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a b s t r a c t

We investigate a Mode-III finite slit crack partially penetrating two circular inhomogenei-
ties embedded in an unbounded matrix. In order to obtain analytical solutions, it is
assumed that the two circular inhomogeneity–matrix interfaces are Apollonius circles with
respect to the two crack tips (or equivalently the two crack tips are just mutually image
points with respect to each one of the two circular interfaces). Particularly closed-form
expressions of the stress intensity factors at the two crack tips are obtained even though
only series form solutions to the original boundary value problem can be derived. The load-
ings considered in this research include: (i) remote uniform anti-plane shearing; (ii) a
straight screw dislocation at any position of the three-phase composite system; (iii) a
Zener-Stroh crack. The results are verified by comparison with existing solutions. The
related problem of a circular hole partially merged in two circular inhomogeneities is also
addressed, with closed-form expressions of the stress concentration factors derived.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Crack problems in fibrous composites are an important research topic. In previous studies only crack problems for an iso-
lated fiber (or inhomogeneity) were considered [1–4]. As a result the interaction effects among neighboring fibers on the
propagation of cracks were not taken into account in previous modeling attempts. For a better understanding of the failure
mechanism in fibrous composites the crack problems for multiple fibers should be addressed. Apparently it is extremely
challenging to analytically address the crack problems for multiple fibers.

In this study we consider the problem of a Mode-III finite crack with its two tips lodged in two circular elastic inhomo-
geneities embedded in an unbounded matrix. To analytically investigate this problem, we assume that the two circular inho-
mogeneity–matrix interfaces are Apollonius circles with respect to the two crack tips (or equivalently the two crack tips are
just mutually image points with respect to each one of the two circular interfaces). The problem investigated here can be
considered as an extension of our recent study [4] on a finite crack penetrating a single circular inhomogeneity, and can also
be considered as an extension of the study by Honein et al. [5] on two circular inhomogeneities in the absence of any crack.
The most exciting finding of this research is that closed-form expressions of the Mode-III stress intensity factors (SIFs) at the
two crack tips, which are the most important parameters in fracture mechanics [6], can be obtained for any kind of loading
conditions even though only series form solutions can be derived for the original boundary value problem. The related prob-
lem of a circular hole partially merged in two circular inhomogeneities is also addressed. Here the circular hole intersects the
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two circular inhomogeneities at a common vertex angle p/2, which is an extension of the 2D snowman type of an object stud-
ied by Palaniappan [7]. Interestingly closed-form expressions of the stress concentration factors (SCFs) can be derived.

2. Basic equations

We consider two circular inhomogeneities embedded in an unbounded matrix, as shown in Fig. 1. The two inhomogene-
ities and the matrix are linearly elastic with the associated shear moduli l1 for the right inhomogeneity of radius (x1 � x2)/2,
l2 for the matrix, and l3 for the left inhomogeneity of unit radius. The left circular interface between the left inhomogeneity
and the surrounding matrix and the right circular interface between the right inhomogeneity and the surrounding matrix are
perfect: both the traction and the displacement are continuous across the two interfaces. The Cartesian coordinate system is
established in such a way that the x-axis passes through the centers of the two inhomogeneities, and the origin is at the cen-
ter of the left inhomogeneity. The right circular interface intersects the x-axis at (x2,0) and (x1,0), (x1 > x2 > 1). In addition

there exists a Mode-III finite slit crack on the x-axis with its left crack tip at (1/a,0) a ¼ 1þx1x2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21�1Þðx22�1Þ

p
x1þx2

; x2 < a < x1

� �
with-

in the left inhomogeneity and with its right crack tip at (a,0) within the right inhomogeneity. Apparently the two crack tips
are mutually image points with respect to each one of the two circular interfaces. Equivalently the two circular inhomoge-
neity–matrix interfaces are Apollonius circles [7] with respect to the two crack tips, i.e., jz�aj

jz�1=aj ¼ a when jzj = 1; and

jz�aj
jz�1=aj ¼ aR; R ¼ 1�x1x2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21�1Þðx22�1Þ

p
x2�x1

� �
when jz � (x1 + x2)/2j = (x1 � x2)/2. Here the complex variable z is defined as z = x + iy.

The loadings considered in this research include: (i) remote uniform anti-plane shearing r1
zy; (ii) a straight screw dislo-

cation with Burgers vector b located at any position of the three-phase composite system; (iii) a Zener-Stroh crack with a
total Burgers vector b. In the following discussions the subscripts 1, 2 and 3 are adopted to identify the quantities in the right
inhomogeneity, the surrounding unbounded matrix and the left inhomogeneity.

We first introduce the following Möbius transform [8]

z ¼ n� a
an� 1

; ð1Þ

which maps respectively the right and left circular interfaces in the z-plane onto two concentric circles jnj = R and jnj = 1 in
the n-plane (n = u + iv) as shown in Fig. 2. The right crack tip z = a is mapped to n = 0, whilst the left crack tip z = 1/a is mapped
to n =1. Now the crack of finite length is mapped to the semi-infinite negative u-axis in the n-plane. In addition z =1 is
mapped to n = 1/a.

We further consider the following conformal mapping function

n ¼ f2; ð2Þ
which maps the cracked n-plane onto the right f-plane (f = d + ig), with the semi-infinite negative u-axis in the n-plane being
mapped to the straight boundary d = 0 in the f-plane as shown in Fig. 3. The two concentric circles jfj = R and jfj = 1 in the n-
plane are mapped to two concentric half-circles jfj ¼

ffiffiffi
R

p
, dP 0 and jfj = 1, dP 0 in the f-plane. We now have three bound-

aries to address in the f-plane: one straight boundary d = 0 and two half-circular interfaces jfj ¼
ffiffiffi
R

p
, dP 0 and jfj = 1, dP 0.

In view of Eqs. (1) and (2), we have

z ¼ mðfÞ ¼ f2 � a

af2 � 1
; ð3Þ

x

y 

x1x2 a 1/a 1 

Right Inhomogeneity '1' 
                (μ1) 

Left Inhomogeneity '3' 
              (μ3) 

Matrix '2' 
    (μ2) 

Crack
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r1r2

θ 1θ 2

Right Interface Left Interface 

Screw Dislocation 

Fig. 1. A crack partially penetrating two circular inhomogeneities in the original z-plane.
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or inversely

f ¼ m�1ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� a
az� 1

r
: ð4Þ

The anti-plane displacement w and stresses can be expressed in terms of one analytic function f(f) = f(m(f)) = f(z) as [9]

w ¼ Imff ðfÞg;
rzy þ irzx ¼ l f 0ðfÞ

m0 ðfÞ :
ð5Þ

3. Remote uniform anti-plane shearing r‘
zy

In this remote uniform loading case we observe that the singular behavior f2s(f) of f2(f) defined in the matrix is

f2sðfÞ ¼
r1

zyð1� a2Þ
2l2a

1ffiffiffi
a

p
f� 1

; ð6Þ

which indicates that f2(f) has a first-order pole at f ¼ 1=
ffiffiffi
a

p
. We can satisfy the traction-free condition Re{f(f)} = 0 on the

straight boundary d = 0 by adding another imaginary pole of the same magnitude at f ¼ �1=
ffiffiffi
a

p
. Consequently we now have

only two intact circular interfaces jfj ¼ ffiffiffi
R

p
and jfj = 1 to address. The singular behavior f0(f) of f2ðfÞ; ð

ffiffiffi
R

p
< jfj < 1Þ is now

changed to

f0ðfÞ ¼
r1

zyð1� a2Þ
2l2a

1ffiffiffi
a

p
f� 1

þ 1ffiffiffi
a

p
fþ 1

� �
: ð7Þ

u 

v

1 R∞
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Fig. 2. The mapped n-plane.
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Fig. 3. The mapped f-plane.
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In the following we will derive the three analytic functions fi(f), (i = 1 � 3) which characterize the elastic field of the
cracked three-phase composite system. The continuity conditions of traction and displacement across the two interfaces
jfj ¼ ffiffiffi

R
p

and jfj = 1 can be expressed in terms of f1(f) defined in the right inhomogeneity, f2(f) defined in the matrix and
f3(f) defined in the left inhomogeneity as

fþ1 ðfÞ � �f�1
R
f

� �
¼ f�2 ðfÞ � �fþ2

R
f

� �
;

l1 fþ1 ðfÞ þ �f�1
R
f

� �h i
¼ l2 f�2 ðfÞ þ �fþ2

R
f

� �h i
;

ðjfj ¼
ffiffiffi
R

p
Þ ð8Þ

and

fþ2 ðfÞ � �f�2
1
f

� �
¼ f�3 ðfÞ � �fþ3

1
f

� �
;

l2 fþ2 ðfÞ þ �f�2
1
f

� �h i
¼ l3 f�3 ðfÞ þ �fþ3

1
f

� �h i
;

ðjfj ¼ 1Þ ð9Þ

where the superscripts ‘‘+’’ and ‘‘�’’ denote the limit values from the inner and outer sides of the circles jfj ¼
ffiffiffi
R

p
and jfj = 1.

It follows from Eq. (8)1 that

f2ðfÞ ¼ ��f 1 R
f

� �
þ Pþ1

n¼1
Anðf2n�1 þ R2n�1f�ð2n�1ÞÞ þ f0ðfÞ þ �f 0 R

f

� �
;

�f 2 R
f

� �
¼ �f1ðfÞ þ

Pþ1

n¼1
Anðf2n�1 þ R2n�1f�ð2n�1ÞÞ þ f0ðfÞ þ �f 0 R

f

� �
;

ð10Þ

where An (n = 1,2, . . . , +1) are real constants to be determined.
Substitution of Eq. (10) into Eq. (8)2 yields

fþ1 ðfÞ þ �f�1
R
f

� �
¼ C1

Xþ1

n¼1

Anðf2n�1 þ R2n�1f�ð2n�1ÞÞ þ f0ðfÞ þ �f 0
R
f

� �" #
; ðjfj ¼

ffiffiffi
R

p
Þ ð11Þ

where C1 ¼ 2l2
l1þl2

, (0 6 C1 6 2).
By applying the Liouville’s theorem, we obtain

f1ðfÞ ¼ C1
Pþ1

n¼1
Anf

2n�1 þ f0ðfÞ
� �

;

�f 1 R
f

� �
¼ C1

Pþ1

n¼1
AnR

2n�1f�ð2n�1Þ þ �f 0 R
f

� �� �
:

ð12Þ

Consequently it follows from Eqs. (10) and (12) that

f2ðfÞ ¼
Xþ1

n¼1

An½f2n�1 þ ð1� C1ÞR2n�1f�ð2n�1Þ� þ f0ðfÞ þ ð1� C1Þ�f 0 R
f

� �
: ð

ffiffiffi
R

p
< jfj < 1Þ: ð13Þ

Similarly it follows from Eq. (9)1 that

f2ðfÞ ¼ ��f 3 1
f

� �
þ Pþ1

n¼1
Bnðf2n�1 þ f�ð2n�1ÞÞ þ f0ðfÞ þ �f 0 1

f

� �
;

�f 2 1
f

� �
¼ �f3ðfÞ þ

Pþ1

n¼1
Bnðf2n�1 þ f�ð2n�1ÞÞ þ f0ðfÞ þ �f 0 1

f

� �
;

ð14Þ

where Bn (n = 1,2, . . . , +1) are also real constants to be determined.
Substitution of Eq. (14) into Eq. (9)2 yields

f�3 ðfÞ þ �fþ3
1
f

� �
¼ C2

Xþ1

n¼1

Bnðf2n�1 þ f�ð2n�1ÞÞ þ f0ðfÞ þ �f 0
1
f

� �" #
; ðjfj ¼ 1Þ; ð15Þ

where C2 ¼ 2l2
l3þl2

, (0 6 C2 6 2).

By applying the Liouville’s theorem, we obtain

f3ðfÞ ¼ C2
Pþ1

n¼1
Bnf

�ð2n�1Þ þ f0ðfÞ
� �

;

�f 3 1
f

� �
¼ C2

Pþ1

n¼1
Bnf

2n�1 þ �f 0 1
f

� �� �
:

ð16Þ

Consequently it follows from Eqs. (14) and (16) that
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f2ðfÞ ¼
Xþ1

n¼1

Bn½ð1� C2Þf2n�1 þ f�ð2n�1Þ� þ f0ðfÞ þ ð1� C2Þ�f 0 1
f

� �
:ð

ffiffiffi
R

p
< jfj < 1Þ ð17Þ

Up to now we have obtained two expressions (13) and (17) of f2(f). The compatibility condition of f2(f) will result in the
following set of linear algebraic equations

An þ ðC2 � 1ÞBn ¼ ðC2 � 1Þ r1
zy ða2�1Þa�ð2nþ1Þ=2

l2
;

ðC1 � 1ÞAn þ R�ð2n�1ÞBn ¼ ð1� C1Þ r
1
zyða2�1Það2n�3Þ=2

l2
;
ðn ¼ 1;2; . . . ;þ1Þ ð18Þ

through which the real unknowns An and Bn can be uniquely determined as

An ¼ r1
zy ða2�1Þ
l2

ðC2�1Þ a�ð2nþ1Þ=2þðC1�1Það2n�3Þ=2Rð2n�1Þ½ �
1�Rð2n�1ÞðC1�1ÞðC2�1Þ ;

Bn ¼ r1
zyða2�1Þ
l2

ð1�C1ÞRð2n�1Þ að2n�3Þ=2þðC2�1Þa�ð2nþ1Þ=2½ �
1�Rð2n�1ÞðC1�1ÞðC2�1Þ ;

ðn ¼ 1;2; . . . ;þ1Þ ð19Þ

It can be easily checked that the traction-free requirement that Re {fi(f)}, (i = 1 � 3) on the straight boundary d = 0 is still
satisfied for the above obtained analytic functions fi(f), (i = 1 � 3). It is observed that the derived analytic functions fi(f),
(i = 1 � 3) are expressed in infinite series forms.

Here we are particularly interested in the SIFs at the two crack tips, which are the most important parameters in fracture
mechanics [6]. The closed-form expressions of the SIFs at the two crack tips can be exactly extracted from the obtained ana-
lytic functions f1(f) and f3(f) as follows

KR
III ¼ lim

z!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjz� ajp

rzy ¼ r1
zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
ð2�C1Þ 1þa�1ðC2�1Þ½ �
1�RðC1�1ÞðC2�1Þ ;

KL
III ¼ lim

z!a�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjz� a�1j

p
rzy ¼ r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
ð2�C2Þ 1þaRðC1�1Þ½ �
1�RðC1�1ÞðC2�1Þ ;

ð20Þ

where the superscripts R and L indicate the right and left crack tips, respectively. The reason why we can obtain closed-form
expressions of the SIFs even though we can only derive series form solutions to the analytic functions fi(f), (i = 1 � 3) is that
in the f-plane the two crack tips are at f = 0 and f =1, consequently only A1 and B1, which are determined exactly in Eq. (19),
are needed to evaluate the SIFs.

In the following we will illustrate the above results through several special cases:

(i) When l1 = l2 = l3 (C1 = C2 = 1), then Eq. (20) reduces to

KR
III ¼ KL

III ¼ r1
zy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2 � 1Þ

2a

r
; ð21Þ

which are just the well known results for a Griffith crack of total length a � a�1 in a homogeneous material.
(ii) When l1 = l2 (C1 = 1), then Eq. (20) reduces to

KR
III ¼ r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
1þ a�1ðC2 � 1Þ	 


;

KL
III ¼ r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
ð2� C2Þ;

ð22Þ

which are the results for a Griffith crack penetrating a single left circular inhomogeneity [4].
(iii) When l3 = l2 (C2 = 1), then Eq. (20) reduces to

KR
III ¼ r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
ð2� C1Þ;

KL
III ¼ r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
½1þ aRðC1 � 1Þ�;

ð23Þ

which are also the results for a Griffith crack penetrating a single right circular inhomogeneity [4].
(iv) When l1 = l3 (C1 = C2 =C), then Eq. (18) reduces to

KR
III ¼ r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
ð2�CÞ 1þa�1ðC�1Þ½ �

1�RðC�1Þ2 ;

KL
III ¼ r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
ð2�CÞ 1þaRðC�1Þ½ �

1�RðC�1Þ2 :

ð24Þ

Particularly when the two inhomogeneities have the same unit radius we have a2R = 1. Consequently it follows from Eq. (24)

that r1
zyð2� CÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
< KR

III ¼ KL
III < r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
if the two inhomogeneities are softer than the matrix (C > 1); conversely

r1
zyð2� CÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
> KR

III ¼ KL
III > r1

zy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2�1Þ

2a

q
if the two inhomogeneities are stiffer than the matrix (C < 1). The above
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indicates that two identical inhomogeneities will reduce the shield or anti-shielding effect on a Griffith crack tip lodged in an
isolated inhomogeneity.

(v) The SIFs at the two crack tips are exactly the same (i.e., KR
III ¼ KL

IIIÞ when the following condition is met

l2

l3
¼ að1þ aRÞ

aþ 1
l2

l1
þ 1� a2R

aþ 1
; ð25Þ

which indicates that KR
III – KL

III if one inhomogeneity is stiffer while another one is softer than the matrix.

4. A screw dislocation in the matrix

Here we consider a screw dislocation with Burgers vector b located at z = z0 in the matrix. By adopting a method identical
to that used previously for the case of remote uniform loading, we can also obtain series form solutions to the three analytic
functions fi(f), (i = 1 � 3). Here we will not list their specific lengthy expressions. The closed-form expressions of the SIFs at
the two crack tips due to the screw dislocation at z = z0 in the matrix can be finally determined as follows

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C1Þ 1þa�1ð1�C2Þ�cos

h1�h2
2

ffiffiffi
r2
r1

q
þa�1ð1�C2Þ

ffiffiffi
r1
r2

q� �� �
1�RðC1�1ÞðC2�1Þ ;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C2Þ 1þaRð1�C1Þ�cos

h1�h2
2

ffiffiffi
r1
r2

q
þaRð1�C1Þ

ffiffiffi
r2
r1

q� �� �
1�RðC1�1ÞðC2�1Þ ;

ð26Þ

where z0 � a = r1exp(ih1) and z0 � 1/a = r2exp(ih2). In the above expressions we have adopted the two-center bipolar coordi-
nates with centers at (1/a,0) and (a,0) as illustrated in Fig. 1. It is observed that the above expressions are surprisingly simple
once the two-center bipolar coordinates are adopted. Next we discuss several special cases to illustrate the obtained
solutions.

(i) When l1 = l2 = l3 (C1 = C2 = 1), then Eq. (26) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

1�
ffiffiffiffi
r2
r1

q
cos h1�h2

2

� �
;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

1�
ffiffiffiffi
r1
r2

q
cos h1�h2

2

� �
;

ð27Þ

which are the results for a screw dislocation interacting with a finite Griffith crack in a homogeneous material.
(ii) When l1 = l2 (C1 = 1), then Eq. (26) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

1þ a�1ð1� C2Þ � cos h1�h2
2

ffiffiffiffi
r2
r1

q
þ a�1ð1� C2Þ

ffiffiffiffi
r1
r2

qh in o
;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

ð2� C2Þ 1�
ffiffiffiffi
r1
r2

q
cos h1�h2

2

� �
;

ð28Þ

which can be proved to be equivalent to our recent results for a finite Griffith crack penetrating a single left circular inho-
mogeneity with the dislocation located in the matrix [4].
(iii) When the screw dislocation is just located on the straight line which is vertical to the crack surface and which inter-

sects the crack at the midpoint of the crack, we have r1 = r2 and h1 = p � h2. Consequently Eq. (26) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q 2 cos2 h2ð2�C1Þ 1þa�1ð1�C2Þ½ �

1�RðC1�1ÞðC2�1Þ > 0;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

2 cos2 h2ð2�C2Þ 1þaRð1�C1Þ½ �
1�RðC1�1ÞðC2�1Þ < 0:

ð29Þ

(iv) When the screw dislocation is just on the left circular interface, we have r1 = ar2. Consequently Eq. (26) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C1Þ 1þa�1ð1�C2Þ�a�1=2ð2�C2Þ cos

h1�h2
2


 �
1�RðC1�1ÞðC2�1Þ ;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C2Þ 1þaRð1�C1Þ�a1=2 ½1þRð1�C1Þ� cos

h1�h2
2


 �
1�RðC1�1ÞðC2�1Þ :

ð30Þ

(v) When the screw dislocation is just on the right circular interface, we have r1 = aRr2. Consequently Eq. (26) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C1Þ 1þa�1ð1�C2Þ�

1þRð1�C2 Þffiffiffi
aR

p cos
h1�h2

2

n o
1�RðC1�1ÞðC2�1Þ ;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C2Þ 1þaRð1�C1Þ�

ffiffiffiffi
aR

p
ð2�C1Þ cos

h1�h2
2


 �
1�RðC1�1ÞðC2�1Þ :

ð31Þ
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5. A screw dislocation within the right inhomogeneity

In this case the closed-form expressions of the SIFs at the two crack tips due to a screw dislocation with Burgers vector b
at z = z0 in the right inhomogeneity can be finally determined as follows

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

2�C1
C1

C1 1þa�1ð1�C2Þ½ �
1�RðC1�1ÞðC2�1Þ þ cos h1�h2

2

ffiffiffiffi
r1
r2

q
a�1ðC2�1Þ�ðaRÞ�1ðC1�1Þ

1�RðC1�1ÞðC2�1Þ �
ffiffiffiffi
r2
r1

qh i� �
;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C2Þ 1þaRð1�C1ÞþðC1�2Þ

ffiffiffi
r1
r2

q
cos

h1�h2
2

� �
1�RðC1�1ÞðC2�1Þ :

ð32Þ

When l1 = l2 (C1 = 1), Eqs. (26) and (32) are exactly the same. When the screw dislocation is just on the right interface by
letting r1 = aRr2, Eq. (32) will just reduce to Eq. (31).

When l3 = l2 (C2 = 1), then Eq. (32) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

2�C1
C1

C1 � cos h1�h2
2

ffiffiffiffi
r2
r1

q
þ ðaRÞ�1ðC1 � 1Þ

ffiffiffiffi
r1
r2

qh in o
;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

1þ aRð1� C1Þ þ ðC1 � 2Þ
ffiffiffiffi
r1
r2

q
cos h1�h2

2

h i
;

ð33Þ

which are the results for a finite crack penetrating a single right circular inhomogeneity with the dislocation within the right
inhomogeneity.

When the screw dislocation is just at the center of the right inhomogeneity, we have
ffiffiffiffiffi
r1

p ¼ aR
ffiffiffiffiffi
r2

p
. In this case it follows

from Eq. (32) that

KR
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�aRÞ2

2paR2ða2�1Þ

r
ð2�C1Þ 1þRðC2�1Þ½ �

C1 ½1�RðC1�1ÞðC2�1Þ� < 0;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1�aRÞ2
2pða2�1Þ

q
2�C2

1�RðC1�1ÞðC2�1Þ < 0;
ð34Þ

which indicate that the screw dislocation at the center of the right inhomogeneity always has a shielding effect ðKR
III;K

L
III < 0Þ

on the two crack tips.

6. A screw dislocation within the left inhomogeneity

In this case the closed-form expressions of the SIFs at the two crack tips due to a screw dislocation of Burgers vector b at
z = z0 in the left inhomogeneity can be finally determined as follows

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C1Þ 1þa�1ð1�C2ÞþðC2�2Þ

ffiffiffi
r2
r1

q
cos

h1�h2
2

� �
1�RðC1�1ÞðC2�1Þ ;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

2�C2
C2

C2 ½1þaRð1�C1Þ�
1�RðC1�1ÞðC2�1Þ þ cos h1�h2

2

ffiffiffiffi
r2
r1

q
aRðC1�1Þþað1�C2Þ
1�RðC1�1ÞðC2�1Þ �

ffiffiffiffi
r1
r2

qh in o
:

ð35Þ

When l3 = l2 (C2 = 1), Eqs. (26) and (35) are exactly the same. When the screw dislocation is just on the left interface by
letting r1 = ar2, Eq. (35) will just reduce to Eq. (30).

When the screw dislocation is just at the center of the left inhomogeneity, we have
ffiffiffiffiffi
r1

p ¼ a
ffiffiffiffiffi
r2

p
. In this case it follows from

Eq. (32) that

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�1

2paðaþ1Þ

q
2�C1

1�RðC1�1ÞðC2�1Þ > 0;

KL
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aða�1Þ
2pðaþ1Þ

q
ð2�C2Þ½1þRðC1�1Þ�

C2 ½1�RðC1�1ÞðC2�1Þ� > 0;
ð36Þ

which indicates that a screw dislocation at the center of the left inhomogeneity always exerts an anti-shielding effect
ðKR

III;K
L
III > 0Þ on the two crack tips.

7. A Zener-Stroh crack

In the following we consider the case in which the finite crack [1/a a] is a Zener-Stroh crack [10,11]. The sum of the Bur-
gers vectors inside the Zener-Stroh crack isZ a

1=a
w;xðx;0�Þ �w;xðx;0þÞ	 


dx ¼ b: ð37Þ

In this case the closed-form expressions of the SIFs at the two tips of the Zener-Stroh crack with a total Burgers vector b
can be finally determined as follows
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KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C1Þ 1þa�1ð1�C2Þ½ �

1�RðC1�1ÞðC2�1Þ > 0;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�C2Þ 1þaRð1�C1Þ½ �

1�RðC1�1ÞðC2�1Þ < 0:
ð38Þ

The above results can also be obtained from either one of Eqs. (26), (32) and (35) by letting a screw dislocation approach
the (Griffith) crack surfaces (h1 � h2 = ±p) so that cos h1�h2

2 ¼ 0.
It is of interest to discuss the following special cases:
(i) When l1 = l2 = l3 (C1 = C2 = 1), then Eq. (38) reduces to

KR
III ¼ �KL

III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2 � 1Þ
r

; ð39Þ

which are the results for a Zener-Stroh crack in a homogeneous material [4,12].
(ii) When l1 = l2 (C1 = 1), then Eq. (38) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

½1þ a�1ð1� C2Þ�;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

ð2� C2Þ;
ð40Þ

which are the results for a Zener-Stroh crack penetrating a single left inhomogeneity [4].
(iii) When l3 = l2 (C2 = 1), then Eq. (38) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

ð2� C1Þ;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

½1þ aRð1� C1Þ�;
ð41Þ

which are also the results for a Zener-Stroh crack penetrating a single right inhomogeneity [4].
(iv) When l1 = l3 (C1 =C2 = C), then Eq. (38) reduces to

KR
III ¼ bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�CÞ 1þa�1ð1�CÞ½ �

1�RðC�1Þ2 ;

KL
III ¼ �bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q ð2�CÞ 1þaRð1�CÞ½ �

1�RðC�1Þ2 :
ð42Þ

Particularly when the two inhomogeneities have the same unit radius we have a2R = 1. Consequently it follows from Eq. (42)

that KR
III ¼ �KL

III < bl2ð2� CÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
2pða2�1Þ

q
< bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

if the two inhomogeneities are softer than the matrix (C > 1); con-

versely KR
III ¼ �KL

III > bl2ð2� CÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
2pða2�1Þ

q
> bl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2pða2�1Þ
q

if the two inhomogeneities are stiffer than the matrix (C < 1). The

above indicates that two identical inhomogeneities will enhance the shield or anti-shielding effect on a Zener-Stroh crack
tip lodged in an isolated inhomogeneity.
(v) KR

III ¼ �KL
III when the following condition is satisfied

l2

l3
¼ að1� aRÞ

a� 1
l2

l1
� 1� a2R

a� 1
; ð43Þ

which indicates that KR
III – � KL

III if one inhomogeneity is stiffer while another one is softer than the matrix.

8. Related problems

Instead of a finite crack [1/a a], we now consider the related problem of a circular hole partially merged in two circular
inhomogeneities, as shown in Fig. 4. The radius of the circular hole is (a-1/a)/2 and its center is at z = (a + 1/a)/2. Apparently
the circular hole intersects the two circular inhomogeneities at a common vertex angle p/2. This geometry is an extension of
the 2D snowman type of an object studied by Palaniappan [6]. The three-phase composite is only subjected to remote uni-
form shearing r1

zy . Now we consider the following conformal mapping function

z ¼ f� a
af� 1

: ð44Þ

The mapped f-plane is shown in Fig. 5 (f = d + ig). The traction-free surface of the circular hole is mapped onto the straight
boundary d = 0 in the f-plane. In the f-plane we can derive series form solutions to this problem. The specific solution pro-
cedures are suppressed here. Particularly we are interested in the stress concentration factors (SCFs) rzy=r1

zy at the two
points z = a and z = 1/a. The closed-form expressions of the SCFs can be finally derived as
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rzy

r1
zy
¼ 2ð2� C1Þ½1þ a�2ðC2 � 1Þ�

1� R2ðC1 � 1ÞðC2 � 1Þ ; at z ¼ a; ð45Þ

rzy

r1
zy
¼ 2ð2� C2Þ½1þ a2R2ðC1 � 1Þ�

1� R2ðC1 � 1ÞðC2 � 1Þ ; at z ¼ 1=a: ð46Þ

As well known the SCF is 2 for a circular hole in a homogeneous material under remote uniform antiplane shearing. Eqs.
(45) and (46) give us extremely simple formulae to calculate the SCFs for a circular hole partially merged in two circular
inhomogeneities. Not restricted to the above, we can further consider a more general situation: a hole formed by two circular
arcs with their two common tips at z = a and z = 1/a partially merged in two circular inhomogeneities.

9. Conclusions

The main part of this research is devoted to the study of a Mode-III finite crack partially penetrating two circular inho-
mogeneities under the following loading conditions: (i) remote uniform anti-plane shearing; (ii) a straight screw dislocation
at any position of the three-phase system; (iii) a Zener-Stroh crack. Closed-form expressions of the SIFs were derived in Eq.
(20) due to remote uniform shearing; Eq. (26) due to a screw dislocation in the matrix; Eq. (32) due to a screw dislocation
within the right inhomogeneity; Eq. (35) due to a screw dislocation within the left inhomogeneity; Eq. (38) due to a Zener-
Stroh crack. It is observed that the expressions of SIFs due to a screw dislocation become strikingly simple once the two-cen-
ter bipolar coordinates with the centers at the two crack tips are adopted.

x

y 

x1a 1/a 

Right Inhomogeneity '1' 
                (μ1) 

Left Inhomogeneity '3' 
              (μ3) 

Matrix '2' 
    (μ2) 

Right Interface Left Interface 

x21 

Circular Hole

Traction-Free Surface 

Fig. 4. A circular hole partially merged in two circular inhomogeneities in the original z-plane.

δ

η

1 R 
'1' 

'2' 

'3' 

Fig. 5. The mapped f-plane for a circular hole partially merged in two circular inhomogeneities.
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As a byproduct of this investigation, we also addressed a circular hole partially merged in two circular inhomogeneities.
Closed-form expressions of the SCFs were obtained. In fact our method can be extended to address the more general situ-
ation of a hole formed by two circular arcs with their two common tips at z = a and z = 1/a partially merged in two circular
inhomogeneities.
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