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a b s t r a c t

By applying semi-analytical point-force Green’s functions obtained via the Stroh

formulism, we derive simple line integrals to calculate the elastic displacement and

stress fields for a three-dimensional dislocation loop in an anisotropic bimaterial

system. The solutions for the case of anisotropy are more convenient for treating an

arbitrary dislocation loop compared with traditional area integration. With this new

formulation, we numerically examine the displacement, stress, and energy due to the

interaction between a dislocation loop and the bimaterial interface in an Al–Cu system.

The interactive image energy due to the elastic moduli mismatch across the interface is

then numerically evaluated. The result shows that a dislocation loop is subjected to an

attractive force by the interface when it lies in the stiff material, and a repulsive force

when it lies in the soft material. Moreover, the dependence of the interactive image

energy of a dislocation loop on the position and size of the dislocation loop are also

demonstrated and discussed. Significantly, it is found that the interactive image energy

for a dislocation loop depends only on the ratio d/a, where a is the loop diameter and d

is its distance to the interface. The examples studied provide benchmark solutions for

anisotropic bimaterial dislocation problems.

Published by Elsevier Ltd.

1. Introduction

Stress fields that arise due to the presence of an elastic modulus mismatch across a bimaterial interface are
fundamental to understanding the nature of dislocation/interface interactions in two-phase composites. An approaching
dislocation perturbs the stress field on the interface, while in turn, the discontinuity in material stiffness across the
interface alters the stress field on the dislocation. Their interaction can result in blocking, transmission, or absorption of
the dislocation by the interface (Demkowicz et al., 2008; Lu et al., 2009; Wang et al., 2008a,b, 2011). The significance of
such defect/interface interactions increases when the composite material contains an unusually high density of interfaces,
such as in multi-layered nanocomposites (Misra, 2008; Mara et al., 2008, 2010; Han et al., 2011). For this particular
lamellar architecture, defect–interface interactions have been studied extensively from the atomistic to dislocation
scale (Freund, 1990; Anderson et al., 1999; Ghoneim and Han, 2005; Akasheh et al., 2007a,b; Demkowicz et al., 2008;
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Wang et al., 2009a,b; Wang and Misra, 2011; Zhang et al., 2011). Altering the layer thickness within the submicron to
nanoscale regime causes dramatic changes not only in the overall strength of the composite, but also in the nature of the
defect/interface interactions (Misra and Kung, 2001; Misra et al., 1999, 2002). For layer thicknesses greater than
E50–100 nm, dislocations tend to pile-up leading to a Hall-Petch scaling law for strength. As the layer thickness reduces
to a few tens of nanometers, the dislocations are confined by two neighboring interfaces to expand within the layer, a
mechanism called confined layer slip. For layers less than 10 nm, the latter mechanism becomes less favorable compared
to dislocation transmission across the interface. The processes of transmission or nucleation involve dislocation loops of a
number of possible orientations and sizes closely interacting with the interface. Atomic-scale simulations of defect/
interface interactions necessarily only consider a few specific cases. A more general analytical approach to this problem
would help advance a deeper understanding and provide insight into some of the observations from simulations.

Towards this end, in this work, we study the energetics and mechanics of dislocation loops of arbitrary size and position
within an anisotropic bimaterial, containing a single interface. To accomplish this task, we derive line-integral expressions
for the elastic fields induced by an arbitrary shaped dislocation loop in an anisotropic bimaterial system. The major
challenge here involves reducing the surface integral to a line integral for the displacement and stress fields associated
with the image part in the case of elastic anisotropy since Stokes’ theorem cannot be utilized.

Theoretical analyses based on Green’s function techniques have been successful in providing analytical solutions for the
elastic displacement and stress fields produced by dislocations. Fundamentally, these elastic fields can be expressed as an
integral of a point-force Green’s function and its derivatives over the dislocation surface (Volterra, 1907; Mura, 1963;
Willis, 1970; Hirth and Lothe, 1982; Wang, 1996; Han and Ghoniem, 2005). For homogeneous materials, this method has
been applied directly to calculate the elastic fields (Mura, 1987). For heterogeneous (bi- or multi-layered) materials, the
point-force Green’s function is often divided into two terms: the full-space term and image term (Fares and Li, 1988; Ting,
1996; Pan and Yuan, 2000). The full-space term corresponds to the point-force Green’s function in a homogenous material
encompassing the entire space, and the image one is induced by image point forces that arise from the elastic mismatch
across interfaces. Accordingly, the elastic field of a dislocation in the bimaterial can be separated into two parts associated
with the two point-force Green’s functions (Akarapu and Zbib, 2009). Generally, both parts can be evaluated by surface
integrals.

By applying the Stokes’ theorem, the surface integral of the strain/stress field of a dislocation loop in a full space can be
reduced to the integral along the dislocation line (Mura, 1963). For anisotropic materials, the analytical expression of the
stress/strain field due to a straight segment of a dislocation loop in an anisotropic solid was derived by Willis (1970) and
Wang (1996). Recently, Chu et al. (2011) obtained a line-integral expression of the elastic displacement for dislocation
loops in a 3D anisotropic full space. Comninou and Dundurs (1975) obtained an analytical expression for the stress field
generated by an angular dislocation in an isotropic half space. Ben-Zion (1990) studied the elastic response of two isotropic
half spaces to point dislocations at their common interface. Yu and Sanday (1991) presented a line integral solution for a
circular dislocation in an isotropic bimaterial system. Gosling and Willis (1994) derived a line integral for the stresses
associated with an arbitrary dislocation in an isotropic half-space. Ghoniem and Han (2005) proposed a line-integral
expression (along the dislocation boundary) for the elastic fields produced by dislocations in multilayered materials of
elastic anisotropy. Since their integrand (i.e., the point-force Green’s function) includes a line integral from 0 to p, their
solution involves a double integral. Akarapu and Zbib (2009) recently constructed line-integral expressions for the
displacement and stress fields associated with an arbitrary shaped dislocation in an isotropic bimaterial. These line-
integral expressions were used in their computational dislocation dynamic codes to enhance the computation efficiency in
calculating stress fields. On the other hand, singularity on/around the dislocation loops is a long-standing issue (Chu et al.,
2011). Several models have been proposed to overcome it. For instance, to avoid the singularity that would be produced
from linear elastic dislocation theory, Cai et al. (2006) proposed a non-singular continuum theory of dislocations.
Fitzgerald and Aubry (2010) assumed that the core energy follows a similar form to the elastic energy. Gavazza and Barnett
(1976) separated the total energy into the core energy (in their words the ‘‘tube-part’’) and the elastic part (the ‘‘cut-part’’)
lying outside of the tube. The core energy is then evaluated using the Stroh’s vector Airy stress function for an infinite
straight dislocation, which is a two-dimensional problem. Hirth and Lothe (1982) suggested choosing a cut-off value small
enough to make the contribution of the core when carrying out integration of the elastic strain energy. In this case a
suitable ‘‘cut-off’’ radius for the core region ranges from 0.5b to 2b (with b being the magnitude of the Burgers vector). It is
worth pointing out the exact value for the cut-off for a specific case can only be determined via atomistic simulations,
which varies with dislocation type and interatomic potential. Thus, physically, the results in the core region obtained by
continuum mechanics are not useful.

The present work continues beyond previous work in this area by treating a bimaterial interface formed by two
elastically anisotropic crystals. These calculations are accomplished by a line integral formulation that we develop in this
work. This formulation can efficiently and accurately calculate the elastic displacement, strain, and stress fields due to a
loop of any size and shape located near a bimaterial interface in a three-dimensional (3D) space. The theory allows for any
arbitrary orientation relationship and relative position in space between the loop and interface. Most materials of interest
are elastically anisotropic, and hence it is of considerable importance to account for the mismatch in the anisotropic
stiffness tensor across the bimaterial interface when calculating these elastic fields.

This paper is organized as follows. In Section 2, we present general integral expressions for the elastic fields produced
by a dislocation loop located in an elastically anisotropic half space bonded to the other half space with different
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anisotropic elastic properties. The section ends with the solutions for the image displacement and strain. In Section 3,
we implement the proposed approach to study the displacement and stress fields that a dislocation produces on the
interface and the variation in the interactive image energy with the size a and position d of the dislocation loop from the
interface. It is found that the interactive image energy for a dislocation loop depends only on the ratio d/a. Conclusions are
drawn in Section 4.

2. Integral expressions of elastic fields in anisotropic elastic bimaterials

The problem of interest consists of a dislocation loop in a crystal joined to another with dissimilar anisotropic elastic
properties. The jump in elastic moduli across the interface perturbs the elastic displacement, strain, and stress
distributions in the material. The line integral formulation developed here provides the solution for these fields as a
function of the dislocation position, character, strength (Burgers vector), and geometry.

We consider a general dislocation surface denoted by S located in the upper half space (x340) in an anisotropic
bimaterial space. The upper surface of the dislocation denoted by Sþ slips by the Burgers vector b relative to the lower
surface denoted by S� . The normal vectors of the upper and lower surfaces are nþ and n� , respectively.

2.1. The displacement and strain fields for a dislocation loop

The constitutive relation for a material of general elastic anisotropy is given by

sij ¼ Cijklekl ð1Þ

In this paper, repeated indices obey the summation convention from 1 to 3, unless noted otherwise. Following the work
by Volterra (1907), Mura (1963), Gosling and Willis (1994), Pan (1991), and Han and Ghoniem (2005), the elastic
displacement induced by the dislocation S is

ukðyÞ ¼

Z
S

CijmlðxÞGmk,xl
ðy; xÞbjðxÞniðxÞdSðxÞ ð2Þ

where Gmk(y;x) is the point-force Green’s function representing the elastic displacement in the m-direction at x induced by
a point force in k-direction applied at y; ni¼ni

�
denotes the cosine of the normal unit vector of the dislocation surface; bj is

the jth component of the Burgers vector. From Eq. (2), the displacement gradient can easily be obtained as:

uk,pðyÞ ¼
Z

S
CijmlðxÞGmk,xlyp

ðy; xÞbjðxÞniðxÞdSðxÞ ð3Þ

Here we emphasize that, if the dislocation is located in an isotropic and homogeneous full space, Eq. (3) can exactly be
reduced to a line integral as given by Mura (1963), and Gosling and Willis (1970). In the bimaterial case, since the Green’s
function does not satisfy the derivative relationship @Gðy,xÞ=@x¼�@Gðy,xÞ=@y, it is difficult to convert the involved surface
integral into a line integral.

2.2. Point-force Green’s function for bimaterials

Integration of Eqs. (2) and (3) over the dislocation surface requires the point-force Green’s function. The study of
Green’s function for an anisotropic half-space or a bimaterial system can be traced back to the work of Mindlin (1936) and
Barnett and Lothe (1974). The Green’s functions for an anisotropic bimaterial system were obtained by Pan and Yuan
(2000) via the Stroh formalism and Fourier transform, and their results are briefly reviewed below for the sake of
completeness.

We first introduce the Stroh eigen equation for an anisotropic material, which is (Ting, 1996)

½QþpðRþRT
Þþp2T�a¼ 0 ð4Þ

with

Qij ¼ Cikjsnkns, Rij ¼ Cikjsnkms, Tij ¼ Cikjsmkms

n¼ ½cosy,siny,0�T , m¼ ½0,0,1�T ð5Þ

where the superscript ‘T’ denotes the transpose of the matrix. In Eq. (4), pi, and ai (i¼1, 2, 3) are the eigenvalues and the
associated eigenvectors, respectively. We further define

ImðpiÞ40, piþ3 ¼ pi, aiþ3 ¼ ai, ði¼ 1,2,3Þ

A� ½a1,a2,a3�, B� ½b1,b2,b3� with bi � ðR
T
þpiTÞai ð6Þ

where the symbol ‘Im’ and the overbar denote the imaginary part and the complex conjugate, respectively. There is no
summation on the repeated index i in the last expression.
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The Green’s function (displacement) tensor at field point x in the upper half-space (x340) of an anisotropic bimaterial
due to a point force at y is

Gðy; xÞ ¼
G1ðy; xÞ� 1

2p2

R p
0 A1Gð1Þu AT

1dy y340

� 1
2p2

R p
0 A1Gð2Þu A

T

2dy y3o0

8<
: ð7Þ

where

½Gð1Þu �ij ¼
½G1�ij

hðpð1Þi Þx�hðpð1Þj Þy

½Gð2Þu �ij ¼
½G2�ij

hðpð1Þi Þx�hðpð2Þj Þy

G1 ¼�A
�1

1 ðM1þM2Þ
�1
ðM1�M2ÞA1

G2 ¼A
�1

1 ðM1þM2Þ
�1
ðM2þM2ÞA2

hðpnÞ ¼ ½cosy,siny,pn�
T

Ma ¼�iBaA�1
a ða¼ 1,2Þ ð8Þ

In Eq. (7), G1ðy; xÞ is the corresponding full-space Green’s function tensor, which is available in an explicit form (Pan
and Yuan, 2000; Tonon et al., 2001). The superscript ‘(1)’ (‘(2)’) or subscript ‘1’ (‘2’) attached to the matrices, vectors, and
scalars stand for those related to material 1 (2), i.e., in the upper (lower) half-space with x340 (x3o0). There is no
summation over the repeated indices i and j in Eq. (8).

In Eq. (7) the field point x of the Green’s function must be within the upper half space, i.e. x340. It allows for the source
to be either in the upper half space, i.e. y340, or lower half space, y3o0, an extension of the Green’s function obtained by
Pan and Yuan (2000), which only assumed the former.

The Green’s function tensor at field point x in the lower half-space (x3o0) is

Gðy; xÞ ¼
G1ðy; xÞ� 1

2p2

R p
0 A2Gð2Þu A

T

2dy y3o0

� 1
2p2

R p
0 A2Gð1Þu AT

1dy y340

8<
: ð9Þ

where the new matrices Gð1Þu and Gð2Þu are defined as

½Gð1Þu �ij ¼
�½G1�ij

hðpð2Þi Þx�hðpð1Þj Þy

½Gð2Þu �ij ¼
�½G2�ij

hðpð2Þi Þx�hðpð2Þj Þy

G1 ¼ A�1
2 ðM1þM2Þ

�1
ðM1þM1ÞA1

G2 ¼ A�1
2 ðM1þM2Þ

�1
ðM1�M2ÞA2 ð10Þ

In order to obtain the displacements and strains induced by a dislocation in a bimaterial system, the Green’s functions
in Eqs. (7) and (9) should be substituted into Eqs. (2) and (3). It is observed from both Eqs. (7) and (9), that the Green’s
functions can be separated into two parts: one corresponds to the full-space G1ðy; xÞ and the other includes the remaining
terms that are associated with the bimaterial interface. We will refer the latter as the image Green’s function. Substituting
Eq. (7) into Eqs. (2) and (3) results in the integral over the dislocation surface that we must solve. The first part of the
surface integral contains the full-space Green’s function. The line-integral expressions for the displacement and stress
fields corresponding to this case were recently derived by Chu et al. (2011). Thus, the main task of this work is to solve the
second integral that contains the image Green’s functions in Eqs. (7) and (9).

2.3. The line integral expressions for a triangular dislocation

An arbitrary polygonal shape can be constructed by a finite number of triangles. Accordingly the integral over a
polygonal dislocation can be regarded as the summation of the integrals over triangular dislocations. In what follows, we
derive the integral expressions of the image part over an arbitrary triangular dislocation in a bimaterial space. With this,
we can derive the elastic fields induced by a triangular dislocation, which by the method of superposition, can be utilized
to obtain the elastic field due to a polygonal dislocation.

We substitute the image part of Green’s function (i.e., the complementary part added to the infinite-space Green’s
function in order to satisfy the interface condition in the bimaterial space) in Eq. (7) into Eq. (2), and find the image
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displacement induced by a triangular dislocation, i.e.

uImage
k ðyÞ ¼

� 1
2p2

R p
0 dy

R
DCijml½A1Gð1Þu AT

1�mk,xl
bjnidSðxÞ y340

� 1
2p2

R p
0 dy

R
DCijml½A1Gð2Þu AT

2�mk,xl
bjnidSðxÞ y3o0

8<
: ð11Þ

Due to the fact that the eigenvector matrices A1 and A2, and G1 and G2 in Eq. (8) are independent of the field and source
points x and y, Eq. (11) can be written as

uImage
k ðyÞ ¼

� 1
2p2

R p
0 CijmlbjniA1 mtA

T
1sk

R
DGð1Þu ts,xl

dSðxÞ
h i

dy y340

� 1
2p2

R p
0 CijmlbjniA1 mtA

T
2sk

R
DGð2Þu ts,xl

dSðxÞ
h i

dy y3o0

8><
>: ð12Þ

Making use of the expression for Gu in Eq. (8) and with some manipulations, the integral on the triangular dislocation
becomesR

DGð1Þu ts,xl
dSðxÞ ¼

R
D

�G1tshlðp
ð1Þ
t Þ

½hðp
ð1Þ
t Þx�hðpð1Þs Þy�

2
dSðxÞ y340

R
DGð2Þu ts,xl

dSðxÞ ¼
R
D

�G2tshlðp
ð1Þ
t Þ

½hðpð1Þt Þx�hðpð2Þs Þy�
2 dSðxÞ y3o0

8>><
>>: ð13Þ

where the vector h in Eq. (8) has the following components:

hðpð1Þt Þ ¼ ½cosy,siny,pð1Þt �
T

hðpð1Þt Þ ¼ ½cosy,siny,pð1Þt �
T ð14Þ

By taking the derivative of the image displacement in Eq. (12), the corresponding image strain can be obtained, which is

uImage
k,p ðyÞ ¼

� 1
4p2

R 2p
0 CijmlbjniA1 mtA

T
1 sk

R
DGð1Þu ts,xlyp

dSðxÞ
h i

dy y340

� 1
4p2

R 2p
0 CijmlbjniA1 mtA

T
2 sk

R
DGð2Þu ts,xlyp

dSðxÞ
h i

dy y3o0

8><
>: ð15Þ

The integral over the triangular dislocation in Eq. (15) can be expressed asR
DG1

u ts,xlyp
dSðxÞ ¼

R
D
�2G1tshlðp

ð1Þ
t Þhpðp

ð1Þ
s Þ

½hðp
ð1Þ
t Þx�hðpð1Þs Þy�

3
dSðxÞ y340

R
DG2

u ts,xlyp
dSðxÞ ¼

R
D
�2G2tshlðp

ð1Þ
t Þhpðp

ð2Þ
s Þ

½hðpð1Þt Þx�hðpð2Þs Þy�
3 dSðxÞ y3o0

8>><
>>: ð16Þ

where by making use of the definition for h, we have

hlðp
ð1Þ
t Þhpðp

ð1Þ
s Þ ¼

cosycosy cosysiny cosypð1Þs

sinycosy sinysiny sinypð1Þs

pð1Þt cosy pð1Þt siny pð1Þt pð1Þs

2
664

3
775 ð17Þ

and

hlðp
ð1Þ
t Þhpðp

ð2Þ
s Þ ¼

cosycosy cosysiny cosypð2Þs

sinycosy sinysiny sinypð2Þs

pð1Þt cosy pð1Þt siny pð1Þt pð2Þs

2
664

3
775 ð18Þ

Since the numerators in the integrands of Eqs. (13) and (16) are independent of x, their integrals are related to power
functions of x with exponents �2 and �3. Thus, the kernel integral on the triangular dislocation is

Fnðy,y,p1,p2Þ ¼

Z
D

dSðxÞ

½hðp1Þx�hðp2Þy�
n n¼ 2,3 ð19Þ

where p1 and p2 can be assigned to different eigenvalues, according the requirements in Eqs. (13) and (16). In order to
carry out the surface integration in Eq. (19) over a triangular dislocation, the following transformation between the global
coordinate system (O: x1, x2, x3) and the local coordinate system (x0: x1, x2, x3), associated with the triangular dislocation
with the base vectors ni

0
(i¼1, 2, 3), as shown in Fig. 1, is introduced

½x�x0� ¼ ½D�½x� ð20Þ

where

Dij ¼ x0
i Un

0
j ð21Þ

with x0 being the origin of the local coordinates. Then, the integration in Eq. (19) becomes

Fnðy,y,p1,p2Þ ¼

Z
D

dx1dx2

½f 1ðy,yÞx1þ f 2ðy,yÞx2þ f 3ðy,yÞ�n
n¼ 2,3 ð22Þ

H.J. Chu et al. / J. Mech. Phys. Solids 60 (2012) 418–431422
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where

f aðy,y,p1,p2Þ ¼Dkahkðp1Þ, a¼ 1,2 ð23Þ

f 3ðy,y,p1,p2Þ ¼ x0khkðp1Þ�ykhkðp2Þ ð24Þ

On the triangle DP1P2P3 shown in Fig. 1, the integral in Eq. (22) becomes

Fn ¼

Z h

0
dx2

Z ððh�x2Þ=hÞl2

�ððh�x2Þ=hÞl1

dx1

½f 1ðy,yÞx1þ f 2ðy,yÞx2þ f 3ðy,yÞ�n
ð25Þ

By direct integration and with some simplification, we obtain

F2ðy,y,p1,p2Þ ¼
1

f 1

1

f 2þ f 1ln1
ln

f n3þ f 2

f n3�f 1ln1
�

1

f 2�f 1ln2
ln

f n3þ f 2

f n3þ f 1ln2

 !

F3ðy,y,p1,p2Þ ¼
1

2

ln1þ ln2
hðf n3þ f 2Þðf

n

3þ f 1ln2Þðf
n

3�f 1ln1Þ
ð26Þ

with

ln1 ¼ l1=h, ln2 ¼ l2=h, f n3 ¼ f 3=h ð27Þ

This completes the exact integration of the image displacement Eq. (12) and image strain Eq. (15). The results for the
integration over the triangular dislocation loop can be extended to an arbitrarily shaped planar dislocation loop, as shown
in the Appendix. The final solution for the displacement and strain fields induced by a triangular dislocation loop contains
only line integrals over [0, p] for both the full-space part (Chu et al., 2011) and the image part.

3. Numerical examples

The derived line integrals are employed to calculate the elastic displacements, elastic stresses, and the interaction
energy induced by a dislocation loop lying at a prescribed distance from a single aluminum–copper (Al–Cu) bimaterial
interface. As Al and Cu are both face-centered cubic (fcc) crystals, a loop in either material can be assumed to lie on a (111)
plane with Burgers vector b¼1/2[1̄10].

3.1. Displacement and stress fields due to a triangular dislocation

We first consider the solution for a unit triangular loop of arbitrary orientation and check the displacement and traction
continuities at the bimaterial interface. As shown in Fig. 2, a regular triangular dislocation with side length a lies in the
(111) slip plane, which is located in the upper half-space made of Al (x340). The distance from the origin of the local
dislocation coordinate system to the Al–Cu interface plane Ox1x2 is assumed to be 2a. Because the solutions’ Eqs. (11) and
(15) cannot be evaluated exactly at the interface, we calculate the displacements and tractions at five points within a
parallel plane above and below the interface plane by 7x3, where x3¼10�7.

The resulting displacements normalized by the magnitude of the Burgers vector b are shown in Table 1 and the
tractions or stresses normalized by Zm, where Z¼b/lloop¼b/3a and m¼m(Al)¼(C1111�C1122þ4C2323)(Al)/6, are given in
Table 2. The constant m is the nominal shear modulus (Hirth and Lothe, 1982). It is clear that the displacement and traction

Fig. 1. Geometry of a polygonal dislocation with respect to the global coordinate system (O; x1, x2, x3). This dislocation is divided into three triangles.

As an example, a local coordinate system (x0; x1, x2, x3) is attached to the second triangle with its corners P1, P2 and P3, where h¼x2(P1), l1¼�x1(P2),

l2¼x1(P3). Obviously, l1 and l2 can be negative.
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continuity conditions at the interface are both satisfied with differences being extremely small on both sides of the
interface, with a relative error less than 10�5. Also, the displacement jump condition across the dislocation surface should
equal the Burgers vector. This condition was satisfied with a maximum relative difference less than 0.4%.

With the method validated, we consider a case in which a dislocation loop in Al approaches a bimaterial interface.
Of interest is the effect of this nearby dislocation loop on the displacement and stress distributions across the interface
plane. Depending on the properties of the interface, the perturbations in stress caused by the impinging dislocation can, for

Fig. 2. Geometry of a triangular dislocation in a 3D aluminum–copper bimaterial system, where x340 is Al and x3o0 is Cu.

Table 1
Global displacement continuity across the interface x3¼0 due to a triangular dislocation in Al of the Al–Cu bimaterials. All displacements are normalized

by the magnitude of the Burgers value b.

Points u1 (�10�3) u2 (�10�3) u3 (�10�3) 9Du1=u19 9Du2=u29 9Du3=u39

Aþ 0.67164451 �0.67164451 2.7592754�10�15 o2.3�10�7 o2.3�10�7 o1.0�10�7

A� 0.67164436 �0.67164436 2.7592754�10�15

Bþ 0.76577825 �0.60833022 0.20739566 o1.8�10�7 o1.3�10�7 o3.0�10�7

B� 0.76577811 �0.60833014 0.20739560

Cþ 1.4396699 �0.47939323 1.8210319 o2.9�10�7 o2.1�10�7 o3.3�10�7

C� 1.4396695 �0.47939313 1.8210313

Dþ 0.51739796 �1.5798707 �2.0487164 o2.5�10�7 o3.2�10�7 o2.9�10�7

D� 0.51739783 �1.5798702 �2.0487158

Eþ 0.53924271 �0.50616183 0.16986679 o2.1�10�7 o2.0�10�7 o2.9�10�7

E� 0.53924260 �0.50616173 0.16986674

Note: A7
¼(0.0, 0.0, 7x3), B7

¼(�0.4,�0.3, 7x3), C7
¼(�0.6, 0.4, 7x3), D7

¼(0.5, �0.7, 7x3), E7
¼(0.3, 0.4, 7x3) where x3¼10�7, Coordinates are all

normalized by the side length a of the triangle.

Table 2
Global tractions at the interface (x3¼0). All data are normalized by Zm(Al).

Points s13 (�10�2) s23 (�10�2) s33 (�10�2) 9Ds13=s139 9Ds23=s239 9Ds33=s339

Aþ �1.25479050 1.254790497 o1�10�15 o5.6�10�8 o6.4�10�8 –

A� �1.25479057 1.254790570 o1�10�15

Bþ �1.22207891 1.560346805 0.544003571 o8.3�10�8 o1.9�10�8 o3.7�10�7

B� �1.22207901 1.560346829 0.544003401

Cþ 0.815840579 0.6345267133 4.62601867 o7.3�10�7 o1.1�10�7 o4.4�10�6

C� 0.815840094 0.6345267859 4.62601723

Dþ �0.222732960 �1.29575685 �5.04362798 o9.0�10�7 o4.6�10�7 o4.0�10�7

D� �0.222733086 �1.29575631 �5.04362653

Eþ �0.114415563 1.04509261 0.444403217 o8.7�10�7 o7.7�10�8 o4.5�10�7

E� �0.114415570 1.04509269 0.444403047

Note: A7
¼(0.0, 0.0, 7x3), B7

¼(�0.4,�0.3, 7x3), C7
¼(�0.6, 0.4, 7x3), D7

¼(0.5, �0.7, 7x3), E7
¼(0.3, 0.4, 7x3) where x3¼10�7, Coordinates are all

normalized by the side length a of the triangle.
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instance, result in dislocation nucleation in the adjoining Cu or nucleation of interfacial dislocations. In our example, the
triangular dislocation is situated symmetrically about x2¼x1. Despite this, we find that neither the individual displacement
components u1 and u2 nor the distributions of shear stresses s13 and s23 are symmetric about x2¼x1. However, the
distribution of (u1þu2)/2 within the x2�x1 interface plane is anti-symmetric and the distribution of (u1�u2)/2 symmetric,
as shown in Fig. 3 and 4, respectively. Likewise, (s13þs23)/2 (Fig. 5) is anti-symmetric and (s13�s23)/2 (Fig. 6) is
symmetric about x2¼x1. Peak values of these shear displacements and stresses, which are likely regions for nucleating
dislocations or voids, are offset from the line of intersection between the dislocation glide plane and the interface plane
(see figure captions for peak values).

3.2. The interactive image energy of a hexagonal dislocation loop

The previous section demonstrated how the method developed in this work can be used to study how a dislocation
affects the interface. In this section, we investigate the complementary relationship—how an interface perturbs the stress
field of a nearby dislocation. In this respect, several factors are studied: the size, orientation, and position of the loop from
the interface. The relevance of such details increases as the phase size shrinks, as finer length scales place greater limits on
the shape, size, and location of the dislocation loop.

Compared to calculation of the entire stress field, the influence of the bimaterial interface can be revealed more
efficiently by studying the variation of the interaction energy contributed by the image stress with d, the distance of the
dislocation from the interface. The interaction energy between the bimaterial interface and a dislocation with normal nþ

Fig. 3. Distribution of (u1þu2)/2 normalized by the magnitude of the Burgers vector value b on the interface (x3¼0) plane in the global coordinates,

where the coordinates are normalized by the side length a of the triangular dislocation. A peak value of 0.00099b is located at point (�1.81a,0.03a,0).

Fig. 4. Distribution of (u1�u2)/2 normalized by the magnitude of the Burgers vector value b on the interface (x3¼0) plane in the global coordinates,

where the coordinates are normalized by the side length a of the triangular dislocation. A peak value of 0.0014b is located at point (�1.52a,1.02a,0).
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and Burgers vector b can be calculated using (Hirth and Lothe, 1982),

E¼
1

2

Z
S
sþnþdsb ð28Þ

For a bimaterial system, E is the sum of the energetic contributions from the full-space stress, denoted by EFull, and from
the image stress, denoted by EImage. The change in energy DE due to a change in d can be attributed only to the change in
the image stress and not the homogeneous stress in the full space, i.e., DE¼DEImage. For a straight dislocation in a
bimaterial system, the relationship between the image energy and d was found to be DE¼�Aln(d) (Barnett and Lothe,
1974).

In this example, we also consider a hexagonal dislocation loop. This loop geometry is built from several unit triangles,
and hence demonstrates the superposition method as well. The present method calculates the image stress for a hexagonal
dislocation loop that is then substituted into Eq. (28) for the image energy EImage. We also consider two typical situations:
(a) one in which the glide plane is inclined to the interface plane, and (b) the other in which the glide plane is parallel to
the interface plane, as shown in Fig. 7a and b. For convenience in describing the dependence of the image energy on d, the
dimensionless quantity EImage/mb2lloop is defined where m¼m(Al) if the dislocation loop is in Al or m¼m(Cu) if the
dislocation loop is in Cu, and lloop¼6a.

For the inclined case, the resulting variation of EImage with d is shown in Fig. 8. Because Cu has a larger shear stiffness
than Al, m(Cu)4m(Al), EImage is positive when the dislocation is in Al and negative when the dislocation is in Cu.

Fig. 5. Distribution of (s13þs23)/2 normalized by ZCmax on the interface (x3¼0) in the global coordinates, where the coordinates are normalized by a and

the normalized peak value is about 0.01.

Fig. 6. Distribution of (s13�s23)/2 normalized by ZCmax on the interface (x3¼0) in the global coordinates, where the coordinates are normalized by a and

the normalized peak value is about 0.01. The maximum normalized shear stresses s13 and s23 are equal but reached at different points.
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The decrease in EImage as the distance d increases can be well described by a power law,

EImage

mb2lloop

¼ A
d

a

� �m

ð29Þ

where A and m are constants that depend on the elastic moduli mismatch, and the shape, size, and orientation of the
dislocation loop. For the dislocation in Al, A¼0.0954 and m¼�3.33; and for the dislocation in Cu, A¼�0.103 and

Fig. 7. Geometry of a hexagonal dislocation in the aluminum–copper bimaterials: (a) the dislocation plane is inclined to the interface, and (b) the

dislocation plane is parallel to the interface. The dislocation is located in the upper half space (Al) with its central distance to the interface being d.

The lower layer is Cu.

Fig. 8. The influence of the position of a hexagonal dislocation on the interactive image energy EImage in bimaterials, where d is the distance between the

center of the dislocation and bimaterial interface, and a is the side length of the dislocation.
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m¼�2.88. Obviously, compared to the logarithmic decay for a 2D dislocation, the energy for a 3D dislocation decays more
rapidly as the dislocation moves away from the interface.

For the parallel case, the variation in EImage with the distance d and the size is shown in Fig. 9, clearly showing the size
and distance effect of a hexagonal dislocation on the complement energy. Similar to the previous result for the oblique
dislocation case, the energy decreases rapidly with the increase in d. However, the effect of the size (a) and the distance (d)
can be decoupled due to the geometry. Again, it is found that the image energy can be described well by the following
power-law relationship:

9EImage9

mb2lloop

¼ C
d

a

� �q

ð30Þ

where m¼m(Al), and C and q are parameters given in the inset table in Fig. 9. A remarkable feature in Eq. (30) is that the
power-order parameter q is the same no matter if the dislocation lies in Al or Cu. As a result, one thus finds from Eq. (29)
and (30) that

EImage
1

EImage
2

¼
a1

a2
¼

d2

d1
ð31Þ

for a dislocation loop in the same material when the ratio d/a is fixed. The subscripts denote two different loop sizes and
distances from the interface in the same material. This simple relation clearly shows that only two geometric parameters, d

and a, affect the image energy for a hexagonal dislocation lying parallel to the interface plane and more importantly, this
energy only depends on their ratio d/a. The validity of Eq. (31) is confirmed by testing numerically several cases in which
d/a¼1, 2. For the example of d/a¼2, the image energies for different d and a (d¼3a0, a¼1.5a0), (d¼1.5a0, a¼0.75a0) and
(d¼2a0, a¼a0), differ less than 10�4.

We further analyze the image interaction energy of a hexagonal dislocation in a hypothetical bimaterial system where the
Al crystal is bound to a tunable material B in the lower half space. In this way, the influence of the elastic moduli mismatch can
be systematically studied. Specifically the elastic modulus of B is defined as Cijkl(B)¼aCijkl(Al), where a is a tunable coefficient.
Fig. 10 shows the variation of the image energy with ln(a) for a dislocation loop on an inclined glide plane (Fig. 7a). For three
different ratios d/a¼1.0, 1.5, and 2.0, the results show that the three curves in Fig. 10 intersect at ln(a)¼0, where the elastic
stiffness for material B and Al are identical, corresponding to the zero image energy. In addition, the image energy increases
with increasing a (or the stiffness of Cijkl(B)). Significantly when a is in the range of 0.1 to 10, the image energy EImage and the
coefficient a approximately follow the logarithmic relationship shown in the insert in Fig. 10, i.e.,

EImage

mb2lloop

¼DlnðaÞ ð32Þ

where D is a constant. In this example, D¼0.127 for d/a¼1.0, 0.0463 for d/a¼1.5 and 0.0215 for d/a¼2.0. It is also noted that
the variation in the image energy with a shows three interesting features as described by three regimes: For a less than 10, the
image energy obeys the logarithmic relationship with a given in Eq. (32). For a in the range from 10 to 50, the image energy
increases at a slower rate than that in Eq. (32), e.g., the net increase is about �18% as a increases from 10 to 50. However, for
a450, the image energy is virtually insensitive to the elastic moduli mismatch. The increase is about 4.0% as a increases from
50 to 1000, which represents a soft material bounded to a rigid one. This is one of our main results, that the interactive image
energy only depends on d/a, a finding that will benefit development of simplified models for dislocation-interface interactions,
ones that are more amenable for implementation into higher length scale models of interface-driven plasticity.

Fig. 9. The size effect of a hexagonal dislocation on the interactive image energy EImage where the dislocation loop is parallel to the interface plane and

a is the side length of the hexagonal dislocation.
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4. Conclusions

In this work, we have derived line integral expressions (from 0 to p) for the elastic displacement and strain (stress)
fields due to an arbitrary polygonal dislocation in the 3D anisotropic bimaterial system. In our formulation, the standard
triple integral expression is reduced to the simple line integral, making it convenient for studying dislocations with
arbitrary arrangement in the two-material system. In the present examples we study the displacement and stress fields
generated by a dislocation loop in an aluminum–copper bimaterial system. We also calculate the variation in the
interactive image energy for a dislocation loop of different sizes approaching the interface from either a soft or stiff
material. We find that the interactive image energy for a dislocation loop decays according to a power-law relationship,
much faster than a straight dislocation. Significantly, we reveal that the interactive image energy depends only on the ratio
d/a, where a is the loop diameter and d is its distance to the interface. We further demonstrate how to extract the power–
law relationship with pre-factors determined by the present calculation, which is useful in transition of the results of this
work to higher length scale models involving several arrays of dislocations interacting with a bimaterial interface.

This powerful technique can also be applied to model several dislocation loops of arbitrary arrangement interacting
with a bimaterial interface. The next steps are to extend this technique to multilayers, where the effect of relative layer
thickness on the elastic fields can be explored, and to account for atomic-scale information such as the elastic fields
contributed by the atomic-scale lattice mismatch across the interface or interactions with interfacial dislocations.
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Appendix A

To extend the integral of Eq. (22) over a triangle loop to the integral over an arbitrarily shaped planar loop S, as
suggested by one of the reviewers on this article, one may redefine

Fn ¼

Z
S

dx1dx2

½f 1x1þ f 2x2þ f 3�
n ðA:1Þ

Letting

Lnðx1,x2Þ ¼

Z x1

�1

dx1

ðf 1x1þ f 2x2þ f 3Þ
n ðA:2Þ

Fig. 10. The influence of interface elastic moduli mismatch on the interaction image energy EImage. The insert represents the variation when a¼0.1�10.

d is the distance between the center of the hexagonal dislocation and the bimaterial interface, and a is the side length of the hexagonal dislocation.
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one has

@Lnðx1,x2Þ

@x1
¼

1

ðf 1x1þ f 2x2þ f 3Þ
n ðA:3Þ

Substituting Eq. (A.3) to (A.1), one gets

Fn ¼

Z
S

@Lnðx1,x2Þ

@x1
dx1dx2 ¼

Z
@S

Lnðx1,x2Þdx2 ðA:4Þ

Thus, the surface integral over the dislocation slip plane is translated into the line integral along the dislocation line.
It is noted that on the dislocation boundary @S, x1 ¼ x1ðx2Þ. For a straight line segment from pointðx1,x2Þ ¼ ða1,a2Þ to point
ðx1,x2Þ ¼ ðb1,b2Þ, one finds

Fsegment
2 ¼

a2�b2

f 1½ða1�b1Þf 1þða2�b2Þf 1�
ln

b1f 1þb2f 2þ f 3

a1f 1þa2f 2þ f 3

� �
ðA:5Þ

Applying Eq. (A.5) to the triangle used in Eq. (22), we find the same integral results given in the first expression in
Eq. (26). It is noted that Eq. (A.4) is valid for an arbitrary planar dislocation loop, including the polygonal loop as its
special case.
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