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Irregular Inhomogeneities in an
Anisotropic Piezoelectric Plane
This paper presents an analytical solution for the Eshelby problem of polygonal inhomo-
geneity in an anisotropic piezoelectric plane. By virtue of the equivalent body-force con-
cept of eigenstrain, the induced elastic and piezoelectric fields in the corresponding
inclusion are first expressed in terms of the line integral along its boundary with the inte-
grand being the Green’s functions, which is carried out analytically. The Eshelby inho-
mogeneity relation for the elliptical shape is then extended to the polygonal
inhomogeneity, with the final induced field involving only elementary functions with small
steps of iteration. Numerical solutions are compared to the results obtained from other
methods, which verified the accuracy of the proposed method. Finally, the solution is
applied to a triangular and a rectangular quantum wire made of InAs within the semicon-
ductor GaAs full-plane substrate. [DOI: 10.1115/1.4005557]
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1 Introduction

As is widely known, Eshelby problem [1–3] is very important
in various engineering and physical fields and is the subject of
constant studies [1,4,5]. Although most Eshelby problems con-
cerning isotropic elasticity have been solved analytically for both
two-dimensional (2D) and three-dimensional (3D) deformations
[6–9], those in the corresponding anisotropic elasticity are still
challenging. Since the late 20th century, the Eshelby problem
with any shaped inclusion has been found to be useful in the study
of the strained semiconductor quantum devices using the strain-
induced quantum dot (QD) and quantum wire (QWR) [10], where
the piezoelectric coupling could also contribute to the electronic
and optical properties of the semiconductor structure.

A few of Eshelby problems have been solved for the fully
coupled piezoelectric solid materials [5,11–15]. Ru [16,17] further
derived the solutions for an arbitrarily shaped inclusion in aniso-
tropic full- and half-planes of elasticity and piezoelectricity using
the special conformal mapping method, and Pan [18,19] the corre-
sponding solutions in both full and bimaterial planes using the
Green’s function methods. Recently, a general solution for the
Eshelby problem of arbitrarily shaped piezoelectric inclusions
was derived by Zou et al. [20]. However, the corresponding inho-
mogeneity problem remains to be solved.

Thus, we present an analytical solution for an arbitrarily shaped
polygonal inhomogeneity in anisotropic piezoelectric full-planes
in this paper. Based on the equivalent body force concept of
eigenstrain, we express the induced elastic and piezoelectric fields
in the corresponding inclusion in terms of a line integral on its
boundary, with the integrand being the line-source Green’s func-
tions [18,19]. The most remarkable feature is that the final solu-
tion of the inclusion problem involves only elementary functions.
For the corresponding inhomogeneity problem, we first extend the
classic Eshelby inhomogeneity relation for the elliptical shape to
the polygonal inhomogeneity and then propose an iteration
approach for evaluating the field inside the inhomogeneity. The
field outside the inhomogeneity can be also calculated approxi-

mately. Due to this simple feature, the elastic and piezoelectric
fields due to multiple inhomogeneities or an array of QWRs could
be easily obtained by summing all the contributions together. Nu-
merical examples are carried out and compared with existing
boundary element method (BEM) results to verify the accuracy of
the proposed method. We also apply our solution to triangle-
shaped and rectangle-shaped QWRs made of InAs within the
GaAs full-plane. Our results clearly show the importance of the
material orientation and piezoelectric coupling. Therefore, these
results could serve as benchmarks and should be of interests in the
analysis of nanoscale quantum-wire structures.

This paper is organized as follows: In Sec. 2, the equivalent
body force of the eigenstrain, the governing equations, and the
classic Eshelby inhomogeneity relations are presented. In Sec. 3,
the proposed method is described where the iteration formula and
the inside–outside field conversion are elaborated. It is remarked
that the results in Secs. 2 and 3 are applicable to both 2D and 3D
deformations. Benchmark numerical examples are presented in
Sec. 4, and conclusions are drawn in Sec. 5.

2 Equivalent Body Force of Eigenstrain

At first, we assume that there is an extended general eigenstrain
cp

Ijðc
p
ij &� Ep

j Þ within the domain V bounded by the surface @V
(see Fig. 1). We would like to find the equivalent body force of
this eigenstrain in V. We first define the extended strain as

cIj ¼
cij; I ¼ 1; 2; 3
�Ej; I ¼ 4

�
(1)

where cij is the total elastic strain and Ei is the electric field, which
are related to the total elastic displacement ui and the total electric
potential / as

cij ¼ 0:5ðui;j þ uj;iÞ
Ej ¼ �/;j

(2)

The total extended strain is the sum of

cIj ¼ ce
Ij þ cp

Ij (3)
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where cp
Ij is the extended eigenstrain in the inhomogeneity

(Fig. 1), and ce
Ij is the extended strain that appears in the constitu-

tive relation [19,20] as

riJ ¼ CiJKlc
e
Kl (4a)

or

riJ ¼ CiJKlðcKl � vcp
KlÞ (4b)

Notice that the induced strains ce
Ij satisfy the constitutive relation

and again that the total extended strain is the combination of this
strain field and the applied eigenstrain field. In Eq. (4b), v is equal
to 1 if the observation point is within the eigenstrain domain V
and to 0 otherwise. The extended stress in Eq. (4) is defined as

riJ ¼
rij; J ¼ j ¼ 1; 2; 3
Di; J ¼ 4

�
(5)

where rij and Di are the stresses and electric displacements,
respectively, and

CiJKl ¼

Cijkl; J;K ¼ j; k ¼ 1; 2; 3

elij; J ¼ j ¼ 1; 2; 3; K ¼ 4

eikl; J ¼ 4; K ¼ k ¼ 1; 2; 3

�eil; J ¼ K ¼ 4

8>>><
>>>:

(6)

with Cijlm, eijk, and eij being the elastic moduli, piezoelectric coef-
ficients, and dielectric constants, respectively [21,22].

We also define the extended displacement as

uI ¼
ui; I ¼ i ¼ 1; 2; 3
/; I ¼ 4

�
(7)

We assume that r0
iJ is the applied extended stress field at infinity

if the material is homogeneous, i.e., without inhomogeneity. The
corresponding extended strain field is c0

Ij by the generalized con-
stitutive relation for the infinite domain, i.e., r0

iJ ¼ CiJLmc0
Lm.

Therefore, with an inhomogeneity in the infinite matrix, the gener-
alized constitutive relation in the inhomogeneity V and the matrix
is based on the classic Eshelby inhomogeneity relation [1,2],
respectively,

r0
iJ þ riJ ¼ C�iJLmðc0

Lm þ cLm � cp
LmÞ V (8a)

r0
iJ þ riJ ¼ CiJLmðc0

Lm þ cLmÞ D� V (8b)

where riJ and cIj are the induced extended stress and strain fields,
and cp

Lm is again the eigenstrain.
Introducing the equivalent eigenstrain and eigenelectric field

concept c�Ij, Eqs. (8a) and (8b) can then be expressed equally as

r0
iJ þ riJ ¼ CiJLmðc0

Lm þ cLm � cp
Lm � c�LmÞ V (9a)

r0
iJ þ riJ ¼ CiJLmðc0

Lm þ cLmÞ D� V (9b)

Let

c��Ij ¼ cp
Ij þ c�Ij V (10)

Eq. (9) can then be rewritten as

r0
iJ þ riJ ¼ CiJLmðc0

Lm þ cLm � c��LmÞ V (11a)

r0
iJ þ riJ ¼ CiJLmðc0

Lm þ cLmÞ D� V (11b)

It is noted that since the equivalent eigenstrain c�Ij in a polygonal
inhomogeneity V is not uniform, the new eigenstrain c��Ij in V is
not uniform either; it is a function of the position within V. This is
different to the elliptic or ellipsoidal inhomogeneity case.

For the eigenstrain problem described above, the equilibrium
equation for the stresses and the balance for the electric displace-
ments in V is [19,20]

riJ;i ¼ 0 (12)

Then, substituting Eq. (11a) into Eq. (12), we have

CiJKluK;li ¼ CiJKlc
��
Kl;i (13)

It is clear that the right-hand side of Eq. (13) resembles the
extended body force as it would appear on the left-hand side of
Eq. (13),

fJ ¼ �CiJKlc
��
Kl;i (14)

which is the equivalent body force corresponding to the new
eigenstrain.

3 Proposed Calculation Method

Using the equivalent body force (14), the induced total
extended displacement uK can then be found as

uKðXÞ ¼ �
ð

V

uK
J ðx; XÞ½CiJLmc��LmðxÞ�;idVðxÞ (15)

where uK
J ðx; XÞ is the Green’s Jth elastic displacement/electric

potential at x due to a line–force/line–charge in the Kth direction
applied at X.

Integrating by parts and noticing that the new eigenstrain is
nonzero only in V, Eq. (15) can be expressed alternatively as

uKðXÞ ¼
ð

V

uK
J;xi
ðx; XÞCiJLmc��LmðxÞdVðxÞ (16)

The total extended strain cIj can be obtained by taking the deriva-
tive of uK(X).

uK;pðXÞ ¼
ð

V

uK
J;xiXp
ðx; XÞCiJLmc��LmðxÞdVðxÞ (17)

We now write Eq. (17) symbolically and equivalently as

Fig. 1 A general polygonal inhomogeneity problem in an aniso-
tropic piezoelectric plane: An extended eigenstrain c

p
Ij ðc

p
ij & � Ep

j Þ
within an arbitrarily shaped polygon. The material properties
within and outside the polygon are C�iJLm and CiJLm, respectively.
If C�iJLm equal to CiJLm, the inhomogeneity problem is then
reduced to the inclusion problem.
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cIjðXÞ ¼ SIjLmðx; XÞ � c��LmðxÞ (18)

where SIjLm� is an integral operation tensor over c��Ij , and for the
elliptic or ellipsoidal inhomogeneity, it reduces to the well-known
Eshelby tensor [1,2] being a function of the field point X only
(extended to the piezoelectric case).

To carry out the integration, we assume that the boundary of the
eigenstrain domain is composed of piecewise straight line seg-
ments. We define an arbitrary line segment in the (x,z)-plane start-
ing from point 1 (x1, z1) and ending at point 2 (x2, z2), in terms
of the parameter t(0� t� 1), as x ¼ x1 þ ðx2 � x1Þt; z ¼ z1

þðz2 � z1Þt. The outward normal component ni(x) along the line
segment is constant, given by n1 ¼ ðz2 � z1Þ=l; n2 ¼ �ðx2 � x1Þ=l,

with l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðz2 � z1Þ2

q
. Under this assumption, the

integration can be carried out and expressed in terms of the elemen-
tary functions for the corresponding inclusion problem [18,19].

Now, letting Eq. (8a) equals to Eq. (11a) gives, in the inhomo-
geneity domain V,

C�iJLmðc0
Lm þ cLm � cp

LmÞ ¼ CiJLmðc0
Lm þ cLm � c��LmÞ V (19)

Substitution of Eq. (18) into Eq. (19) gives, for any point X in V,

C�iJLm½c0
Lm þ SLmIjðx; XÞ � c��Ij ðxÞ � cp

LmðXÞ�
¼ CiJLm½c0

Lm þ SLmIjðx; XÞ � c��Ij ðxÞ � c��LmðXÞ� (20)

However, it is clear that for a general polygonal geometry, the
general eigenstrain c��Ij is nonuniform. Thus, Eq. (20) would
require a domain integration of x over V for the unknown c��Ij , as
given in Eqs. (17) and (18). The direct domain discrete approach
was employed by Ref. [23] for the isotropic elastic case with po-
lygonal inhomogeneity.

Here, we propose a new approach to solve Eq. (20). We first
assume that c��Ij ðxÞ are uniform in the inhomogeneity taking the
values at point X so that the “Eshelby tensor” SIjLm(x; X), which is
a two-point function tensor, can be found exactly (by carrying out
the integration for the variable x) as a function of X only. In so
doing, we are approximating the “operational Eshelby tensor” by
its average value. Then Eq. (20) can be solved for c��Ij as a function
of X. In other words, we can solve c��Ij at all points of the inhomo-
geneity domain V. It is striking that the solution based on this
approximation, named as the first-order solution c��ð1ÞIj , is already

Fig. 2 (a) A triangular QWR (SiC) in an isotropic elastic full-
plane under a far-field stress r0 (Young modulus 5 210 GPa,
Poisson’s ratio 5 0.3). (b) Stress rzz along the x-axis.

Fig. 3 (a) A triangular QWR (Ti-6Al-4V) in an isotropic elastic
full-plane under a far-field stress r0 (Young modulus 5 210 GPa,
Poisson’s ratio 5 0.3). (b) Stress rzz along the x-axis.
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very accurate as compared to the direct method (based on the
BEM, see comparison in the Figs. 2(b), 3(b), and 4(b)). Further-
more, the unknown eigenstrain c��Ij can be further refined if needed
by using the following iteration for i¼ 1, 2, 3…:

C�iJLm½c0
Lm þ SLmIjðx; XÞ � c��ðiÞIj ðxÞ � cp

LmðXÞ�

¼ CiJLm½c0
Lm þ SLmIjðx; XÞ � c��ðiÞIj ðxÞ � c��ðiþ1Þ

Lm ðXÞ� (21)

This solution is valid for the field inside the inhomogeneity of
an arbitrary shape in an infinite plane and its convergence can be
indirectly observed by comparing with the BEM results and by
checking the results at different iteration steps. With the calcu-
lated field inside, the stress immediately outside the inhomogene-
ity can be evaluated approximately by the following relation [2]:

rout
iJ ¼ rin

iJ þ CiJKl½�CpQMnc
��
MnnpnlNQKðnÞ=DðnÞ þ c��Kl � (22)

where NIJ(n) and D(n) are the cofactor and determinant of the ma-
trix KIJ(n) defined as

KJKðnÞ ¼ CiJKlninl (23)

with np being the unit outward normal on the interface. Using rela-
tion (22), the iteration for the outside points close to the interface
between the inhomogeneity and matrix can be carried out using
the iteration results at the corresponding inside points.

It should be pointed out that since the iteration results for out-
side points are obtained from the iteration results at the inside
points near the interface, the results in the matrix could contain
some errors due to this approximation.

4 Numerical Examples

We point out that the solutions developed in Sec. 3 can be
applied to both 2D and 3D problems. In this paper, we will concen-
trate on the 2D case. Furthermore, before using our analytical solu-
tion to the general inhomogeneity in the piezoelectric InAs/GaAs
system, we first apply it to a triangular QWR (Fig. 2(a)) and a rec-
tangular QWR (Fig. 3(a)) in the elastic matrix to verify our method.
These two systems are both under the remote uniaxial stress
r0 ¼ 0:2 GPa. The triangular QWR is an isosceles with the base-

line length being b¼ 10 nm and its height being a¼ 20 nm. The
elastic properties of the matrix and inclusion are listed in Table 1.
In both examples, the matrix is made of the same isotropic material.
Our analytical solutions with different iterations are compared with
the BEM results [24], as shown in Figs. 2(b) and 3(b). The rectan-
gular QWR has a length of b¼ 20 nm and a width of a¼ 10 nm.
The matrix is Al2O3 with the Young’s modulus E¼ 345 GPa, Pois-
son’s ratio �¼ 0.131. The inclusion is ZrO2 with E¼ 192 GPa,
�¼ 0.3. The results are also compared with those obtained by the
BEM (Fig. 4(b)). It is seen from Figs. 2(b), 3(b), and 4(b) that our

Fig. 4 (a) A rectangular QWR (ZrO2) in an isotropic elastic
Al2O3 full-plane under a far-field stress r0. (b) Stress rzz=r0

along the x-axis.

Table 1 Elastic properties of the matrix and inhomogeneity
materials used in the triangle model (Figs. 2(a), 2(b), 3(a), and 3(b))

Inclusion materials

Matrix SiC Ti-6Al-4V

Young’s modulus
E (GPa)

210 410 110

Poisson’s ratio � 0.30 0.16 0.34

Table 2 The maximum relative errors of the stress component rzz between the fifth-order/six-order iteration and BEM [24] results
for inhomogeneities SiC, Ti-6Al-4V, and ZrO2 in the matrix under a far-field stress r0 5 0.2 GPa. The matrix corresponding to inho-
mogeneities SiC and Ti-6Al-4V is made of isotropic material (Young modulus 5 210 GPa, Poisson’s ratio 5 0.3 as given in Table 1)
(relative error 5 abs (iteration result 2 BEM)/BEM * 100%).

First order (%) Fifth order (%)

Inhomogeneity materials Matrix Inside Outside Inside Outside

Triangle
SiC

E¼ 210 GPa
�¼ 0.3

5.26 7.06 2.03 6.12

Triangle
Ti-6Al-4V

E¼ 210 GPa
�¼ 0.3

1.28 7.28 0.18 3.10

Rectangle
ZrO2

Al2O3 1.57 3.32 0.27 1.84
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solutions inside the QWRs are almost the same as the previously
published results and that the accuracy of the iteration is apparent.
However, the solutions outside the QWR show some error which
may be caused by the approximate formula (22).

Table 2 lists the maximum relative errors between our iteration
and BEM for the stresses both inside and outside the inhomogene-
ity shown in Figs. 2(b), 3(b), and 4(b). It is clear that the maxi-
mum relative error inside is much smaller than that outside and

Fig. 5 (a) Triangular QWR of InAs (001) within the GaAs (001) full plane (under a hydrostatic
eigenstrain in QWR). (b) Stress rxx along the x-axis. (c) Stress rxx along the z-axis. (d) Stress
rzz along the x-axis. (e) Stress rzz along the z-axis. (f) Stress rxz along the z-axis. (g) Electric
displacement Dz along the z-axis.
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that this error decreases with increasing iteration steps. Further-
more, the maximum error occurs at the point near the interface.
We would like to point out that since the interface between the
inhomogeneity and matrix is a singular line, in our numerical cal-

culation, we use points near the interface. For example, if the
coordinate for the interface is at (x,z)¼ (�10.0 nm,0), we then use
(x,z)¼ (�9.75 nm,0) and (x,z)¼ (�10.25 nm,0) for the inhomoge-
neity and matrix sides, respectively.

Fig. 6 (a) Triangular QWR of InAs (111) within the GaAs (111) full plane (under a hydrostatic
eigenstrain in QWR). (b) Stress rxx along the x-axis. (c) Stress rxx along the z-axis. (d) Stress
rzz along the x-axis. (e) Stress rzz along the z-axis. (f) Stress rxz along the z-axis. (g) Electric
displacement Dx along the x-axis. (h) Electric displacement Dx along the z-axis.
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The method above is now applied to the mechanical–electrical
coupling systems. There will be no remote uniaxial stress in the nu-
merical examples below. The triangular QWR has the dimension of
a¼ 20 nm and b¼ 10 nm (Figs. 5(a) and 6(a)), and the rectangular
QWR has a size of a� b¼ 30 nm� 20 nm (Figs. 7(a) and 8(a)).
The misfit-strain is hydrostatic, i.e., c�xx ¼ c�zz ¼ 0:07 and the elastic
properties for the matrix GaAs (001) are C11¼ 118� 109 N/m2,
C12¼ 53.8� 109 N/m2, and C44¼ 59.4� 109 N/m2 [25]. The pie-
zoelectric constant and relative permeability for GaAs (001) are,
respectively, e14¼ 0.16 C/m2 and er¼ 12.5� 10�9 [25]. For the

inhomogeneity InAs (001), we have C11¼ 83.29� 109 N/m2,
C12¼ 45.26� 109 N/m2, and C44¼ 39.59� 109 N/m2. The piezo-
electric constant and relative permeability for InAs (001) are,
respectively, e14¼ 0.0456 C/m2 and er¼ 0.1346� 10�9. We obtain
the material properties for GaAs (111) and InAs (111) by coordi-
nate transform as in Ref. [25].

Some numerical results are discussed below and the maximum
relative errors along the selected lines (include both inside and out-
side points) between the fourth and fifth order of iterations are listed
in Table 3. Actually, the results for inside points are very accurate,

Fig. 7 (a) Rectangular QWR of InAs (001) within the GaAs (001) full plane (under a hydrostatic eigenstrain in
QWR). (b) Stress rxx along the x-axis. (c) Stress rxx along the z-axis. (d) Stress rzz along the x-axis. (e) Stress
rzz along the z-axis.
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Fig. 8 (a) Rectangular QWR of InAs (111) within the GaAs (111) full plane (under a hydrostatic eigenstrain in QWR). (b) Stress
rxx along the x-axis. (c) Stress rxx along the z-axis. (d) Stress rzz along the x-axis. (e) Stress rzz along the z-axis. (f) Electric
displacement Dx along the z-axis.
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and the maximum relative errors in the table correspond to the
points outside. We have tested that the maximum relative errors
continuously decrease with increasing orders of iteration. For
example, in Fig. 6(f), the maximum relative error for rxz is 28.2%
at (x,z)¼ (0.0,�4.75) nm, as highlighted in Table 3. With increas-
ing iteration steps, the error is then reduced to 8.3% for sixth order,
2.1% for seventh order, and 0.2% for eighth order. This further
shows indirectly that our iteration approach is convergent.

Shown in Figs. 5(b)–5(f) are the stress distributions in the sys-
tem of a triangular InAs (001) QWR within the GaAs (001) matrix
(Fig. 5(a)) using different orders of iteration. The corresponding
electric displacement Dz along the z-axis is shown in Fig. 5(g).
From these figures, it is observed that the calculated field quanti-
ties inside the QWR are almost independent of the iteration steps,
showing that the first-order iteration is already accurate enough
(to 10�4). On the other hand, outside in the matrix, we observe
obviously more accurate results with increasing iteration steps.
Therefore, iteration is essential especially for the outside field.
Concerned with Fig. 5(g), the electric displacement Dz is antisym-
metric about the central point, especially after iteration. This is a
very interesting electric phenomenon.

Figures 6(b)–6(h) show the stress and electric displacement
fields in the system where a triangular InAs (111) QWR is in the
GaAs (111) full-plane matrix (Fig. 6(a)). The most impressive
phenomenon in Figs. 6(b) and 6(d) are the stress concentration at
the corner of the triangle inhomogeneity. It is observed from Fig.
6(c) that the stress rxx along the z-axis is symmetric. However, the
stress rzz along the z-axis is asymmetric particularly after iteration
(Fig. 6(e)), which may be caused by the electromechanical cou-
pling. Figure 6(f) shows the distribution of the stress rxz along the
z-axis, which is similar but different to Fig. 5(f) in the correspond-
ing InAs/GaAs (001) system, due to the material anisotropy
(caused by material property transform). Figures 6(g) and 6(h)
show the variation of the electric component Dx along the x- and
z-axes. The refinement of the solutions via iteration can be obvi-
ously observed from these figures. Figures 7(b)–7(e) shows the
stress distributions in the corresponding InAs/GaAs (001) system
with a rectangular QWR (Fig. 7(a)).

Finally, Figs. 8(b)–8(g) show the field quantity variation in the
system of a rectangular InAs (111) QWR within the GaAs (111)
matrix (Fig. 8(a)). Figures 8(b)–8(c) demonstrate clearly the im-

portance of the iteration for the stress component rxx in the ma-
trix, especially in the vicinity of the interface. The iteration
refinement on the stress component rzz within the QWR is shown
in Fig. 8(d). Also, the stress component rzz is continuous across
the interface between the QWR and matrix (shown by Fig. 8(e)).
Finally, the magnitude of the electric displacement Dx along the z-
axis becomes smaller after iteration (shown by Fig. 8(f)).

5 Conclusions

In this paper, we have derived an analytical solution for the
Eshelby problem of polygonal inhomogeneity in an anisotropic pie-
zoelectric full-plane. Based on the equivalent body-force concept
of eigenstrain, we first expressed the induced elastic and piezoelec-
tric fields in the corresponding inclusion in terms of a line integral
on the boundary of the inclusion with the integrand being the line-
source Green’s functions. Using the recently derived exact closed-
form Green’s functions, the line integral is carried out analytically
by assuming a piecewise straight-line boundary for the inhomoge-
neity, i.e., an arbitrarily shaped polygon. The most remarkable fea-
ture is that the final result involves only very simple elementary
functions. For the corresponding inhomogeneity problem, the clas-
sic Eshelby inhomogeneity relation is extended to the polygonal
inhomogeneity so that the inhomogeneity problem can be solved by
a simple iteration algorithm. The proposed method is first validated
to be accurate by comparing with existing results for the isotropic
elastic inhomogeneity case. It is demonstrated that with only a few
iterations, very accurate field results inside the inhomogeneity can
be obtained whilst the solution outside contains some errors due to
the approximation used. The developed solution is then applied to
triangular and rectangular piezoelectric InAs QWRs within GaAs
full-planes, with results clearly showing the importance of the ma-
terial orientation and piezoelectric coupling. While our numerical
results can serve as benchmarks and could be useful to the analysis
of nanoscale QWR structures, multiple inclusion/inhomogeneity
problems in elastic and piezoelectric matrices (i.e., Ref. [26]) could
be performed readily using the proposed analytical approach.
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Table 3 The maximum relative errors of the field quantities between the fourth-order and fifth-order iterations for results pre-
sented in Figs. 5–8 (relative error 5 abs (fourth-order iteration–fifth-order iteration)/fifth-order iteration * 100%)

Inhomogeneities Matrix Fourth order Fifth order Maximum error (%)

Triangle
InAs(001)

GaAs(001) rxx (x-axis) �0.87612� 108 �0.82606� 108 6.06
rxx (z-axis) 1.68768� 109 1.70771� 109 1.17
rzz (x-axis) 0.3602� 109 0.3483� 109 3.4
rzz (z-axis) �1.1469� 109 �1.0172� 109 12.75
rxz (z-axis) �2.20323� 109 �2.17312� 109 1.4
Dz (z-axis) �6.05364 �5.85352 3.4

Triangle
InAs(111)

GaAs(111) rxx (x-axis) �14.0031� 1010 �14.5023� 1010 3.44
rxx (z-axis) �6.90889� 109 �7.00895� 109 1.43
rzz (x-axis) �9.682� 1010 �10.679� 1010 9.33
rzz (z-axis) �8.30697� 109 �8.53714� 109 2.7
rxz (z-axis) 0.22698 3 109 0.17704 3 109 28.2

Dx (x-axis) 0.00852 0.00949 10.2
Dx (z-axis) �0.00583 �0.00602 3.16

Rectangle
InAs(001)

GaAs(001) rxx (x-axis) �2.46491� 109 �2.40489� 109 2.5
rxx (z-axis) 2.04622� 109 2.14618� 109 4.66
rzz (x-axis) 1.62011� 109 1.59008� 109 1.89
rzz (z-axis) �2.28361� 109 �2.23355� 109 2.24

Rectangle
InAs(111)

GaAs(111) rxx (x-axis) �2.24003� 109 �2.13981� 109 4.7
rxx (z-axis) 1.92126� 109 1.76956� 109 8.57
rzz (x-axis) �9.20411� 109 �9.39512� 109 2.03
rzz (z-axis) �9.38096� 109 �9.57843� 109 2.06
Dx (x-axis) 0.00597 0.00631 5.39
Dx (z-axis) 0.00106 0.00094 12.8
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