

4
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Based on the differential relations in equation (35), it is easy to
show that

O(du/dξ) = n + 1, O(d2u/dξ 2) = n + 2. (39)

Therefore, the highest order of u2 is

O(u2) = 2n. (40)

The highest order, n, in equation (38) is determined by the
homogeneous balance principle, i.e., the order balance between
the highest order derivative terms and the highest degree
nonlinear term in the nonlinear equation (32). As such we have
2n = n + 2 so that n = 2. Thus equation (33) is rewritten as

u(ξ) = a0 + a1cnξ + a2cn2ξ. (41)

Taking the derivative of equation (41) twice with respect to ξ ,
we have

d2u/dξ 2 = 2a2(1 − m2)− a1(1 − 2m2)cnξ

+ 4a2(2m2 − 1)cn2ξ − 2a1m2cn3ξ − 6a2m2cn4ξ. (42)

Substituting equations (41) and (42) into equation (32) and
comparing the terms with the same powers of cnξ , we find the
expressions for the expansion coefficients as

a0 = c2 − c2
0 − 4Nc2k2(2m2 − 1)

c2
0

, a1 = 0,

a2 = 12Nc2k2m2

c2
0

,

(43)

Therefore, the solution to the nonlinear wave equation (31) is

u(ξ) = c2 − c2
0 − 4Nc2k2(2m2 − 1)

c2
0

+12Nc2k2m2

c2
0

cn2(ξ,m).

(44)
It can be noted that this is an exact periodical solution! To
obtain the solitary wave solution, we take the limit of the
modulus m → 1, so that cnξ → sech ξ . Thus, equation (44) is
finally reduced to the solitary wave solution as

u(ξ) = c2 − c2
0 − 4Nc2k2

c2
0

+ 12Nc2k2

c2
0

sech2ξ. (45)

To discuss only the wave feature, we let the constant term be
zero. In other words,

k2 = c2 − c2
0

4Nc2
. (46)

Substituting equation (46) into equation (45), a standard
solitary wave solution of equation (32) is obtained:

u(ξ) = Asech2 z − ct

�
, (47)

where A is the wave amplitude and � is the wavelength,
expressed as

A = 3(c2 − c2
0)

c2
0

, � = 2π

k
= 4π

√
Nc2

c2 − c2
0

= 4π

√
3N

A
,

(48)
where c > c0 for the existence of a solitary wave. It should
be also noticed that the wavelength is inversely proportional to
the square root of the wave amplitude.

Table 1. Material coefficients for the BaTiO3–CoFe2O4 MEE
composite rod based on the simple rule of mixture
MC = MEvf + MM(1 − vf). Units: elastic constants, ci j , in
109 N m−2, piezoelectric constants, ei j , in C m−2, piezomagnetic
constants, qi j , in N Am−1, dielectric constants, εi j , in 10−9 C2 Nm−2,
magnetic constants, μi j , in 10−4 Ns2 C−2, magneto-electric
coefficients, di j , in 10−12 N s V−1 C−1 and ρ in 103 kg m−3.

vf 0% (PM) 50% (MEE) 100% (PE)

c11 286 225 166
c12 173 125 77
c13 170 124 78
c33 269.5 216 162
c44 45.3 44 43
e31 0 −2.2 −4.4
e33 0 9.3 18.6
e15 0 5.8 11.6
ε11 0.08 5.64 11.2
ε33 0.093 6.35 12.6
μ11 5.9 2.97 0.05
μ33 1.57 0.835 0.1
q31 580 290.2 0
q33 700 350 0
q15 550 275 0
d11 0 0 0
d33 0 0 0
ρ 5.3 5.55 5.8

5. Numerical results and discussion

In our numerical examples, we assume that the infinite
homogeneous MEE circular rod is made of the composite
BaTiO3–CoFe2O4 with different volume fractions (vf) of
BaTiO3. The rod has a radius R = 0.05 m. The material
properties of the composite are estimated using the simple rule
of mixture according to the volume fraction [18, 19]. Denoting
for the composite the volume fraction of BaTiO3 as vf, and that
of CoFe2O4 as 1 − vf, we then have

MC = MEvf + MM(1 − vf), (49)

where M represents an arbitrary material constant, and the
subscripts C, E, and M indicate the composite, piezoelectric
phase and piezomagnetic phase, respectively.

In the following, we consider three different cases of
material combinations, by taking the volume fraction of
BaTiO3 as 0% (PM), 50% (MEE) and 100% (PE), respectively.
Obviously, when vf = 0, the composite is piezomagnetic
(PM), whilst vf = 100% corresponds to a piezoelectric
(PE) material [20]. The MEE material properties are listed
in table 1. Another two purely elastic materials are also
considered. One is the transversely isotropic elastic material
(TI) taking from 50% (MEE) only the elastic coefficients. The
other one is the effective elastic isotropy (EI) obtained from the
TI by making it isotropic (i.e., letting c11 = c33 and c12 = c13).

For the rod made of the five different materials, we have
also calculated the linear wave velocity c0, effective Poisson’s
ratio νeff, dispersion parameter N , and the wavelength �, as
listed in table 2. It is observed that the wave velocity c0 in
the PM rod is the highest, followed by that in the 50% MEE
rod and then that in the PE rod. The wave velocity in the
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Table 2. Linear wave velocity c0, effective Poisson’s ratio νeff, dispersion parameter N , and wavelength� for piezoelectric BaTiO3 (PE),
piezoelectric–piezomagnetic BaTiO3–CoFe2O4 (MEE), piezomagnetic CoFe2O4 (PM), purely transversely isotropic (TI) material with elastic
properties from 50% MEE, and purely elastic isotropy (EI) reduced from TI as discussed in the text. (Note: TI stands for the purely elastic
transverse isotropy with its elastic material properties being directly taken from 50% MEE; EI stands for the purely elastic isotropy where the
isotropic material properties are obtained from TI by forcing the isotropy condition.)

vf 0% (PM) 50% (MEE) 100% (PE)
Transverse
isotropy (TI)

Elastic
isotropy (EI)

c0 (×103 m s−1) 5.2131 5.1446 5.0498 4.8003 4.8398
νeff 0.3725 0.3451 0.2906 0.3543 0.36
N (×10−4 m2) 1.735 1.489 1.056 1.570 1.620
� (m) (c = 1.1c0) 0.3973 0.3680 0.3099 0.3729 0.3839

Figure 2. Solitary waves in a 50% MEE rod as a function of
ξ = k(z − ct) for three different wave velocity ratios c/c0.

corresponding purely elastic rod (TI and EI) is clearly lower
than those in the coupled rod. It is interesting to note further
that the largest values for νeff, N and� are also associated with
the PM rod.

Figure 2 shows the solitary wave u in the 50% MEE rod
versus the variable ξ = k(z − ct) for different velocity ratios
c/c0. It is clear that the maximum of u is reached at the
center ξ = 0, and that its amplitude is symmetrical about
the center. We also notice that, with increasing velocity ratio
c/c0, its amplitude increases, but its wavelength decreases. In
other words, a solitary wave with larger amplitude will have
a narrower wavelength, a typical dispersion characteristic in a
nonlinear wave.

Figure 3 shows the solitary wave u as a function of the
composite rod coordinate z. The time is fixed at t = 0.001 s
and the nonlinear velocity at c = 1.1c0. The five different
materials MEE, PE, PM, TI, and EI are those listed in table 2.
It is interesting that while their amplitudes are very close to
each other, these waves are clearly grouped into two classes:
the piezoelectric and piezomagnetic coupled class (PM, MEE,
and PE) with a relatively higher wave velocity and the purely
elastic class (EI and TI) with a relatively lower wave velocity.

The comprehensive solitary wave features are presented in
figure 4 for a rod made of 50% MEE with fixed c = 1.1c0.
It is shown that the solitons appear only at a certain given

Figure 3. Solitary waves in a rod made of different materials with
fixed t = 0.001 s and c = 1.1c0.

Figure 4. Solitary waves versus time t and coordinate z in a 50%
MEE rod with fixed c = 1.1c0.

combination of the time t and coordinate z, and that the same
wave pattern will repeat itself at these special combinations
of t and z. This again demonstrates that a solitary wave in
a MEE rod is very stable and therefore could have potential
applications, say in non-destructive evaluation of structures
made of the advanced MEE material.

Figure 5 plots the relations between the wave velocity c
and wavenumber k for the five different materials in table 2.
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Figure 5. Wave velocity c versus wavenumber k in a rod made of
different materials.

It is observed that when the wavenumber is small, the wave
velocity in the coupled class (PM, MEE, and PE) is higher
than that in the purely elastic class (EI and TI). However, with
increasing wavenumber, these five materials form three new
classes: PM is the first with the highest velocity; in the middle,
we have MEE, EI and TI; and finally PE has the lowest velocity.

6. Conclusions

In this paper, by assuming geometric nonlinearity in the
longitudinal direction and by introducing the effective
Poisson’s ratio for the transverse Poisson’s effect, we have
derived the nonlinear solitary wave equation in a long MEE
circular rod. The wave equation is then solved by the Jacobi
elliptic function expansion method and numerical examples
are further presented for the wave in a rod made of five
different materials: the three-phase fully coupled MEE,
coupled piezoelectric PE, coupled piezomagnetic PM, purely
elastic but transverse isotropy TI and purely elastic isotropy EI.
It is demonstrated that the solitary wave not only exists in such
rods but also shows different features in different materials,
which could have potential applications in non-destructive
evaluation of structures made of the advanced MEE material.
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