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Elastic Displacement and Stress
Fields Induced by a Dislocation
of Polygonal Shape in an
Anisotropic Elastic Half-Space
The elastic displacement and stress fields due to a polygonal dislocation within an aniso-
tropic homogeneous half-space are studied in this paper. Simple line integrals from 0 to
p for the elastic fields are derived by applying the point-force Green’s functions in the
corresponding half-space. Notably, the geometry of the polygonal dislocation is included
entirely in the integrand easing integration for any arbitrarily shaped dislocation. We
apply the proposed method to a hexagonal shaped dislocation loop with Burgers vector
along [�1 1 0] lying on the crystallographic (1 1 1) slip plane within a half-space of a cop-
per crystal. It is demonstrated numerically that the displacement jump condition on the
dislocation loop surface and the traction-free condition on the surface of the half-space
are both satisfied. On the free surface of the half-space, it is shown that the distributions
of the hydrostatic stress (r11þ r22)/2 and pseudohydrostatic displacement (u1þ u2)/2 are
both anti-symmetric, while the biaxial stress (r11�r22)/2 and pseudobiaxial displace-
ment (u1� u2)/2 are both symmetric. [DOI: 10.1115/1.4005554]

Keywords: polygonal dislocation, displacement and stress fields, Green’s function,
anisotropic half-space

1 Introduction

Misfit dislocations often emerge during the fabrication of metal
crystals [1,2], ceramic [3] and some high-performance nanostruc-
tures, such as quantum dots [4] and quantum wells [5]. Generation
of such dislocations is an energetically favorable way for the ma-
terial to relieve the strain energy induced by an inherent lattice
mismatch or thermal mismatch. An important element of the prob-
lem of stress fields produced by misfit dislocations is the presence
of a free surface [6]. For this reason, straight dislocations includ-
ing edge and screw dislocations near a free surface have been well
investigated for isotropic solids [7–11] and even anisotropic solids
[12,13]. Assuming a three-dimensional (3D) isotropic half-space,
Bacon and Groves [14] presented a surface integral for the stresses
induced by an arbitrary dislocation, and Gosling and Willis [6] a
line integral expression (along the dislocation boundary) for the
stresses due to an arbitrary shaped dislocation. Special cases such
as an angular dislocations [15] and dislocations inside an aniso-
tropic elliptical inclusion [16] were also studied. Some other
theory/method including the stress coupled theory [17] and multi-
scale method [18] were recently utilized to study the response of
dislocations.

The elastic fields due to dislocation loops in a 3D anisotropic
half-space can be expressed by the integrals of the point-force
Green’s function and its derivatives over the dislocation surfaces
[6,18–20]. The point-force Green’s function for an anisotropic
half-space is often separated into two parts: the full-space part and
the image part [6,21,22]. The surface integral of the full-space
Green’s function for the stress field can be reduced to a line inte-
gral using Stokes’ theorem [23], or even to an analytical expres-
sion in the case of straight dislocation line segments [24,25].

However, an explicit expression for the second part, that is, the
stresses relating to the image part of Green’s function in the half-
space, does not currently exist. In the study of the displacements
due to dislocations, only the general surface integral over a dislo-
cation loop has been derived where the point-force Green’s func-
tion lies in its integrand [6,19]. Thus, a corresponding line integral
expression for the image portion of the problem of a dislocation in
an anisotropic 3D half-space is lacking. Reducing the surface
integral to a line integral is crucial for efficient and accurate
prediction of the dislocation-induced elastic fields. The major dif-
ficulty in reducing the surface integral to a line integral for the
image displacement and stress fields due to dislocations in aniso-
tropic materials is that Stokes’ theorem cannot be utilized.

In this paper, we use the point-force Green’s function in the
Stroh formalism to derive line integrals (from 0 to p) for the elas-
tic displacements and strains due to polygonal dislocations in an
anisotropic 3D half-space. In these analytical line integrals, the
influence of dislocation geometry on the displacement and strain
fields is completely included in the integrands. This paper is
organized as follows. In Sec. 2, some basic expressions for the
displacements and stresses due to the dislocation loops and
the point-force Green’s function are reviewed. In section 3, line
integral expressions for the elastic field including displacements
and strains are derived by integrating the generalized triple inte-
grals over a triangular dislocation, the fundamental dislocation
element from which any polygonal dislocation can be constructed.
In Sec. 4, the proposed integral expressions are then applied
to calculate the elastic displacement and stress fields due to a hex-
agonal dislocation in a half-space of a single crystal with a face
centered cubic (fcc) crystal structure. Lastly, we end with some
discussion and conclusions.

2 Problem Description and Some Basic Formula

The problem is to predict the elastic field (displacements and
stresses) due to a dislocation of polygonal shape with Burgers
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vector b within a 3D anisotropic elastic homogeneous half-space
(x3� 0). The dislocation surface denoted by S is shown in Fig. 1
in the global coordinate system (O: x1, x2, x3). The displacement
discontinuity on S is described by dividing it into two adjacent
surfaces: surface Sþ with unit normal nþ and S� with unit normal
n�. With this, the boundary/continuity condition in the infinity of
the half-space, on the surface of the half-space (x3¼ 0), and across
the dislocation surface S, can be specified, respectively, as
follows:

uij xj j!1 ¼ 0; rij � nj

��
x3¼0
¼ 0

ui½ � � uþi � u�i ¼ bi and rþij � nþj þ r�ij � n�j ¼ 0 across S

(
(1)

We adopt the Hooke’s law for the constitutive relationship for
an anisotropic material:

rij ¼ Cijklekl (2)

Throughout this paper, repeated indices obey the summation con-
vention from 1 to 3, unless stated otherwise.

To solve the dislocation problem in terms of point-force
Green’s functions, we first consider two independent systems in
the same anisotropic material, where one system is under a con-
centrated unit point force at y, and the other one is the present dis-
location problem described by Eq. (1). For the first, the governing
equation is

rk
ij;iðy; xÞ þ djkdðx� yÞ ¼ 0 (3)

where rk
ijðy; xÞ denotes the ij-component of the stress at x induced

by a unit point force applied at y in the k-direction. For the second,
the equilibrium equation is

rij;iðxÞ ¼ 0 (4)

We now apply Betti’s reciprocal theorem to the two systems and
arrive at the following well-known integral representation for the
displacement field induced by the dislocation

ukðyÞ ¼
ð
@X
½rijðxÞGjkðy; xÞ � rk

ijðy; xÞujðxÞ�niðxÞdSðxÞ (5)

where Gjk(y; x) is the Green’s displacement in the j-direction at x
induced by a point force in the k-direction applied at y, and @X
denotes the boundary of the half-space (x3¼ 0) and the dislocation
surface S. According to the boundary conditions in Eq. (1), the
contribution of the first integrand on the right-hand side of Eq. (4)
is exactly zero. Thus, Eq. (4) becomes,

ukðyÞ ¼ �
ð

SþþS�
rk

ijðy; xÞujðxÞniðxÞdSðxÞ (6)

Applying the displacement discontinuity condition in Eq. (1), we
obtain

ukðyÞ ¼
ð

S

rk
ijðy; xÞbjnidSðxÞ (7)

where ni: ni
�. Making use of the constitutive equation in

Eq. (2), we finally have

ukðyÞ ¼
ð

S

CijmlGmk;xl
ðy; xÞbjnidSðxÞ (8)

It should be pointed out that Gmk(y; x) represents the half-space
Green’s displacement in the m-direction at x induced by a point
force in the k-direction applied at y. Eq. (8) plays the important
role in connecting the response of the dislocation to that of the
point force in the half-space. Therefore, once the solution to the
point-force Green’s function is obtained, the corresponding dislo-
cation problem can be solved. In the following, we apply the
Fourier transform method to solve the point-force Green’s func-
tion and the corresponding dislocation problem. To simplify the
notation, symbols for tensors and vectors will be used when
necessary.

Consider a point force vector f applied at (0, 0, d) in an aniso-
tropic homogeneous half-space (x3� 0). We divide the half-space
into two parts at x3¼ d (i.e., one part covers x3> d and the other
0� x3< d) and apply the two-dimensional Fourier transforms to
the system. In the Fourier space, the boundary conditions in
Eq. (1) become

~uijx3!1 ¼ 0; ~uijx3¼dþ � ~uijx3¼d� ¼ 0

~rij � nj

��
x3¼0
¼ 0; ~rij � nj

��
x3¼dþ

þ ~rij � nj

��
x3¼dþ

þ fi ¼ 0

(
(9)

where the displacement in the Fourier space is

~uk n1; n2; x3ð Þ ¼
ðþ1
�1

ðþ1
�1

uk x1; x2; x3ð Þ ei x1n1þx2n2ð Þdx1dx2 (10)

The equilibrium equation in the Fourier domain in a source-free
region is

Ciakbnanb~uk þ i Ciak3 þ Ci3kað Þna~uk;3 � Ci3k3 ~uk;33 ¼ 0 (11)

The general solution of Eq. (11) can be expressed as

~u n1; n2; x3ð Þ ¼ aexpð � i pgx3Þ (12)

where p and a are the eigenvalue and eigenvector of the Stroh
eigenrelation (Ting, [21]), i.e.,

Qþ p Rþ RT
� �

þ p2T
� �

a ¼ 0 (13)

with

Qij ¼ Cikjsnkns; Rij ¼ Cikjsnkms; Tij ¼ Cikjsmkms

n ¼ cos h; sin h; 0½ �T ; m ¼ 0; 0; 1½ �T ; n ¼ gn
(14)

Fig. 1 Geometry of an arbitrarily shaped dislocation loop S in
an anisotropic, elastic, and half-space E3/2. The vector b
denotes the Burgers vector of the dislocation, which is equal to
the displacement jump across the dislocation surface. The vec-
tor n1 denotes the normal of the surface S1 towards S2, and
n2 5 2n1.
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where the superscript ‘T’ indicates the matrix transpose. With the
eigenvalues and the associated eigenvectors pi and ai (i¼ 1, 2,
…, 6), we let

Im pið Þ > 0; piþ3 ¼ �pi; �aiþ3 ¼ �ai; i ¼ 1; 2; 3ð Þ
A � a1; a2; a3½ �; B � b1; b2; b3½ � with bi � RT þ piT

� �
ai

(15)

where the symbol ‘Im’ and the overbar denote, respectively, the
imaginary part and the complex conjugate of a complex variable.
In this case, no summation is taken over the repeated index i in
Eq. (15).

Making use of the displacement and traction conditions in
Eq. (9), the elastic displacement vector in the transformed domain
is found to be

~u n1; n2; x3ð Þ ¼ �ig�1 �AH1 �p�ð Þ�A
T
f þ �AH2ATf

h i
; x3 > d

ig�1 AH1 p�ð ÞATf � �AH2ATf
� �

; 0 � x3 < d

(

(16)

with

H1 p�ð Þ � e�i p�g x3�dð Þ
D E

H2 � e�i �p�gx3
� �

�B
�1

B ei �p�gd
� � (17)

where the symbol h�i denotes the diagonal matrix. The subscript
“*” takes 1, 2 and 3, which corresponds, respectively, to the first,
second and third diagonal element.

Taking the Fourier inverse transform of Eq. (16), we arrive at
the Green’s displacement vector in the physical domain as

u xð Þ ¼

�i

4p2

ðð
g�1 �AH1 �p�ð Þ�A

T
f þ �AH2ATf

h i
e�iðx1n1þx2n2Þdn1dn2; x3 > d

i

4p2

ðð
g�1 AH1 p�ð ÞATf � �AH2ATf
� �

e�iðx1n1þx2n2Þdn1dn2; 0 � x3 < d

8>><
>>: (18)

To best manipulate the double integrals, the polar coordinate system is introduced. As seen below, this transformation allows integration
over the radial variable to be carried out exactly. From Eq. (14), we have

n1 ¼ g cos h; n2 ¼ g sin h (19)

which converts Eq. (18) to

u xð Þ ¼

�i

2p2

ðp

0

dh
ð1

0

�AH1 �p�ð Þ�A
T
f þ �AH2ATf

h i
e�igðx1 cos hþx2 sin hÞdg; x3 > d

i

2p2

ðp

0

dh
ð1

0

AH1 p�ð ÞATf � �AH2ATf
� �

e�igðx1 cos hþx2 sin hÞdg; 0 � x3 < d

8>><
>>: (20)

Since A and B are independent of g, the integral over g can be car-
ried out exactly. With this, the displacement vector can be finally
expressed as

u xð Þ ¼

�1

2p2

ðp

0

�AQ1 �p�ð Þ�A
T þ �AQ2AT

h i
f dh; x3 > d

1

2p2

ðp

0

AQ1 p�ð ÞAT � �AQ2AT
� �

f dh; 0 � x3 < d

8>><
>>:

(21)

where

Q1 p�ð Þ½ �ij ¼
dij

pi x3 � dð Þ þ x1 cos hþx2 sin h

Q2ð Þij ¼
�B
�1

B
	 


ij

�pix3 � pjd þ x1 cos hþx2 sin h

(22)

If the point-force vector f is applied at a general point y, the
expression for the displacement vector in Eq. (21) remains the
same, while Eq. (22) should be modified to

Q1 p�ð Þ½ �ij ¼
dij

pi x3 � y3ð Þ þ x1 � y1ð Þ cos hþ x2 � y2ð Þ sin h

Q2ð Þij ¼
�B
�1

B
	 


ij

�pix3 � pjy3 þ x1 � y1ð Þ cos hþ x2 � y2ð Þ sin h

(23)

As a result, the point-force Green’s displacement tensor is given
by

G y; xð Þ ¼

�1

2p2

ðp

0

�AQ1
�A

T þ �AQ2AT
h i

dh; x3 > y3

1

2p2

ðp

0

AQ1AT � �AQ2AT
� �

dh; 0 � x3 < y3

8>>><
>>>:

(24)

It is observed that the Green’s function solution for the displace-
ment contains two parts. The first part corresponds to the
Green’s function in the full space, while the second part is the
image one, which is induced by the free surface of the half-
space. Notably, the full-space part of the Green’s function
depends only on material properties. In what follows, we will
use this expression to derive the elastic fields due to a disloca-
tion of polygonal shape in a general homogeneous, elastically
anisotropic 3D half-space.

3 The Elastic Fields Induced by a Dislocation

of Polygonal Shape

A triangular shape serves as the fundamental unit for any poly-
gon. An arbitrary polygonal surface can always be approximated
by a summation of triangular elements. Therefore, the solution of
a dislocation of polygonal shape can then be obtained from the
solution of a dislocation of triangular shape via the method of
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superposition. With this in mind, we first derive the solution
induced by a dislocation of triangular shape. Because of the
importance of this solution, we will denote the associated quanti-
ties by a superscript triangle symbol.

Consider the triangular dislocation shown in Fig. 2. Let the max-
imum value of x3 on the dislocation loop be x3max and the minimum
x3 be x3min. Substituting Eq. (24) into Eq. (8) gives the following
expression for the displacement induced by a triangular dislocation

uDi

k ðyÞ ¼

�1

2p2

ðp

0

dh
ð

Di

Cijml
�AQ1 �p�ð Þ�A

T þ �AQ2AT
h i

mk;l
bjnidSðxÞ y3 > x3max

1

2p2

ðp

0

dh
ð

Di

Cijml AQ1 p�ð ÞAT � �AQ2AT
� �

mk;l
bjnidSðxÞ y3 < x3min

8>>><
>>>:

(25)

Since the eigenvector matrix A is independent of the variable on the surface of the triangle, the area integration over the triangle in
Eq. (25) can be carried out first for the solution of the displacement

uDi

k ðyÞ ¼

�1

2p2

ðp

0

Cijmlbjni
�Amt

�AT
skDDi

1tsl �p�ð Þ þ AT
skDDi

2tsl

	 
h i
dh; y3 > x3max

1

2p2

ðp

0

CijmlbjniA
T
sk AmtD

Di

1tsl p�ð Þ � �AmtD
Di

2tsl

	 
h i
dh; y3 < x3min

8>><
>>: (26)

where

DDi

1tsl �p�ð Þ �
ð

Di

Q1ts;xl
�p�ð ÞdSðxÞ ¼

ð
Di

�dtshl �ptð Þ
h �ptð Þ � x� yð Þ½ �2

dSðxÞ

DDi

2tsl �
ð

Di

Q2ts;xl
dSðxÞ ¼

ð
Di

� �B
�1

B
	 


ts
hl �ptð Þ

h �ptð Þ � x� h psð Þ � y½ �2
dSðxÞ

(27)

and where the vector h is defined as

h pð Þ ¼ cos h; sin h; p½ �T (28)

The corresponding strain is simply the derivative of the displacement solution, Eq. (26), i.e.,

uDi

k;pðyÞ ¼

�1

2p2

ðp

0

Cijmlbjni
�Amt

�AT
skJDi

1tslp �p�ð Þ þ AT
skJDi

2tslp

	 
h i
dh; y3 > x3 max

1

2p2

ðp

0

CijmlbjniA
T
sk AmtJ

Di

1tslp p�ð Þ � �AmtJ
Di

2tslp

	 
h i
dh; y3 < x3 min

8>><
>>: (29)

where

JDi

1tslp �p�ð Þ � DDi

1tsl;yp
�p�ð Þ ¼

ð
Di

�2dtshl �ptð Þhp �ptð Þ
h �ptð Þ � x� yð Þ½ �3

dSðxÞ

JDi

2tslp � DDi

2tsl;yp
¼
ð

Di

�2 �B
�1

B
	 


ts
hl �ptð Þhp psð Þ

h �ptð Þ � x� h psð Þ � y½ �3
dSðxÞ

(30)

Comparing Eq. (27) to Eq. (30), we observe that the denominators
in the integrands of J2 and D2 can be, respectively, degenerated to
those in J1 and D1 by letting ps ¼ �pt. Thus, we only need to ana-
lyze integrals J2 and D2. Moreover, since the numerators of the
integrands in the expressions of J2 and D2 are independent of x,
their integrals are simply the power functions of �2 and �3. The
power order is determined by the derivative order applied to the
Green’s displacement function. For the (n�1)-order derivative,
the power order is n. Accordingly, the kernel integral on the trian-
gular dislocation is generally

FDi
n ðp�; q�Þ ¼

ð
Di

dSðxÞ
h p�ð Þ � x� h q�ð Þ � y½ �n (31)

Fig. 2 Geometry of a triangular dislocation with corners P1, P2,
P3 with respect to the global coordinate system (O; x1,x2,x3)
and local coordinate system (x0; n1, n2, n3) where h 5 n2(P1),
l1 5 2n1(P2), l2 5 n1(P3). Lengths l1 and l2 can also be negative.
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where p* and q* can be assigned to different eigenvalues. It is im-
portant to note that in Eqs. (26), (29) and (31), the influence of the
triangular shape of the dislocation on the displacements and
strains induced by the dislocation is mainly contained in the inte-
gral, Eq. (31). Therefore the function FDi

n can be appropriately
named the n-th order shape factor. When n¼ 2, FDi

n is the shape
factor for the displacement, and when n¼ 3, it is the shape factor
for the corresponding strain.

In order to carry out the area integration in Eq. (31), the local
coordinate system (P0: n1,n2,n3) with the base vectors n0

i
(i¼ 1,2,3) shown in Fig. 2 is introduced. The base vectors in
the corresponding global coordinate system (O: x1,x2,x3) are
x0

i i ¼ 1; 2; 3ð Þ. The transformation matrix between the local and
global systems is therefore

Dij ¼ x0
i � n0

j (32)

The integral in Eq. (31) is then rewritten as

FDi
n p�; q�ð Þ ¼

ðh

0

dn2

ðl2�l2n2=h

�l1þl1n2=h

	 dn1

½ f1 p�; q�ð Þn1 þ f2 p�; q�ð Þn2 þ f3 p�; q�ð Þ�n

(33)

where

fa p�; q�ð Þ ¼ Dkahk p�ð Þ; a ¼ 1; 2 (34)

f3 p�; q�ð Þ ¼ hk p�ð ÞP0k � hk q�ð Þyk (35)

Integration of Eq. (33) for n = 2 and 3 gives

FDi

2 p�; q�ð Þ ¼ 1

f1

1

f2 þ f1l�1
ln

f �3 þ f2
f �3 � f1l�1

� 1

f2 � f1l�2
ln

f �3 þ f2

f �3 þ f1l�2

� �

FDi

3 p�; q�ð Þ ¼ 1

2

l�1 þ l�2
h f �3 þ f2

� �
f �3 þ f1l�2
� �

f �3 � f1l�1
� � (36)

with

l�1 ¼ l1=h; l�2 ¼ l2=h; f �3 ¼ f3=h (37)

For a polygonal dislocation constructed by N distinct (nonoverlap-
ping) triangles, the shape factors are

Fn p�; q�ð Þ ¼
XN

n¼1

FDi
n p�; q�ð Þ (38)

Using Eqs. (26), (29) and (38), we finally obtain the following dis-
placement field due to the polygonal dislocation,

ukðyÞ ¼

�1

2p2

ðp

0

Cijmlbjni
�Amt

�AT
skD1tsl �p�ð Þ þ AT

skD2tsl

� �� �
dh; y3 > x3 max

1

2p2

ðp

0

CijmlbjniA
T
sk AmtD1tsl p�ð Þ � �AmtD2tsl

� �� �
dh; y3 < x3 min

8>><
>>: (39)

where

D1tsl �p�ð Þ ¼ �dtshl �ptð ÞF2 �pt; �ptð Þ
D2tsl ¼ �

�
�B
�1

B
�

ts
hl �ptð ÞF2 �pt; psð Þ

(40)

The corresponding strain field is

uk;pðyÞ ¼

�1

2p2

ðp

0

Cijmlbjni
�Amt

�AT
skJ1tslp �p�ð Þ þ AT

skJ2tslp

� �� �
dh; y3 > x3 max

1

2p2

ðp

0

CijmlbjniA
T
sk AmtJ1tslp p�ð Þ � �AmtJ2tslp

� �� �
dh; y3 < x3 min

8>><
>>: (41)

where

J1tslp �p�ð Þ ¼ �2dtshl �ptð Þhp �ptð ÞF3 �pt; �ptð Þ

J2tslp ¼ �2
�
�B
�1

B
�

ts
hl �ptð Þhp psð ÞF3 �pt; psð Þ

(42)

The solutions presented here have two outstanding features. First,
the generalized triple integrals for dislocation-induced displace-
ments and strains have been reduced to a more mathematically
convenient form of line integrals. Second, in either integral,
Eq. (39) or integral, Eq. (41), the solution includes both the contri-
bution from the full-space and from the image part, similar to the
one given in Eq. (24).

We must also emphasize that Eqs. (25) and (29) and those
derived based on them are not suitable for y3 [ (x3min, x3max). To
deal with this issue, we consider separately the contribution from

the full-space and image parts in the integrals for the strains when
y3 [ (x3min, x3max). Let us consider the contribution of the image
part first. Based on the Green’s function in Eq. (24), it can easily
be seen that the image part is continuous, signifying that the con-
tribution of the image part in the integral for the strain is the same
as that in Eq. (41). The contribution of the full-space part in the
strain, however, is dealt with in a different way. The strategy in
this case is to transform the integral of the full-space part to a new
coordinate system and carry out the integral under this system. In
this new coordinate system, the x3-axis is designated as the normal
of the dislocation surface. This gives x3max¼ x3min on the disloca-
tion, allowing the contribution of full-space part at any point in
the full space to be evaluated by following the same procedure as
that in Eq. (41). Accordingly, the derived formula will have the
same form as the contribution of the full-space part in Eq. (41). In
this treatment all material and geometrical properties, such as
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Cijml, bj, ni and the positions of the vertex of the polygons must
also be transformed to the new coordinate system. After obtaining
the contribution of the full-space part under the new coordinates,
then it is desirable to transform them back to the original global
coordinates. This general approach also can be used to evaluate
the dislocation-induced displacement field.

4 Numerical Examples

In this section, the displacements and stress fields induced by a
hexagonal shaped dislocation lying within a half-space of a copper
single crystal are analyzed by the new line-integral expressions
derived in the present work. In face-centered cubic (fcc) crystals
like copper, dislocation glide occurs along the {1 1 1} slip planes
in the h�1 1 0i slip direction. Without loss of generality, the hexag-
onal dislocation with the side length a in the present problem is
placed on the (1 1 1) slip plane and its Burgers vector b is parallel
to [�1 1 0] within this plane (Fig. 3). The distance between the
center of the hexagonal dislocation and the free surface of the
half-space is 4a. Figure 3 shows the relationship between the local
dislocation coordinates (gi; i¼ 1,2,3) and the global coordinates
(xi; i¼ 1,2,3) as well as the locations of the four points A, B, C, D
in our numerical calculation. For convenience, the displacements
and stresses are normalized according to

~ui ¼ ui=b

~rij ¼
a

b

rij

Cmax

� rij

kCmax

(43)

where Cmax¼C11 is used to normalize the stress and b is the mag-
nitude of the Burgers vector b. The local and global coordinates
are normalized to

~gi ¼ gi=a

~xi ¼ xi=a
(44)

Numerical results for this problem are provided in Table 1 and
Figs. 4–12, and are discussed next.

4.1 Validation on Boundary Conditions. The correctness of
the proposed solution is first evaluated by checking the displace-
ment discontinuity condition across the dislocation surface S and
the traction-free boundary condition on the free surface of the
half-space. For the former, the displacement jump between the
upper Sþ and lower S� surfaces of the dislocation should equal
the Burgers vector b. The displacements at the four different
points A¼ (0, 0, 0), B¼ (0.5, 0.4, 0), C¼ (�0.6, 0.3, 0) and
D¼ (0,� 0.7, 0) on the dislocation surface are calculated in the
local gi (i¼ 1, 2, 3) coordinates (Fig. 3). Specifically, the adjacent
points on opposing sides of the dislocation surface associated with
each one are A6¼ (0, 0, 6g3), B6¼ (0.5, 0.4, 6g3), C6¼ (�0.6,
0.3, 6g3) and D6¼ (0,� 0.7, 6g3), where these coordinates have

Fig. 4 Contour map of the normalized local displacement com-
ponent u1/b in local coordinates g1/a and g2/a induced by a regu-
lar hexagonal dislocation, where b is the magnitude of the
Burgers vector

Table 1 Numerical results of the displacement jump at points A, B, C, and D on the dislocation plane. All data are given in local
coordinates (gi; i 5 1,2,3) and normalized by the Burgers vector. The superscript “1” and subscript “–” denote, respectively, the
points in the upper and lower surfaces of the dislocation.

Points u1 u2 u3 Du1 Du2 Du3

Aþ 0.49522099 �0.13893237 	 10�6 0.95624814	 10�7 0.99835285 <10�10 <10�10

A� �0.50313186 �0.13893237	 10�6 0.95624814	 10�7

Bþ 0.49782604 �0.24133535	 10�2 0.43768557	 10�1 1.00318332 <10�8 <10�9

B� �0.50535728 �0.24133536	 10�2 0.43768557	 10�1

Cþ 0.49497190 �0.22339585	 10�3 �0.54283613	 10�1 0.99763493 <10�10 <10�9

C� �0.50266303 �0.22339588	 10�3 �0.54283613	 10�1

Dþ 0.49390064 �0.16506397	 10�3 0.38993962	 10�3 0.99458002 <10�9 <10�10

D� �0.50067938 �0.16506446	 10�3 0.38993969	 10�3

Note: A6¼ (0, 0, 6g3), B6¼ (0.5,0.4, 6g3), C6¼ (�0.6, 0.3, 6g3), D6¼ (0, 0�.7, 6g3) where g3¼ 10�7 .

Fig. 3 Geometry of a regular hexagon dislocation where (O;
x1,x2,x3) is the global coordinate system and (P0; g1, g2, g3) the
local dislocation coordinate system
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Fig. 5 Contour map of the normalized local displacement com-
ponent u2/b in local coordinates g1/a and g2/a induced by a regu-
lar hexagonal dislocation, where b is the magnitude of the
Burgers vector

Fig. 6 Contour map of the normalized local displacement com-
ponent u3/b in local coordinates g1/a and g2/a induced by a regu-
lar hexagonal dislocation, where b is the magnitude of the
Burgers vector

Fig. 7 Contour map of (r111r22)/2 normalized according to
Eq. (43) in global coordinates, where the coordinates are nor-
malized by the side length a of the hexagonal dislocation with
Burgers vector of magnitude b

Fig. 8 Contour map of (r11–r22)/2 normalized according to
Eq. (43) in global coordinates, where the coordinates are nor-
malized by the side length a of the hexagonal dislocation with
Burgers vector of magnitude b

Fig. 9 Contour map of the normalized stress component r12

(normalized according to Eq. (43)) in global coordinates, nor-
malized by the side length a of the hexagonal dislocation with
Burgers vector of magnitude b

Fig. 10 Contour map of the normalized displacement (u1 1 u2)/
2b in the normalized global coordinates x1/a and x2/a induced
by a regular hexagonal dislocation with Burgers vector of mag-
nitude b
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been normalized by a and g3¼ 10�7. The numerical results are
listed in Table 1, and are compared to the given Burgers vector
along the local g1-direction. They clearly show that the displace-
ment jump at these four points nearly coincide with the Burgers
vector with a relative error in the displacement along g1 being
below 0.5%. We mention that more accurate results can be
obtained by increasing the Gaussian points for the line integral
from 0 to p, and/or by further subdividing the triangles into more
regular ones. The displacements along the g2- and g3-directions
are extremely small (below 10�8), which is to be expected since
there is no slip along the g2- and g3-directions.

We have also randomly selected some points on the surface of
the half-space in order to calculate the stress. It is shown that the
magnitudes of the normalized tractions on the surface of the half-
space are all below 10�8. Therefore, the traction-free condition is
also satisfied.

4.2 Displacement Field on the Dislocation Plane. For dem-
onstration, displacements and stresses on the local plane
g3¼ 0.1a are calculated. Figures 4–6 show the distributions of
the normalized displacements u1, u2 and u3, respectively, in the
local coordinate system. As shown in Fig. 4, the distribution of
the displacement u1 is symmetric about the local axis g2, while
the distribution of displacements u2 and u3 in Figs. 5–6 are
anti-symmetric. It should be noted that the symmetric or anti-
symmetric characteristics of the induced fields strongly depend
on the Burgers vector. In our examples, the Burgers vector is
assumed to be along the [�1 1 0] direction. If, for instance, the
Burgers vector is assumed to be along the local g2-axis, i.e.,
the [�1 �1 2] direction, then the displacement u2 will be symmet-
ric about g2, while the displacement u1 becomes anti-
symmetric. It should be also noted that the magnitude of the
displacement u1 at the center of the dislocation is nearly two
orders of magnitude larger than others, except for near the cor-
ners of the hexagon.

4.3 Displacement and Stress Fields on the Free
Surface. As mentioned in Sec. 4.1, our calculations using the
present method verify that r13, r23 and r33 on the free surface of
the half-space are close to zero. The distributions of the remaining
stress components on the free surface of the half-space in global
coordinates are presented in Figs. 7–9. While both the r11 and r22

distributions are asymmetrical, the distributions of the hydrostatic
stress rh¼ (r11þ r22)/2 (Fig. 7) and biaxial stress rb¼ (r11�r22)/2
(Fig. 8) possesses obvious symmetry characteristics about the
global line x2¼ x1. The former is anti-symmetric and the latter is

symmetric. The distribution of r12 (Fig. 9) in global coordinates is
also anti-symmetric about x2¼ x1.

Similar to the stresses, the distributions of the individual dis-
placement components u1 and u2 in the global coordinates do not
exhibit any particular symmetry property. However, the distribu-
tion of uh¼ (u1þ u2)/2, called the pseudohydrostatic displace-
ment, and the distribution of ub¼ (u1�u2)/2, the pseudobiaxial
displacement, possess anti-symmetric and symmetric properties,
respectively, as shown in Figs. 10–11. The u3 distribution on
the free surface shown in Fig. 12 is anti-symmetric about the
line x2¼ x1 and reaches its peak value around the points
(x1, x2)¼ (2, �3) and (�3, 2) on the free surface (x3¼ 0).

5 Discussions and Conclusions

In this paper, explicit expressions of the elastic displacement
and stress fields due to an arbitrary dislocation loop in an aniso-
tropic homogenous half-space are derived in terms of simple line
integrals (from 0 to p). In the proposed integrals the influence of
the shape of the polygonal dislocation on the elastic displacement
and stress fields are all analytically contained in the integrand.
Reduction from a surface integral to a line integral greatly
improves the efficiency and accuracy on the calculation of the
dislocation-induced elastic fields.

Based on the proposed method, the displacement and stress
fields due to a hexagonal dislocation in a half-space of a copper
crystal are obtained. Both the validity and precision of the method
are well demonstrated by comparing the calculated displacement
jump at the dislocation surface to the given Burgers vector and by
checking the traction-free boundary condition on the free surface
of the half-space. Results are also presented for the displacements
and stresses on the global free surface of the half-space. These
results could serve as benchmarks for numerical studies (utilizing,
for instance, the finite element method) of similar dislocation
problems in anisotropic crystals. The observed symmetric and
anti-symmetric features of the elastic field distributions can pro-
vide insight when analyzing the influence and behavior of misfit
dislocations present near free surfaces.

We mention that while the proposed unified integral interval (0,
p) is more convenient to carry out and is furthermore independent
of the loop shape, special numerical schemes are needed for han-
dling the situation where the dislocation loop intersects with the
free surface of the half space [26,27]. For example, the self-energy
of an elliptic dislocation loop was derived in anisotropic elastic
media and further corrected for one-dimensional core/shell nano-
wires by combining the boundary element method [26]. This solu-
tion was successfully in predicting the critical shell thickness
corresponding to the defect-free core/shell nanowires [26].

Fig. 11 Contour map of the normalized displacement (u12u2)/
2b in the normalized global coordinates x1/a and x2/a induced
by a regular hexagonal dislocation with Burgers vector of mag-
nitude b

Fig. 12 Contour map of the normalized displacement u3/b in
the normalized global coordinates x1/a and x2/a induced by
a regular hexagonal dislocation with Burgers vector of magni-
tude b
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