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a b s t r a c t

We solve analytically the Eshelby’s problem in an anisotropic multiferroic bimaterial plane. The solution
is based on the extended Stroh formalism of complex variables, and is valid for the inclusion of arbitrary
shapes, described by a Laurent polynomial, a polygon, or the one bounded by a Jordan curve. Further-
more, the results in the corresponding half plane and full plane can be reduced directly from the bima-
terial-plane solution. As such, the solution unifies the complex variable method and the Green’s function
method, extending further to the multiferroic bimaterial plane of general anisotropy. The essential eigen-
functions are also identified by which the induced fields can be simply determined. Numerical results are
presented to investigate the features of these eigenfunctions as well as the strain, electric and magnetic
fields (components of the extended Eshelby tensor). Particularly, we present the values of these fields at
the center of the N-side regular polygonal inclusion and also the average values of these fields over the
inclusion area. The effect of the half-plane traction-free surface condition as well as the effect of various
couplings on the induced fields is discussed in detail. For the N-side regular polygonal inclusion, it is
found that, when the inclusion is in the full plane, both the center and average values of the Eshelby ten-
sor are independent of the side number N, except for N = 4. We further show that the piezoelectric and
piezomagnetic coupling coefficients could significantly affect the Eshelby tensor. These features should
be useful in controlling the Eshelby tensor for the design of better multiferroic composites. Typical con-
tours of the field quantities in and around the inclusion bounded by both straight and curved line seg-
ments in a multiferroic bimaterial plane are also presented.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Eshelby’s problem is concernedwith determining the elastic
field of a linearly elastic, homogeneous, and infinite solid contain-
ing a subdomain called inclusion which is subjected to a prescribed
uniform strain or eigenstrain. Through his celebrated inclusion
solution of an ellipsoidal inclusion, called the (classical) Eshelby
tensor in the literature, Eshelby (1957, 1959) introduced the equiv-
alent inclusion concept to transform the problem of analyzing the
stress field in matrix-inclusion solids into an algebraic operation
problem. This method now becomes an indispensable part of the
theoretical foundation of contemporary composite mechanics and
materials (e.g., Mura, 1982; Nemat-Nasser and Hori, 1993), and
has many applications in today’s nano-science and nano-technolo-
gies (e.g., Li and Wang, 2008).

Material anisotropy and piezoelectric coupling are two common
features in composites, and thus, research of the corresponding

Eshelby’s inclusion problem in these composites becomes neces-
sary. Under two-dimensional (2D) deformation, the Eshleby’s
inclusion problem in anisotropic elastic and piezoelectric planes
were solved by Ru (2000, 2003) using the conformal mapping
method, by Pan and coworkers using the Green’s function method
(e.g., Pan, 2004), and by Zou and coworkers using a unified ap-
proach (Zou et al., 2011), among others. Also employing the
Green’s function approach, Jiang and Pan (2004) solved the Eshelby
problem in the corresponding magnetoelectroelastic bimaterial
plane where the inclusion was assumed to be bounded by a finite
number of straight line segments.

Recently, due to their special multiphase coupling features, mul-
tiferroic materials/composites are attracting intensive research
from scientists and engineers. Various interesting results have
demonstrated that the magnetoelectric coupling effect can be
enhanced by adjusting the relative volume fractions of the single-
phase piezoelectric and magnetostrictive materials and by increas-
ing properly the grading factor in the multiferroic composition (i.e.,
Petrov and Srinivasan, 2008; Wang et al., 2009). Since one of the
common composites is the particulate one (made of fibre-rein-
forced or particles-reinforced composites), the Eshelby’s inclusion
problem in the corresponding 2D multiferroic plane becomes very
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important. With this inclusion problem being solved, the corre-
sponding inhomogeneity problem can be solved based on the
micromechanics theory, and the effective property of the compos-
ites can be predicted, providing the important parameters for the
best design of multiferroic composites.

Thus, in this paper, we present the analytical solution of the
Eshelby’s inclusion problem in an anisotropic multiferroic bimate-
rial plane. The inclusion can be of an arbitrary shape and can be
bounded by straight and curved line segments. Since the solution
is in an explicit and closed form, various physical features associ-
ated with the inclusion can be directly extracted from the solution.
In particular, the center and average values of the induced fields in
the inclusion are investigated in details and results are shown via
both tables and contours.

The paper is organized as follows: In Section 2, we briefly pres-
ent the governing equations and the general solutions in terms of
the extended Stroh formalism. In Section 3, solutions are derived
for the Eshelby’s inclusion problem in an anisotropic multiferroic
full plane where the inclusion is of any geometric shape. In Sec-
tion 4, we solve the corresponding Eshelby’s problem in a multifer-
roic bimaterial plane. In Section 5, explicit expressions of the
eigenstrain-induced fields are obtained for various shapes of the
inclusion. Numerical examples are presented in Section 6, and con-
clusions are drawn in Section 7.

2. Governing equations and general solutions in terms of the
extended Stroh formalism

2.1. Governing equations of anisotropic multiferroic media

The governing equations for a linear multiferroic solid are given
by (e.g., Chen et al. 2010)

rij ¼ Cijkluk;l þ ekij/;k þ qkiju;k;

Dk ¼ ekijui;j � jkl/;l � dklu;l;

Bk ¼ qkijui;j � dlk/;l � lklu;l;

rij;j ¼ 0;Dk;k ¼ 0;Bk;k ¼ 0;

9>>>>>>=>>>>>>;
ð1Þ

where we have assumed that there is no body force, no electric
charge density, and no electric current density; repeated indices
mean summation, a comma followed by i (=1,2,3) denotes the par-
tial derivative with respect to the ith spatial coordinate; ui, u and /
are the elastic displacements, electric potential, and magnetic po-
tential; rij, Di and Bi are the stress, electric displacement, and mag-
netic induction (i.e., magnetic flux); Cijkl, jij and lij are the elastic,
dielectric and magnetic permeability constants; eijk, qijk and dij are
the piezoelectric, piezomagnetic, and magnetoelectric constants.

We now define the extended displacement and stress compo-
nents by

uI ¼
ui; I ¼ i ¼ 1;2;3;
/; I ¼ 4;
u; I ¼ 5;

8><>: rIj ¼
rij; I ¼ i ¼ 1;2;3;
Dj; I ¼ 4;
Bj; I ¼ 5;

8><>: ð2Þ

and adopt the extended stiffness notation as below

CIjKl ¼

Cijkl; I;K ¼ i; k ¼ 1;2;3;

eijl; K ¼ 4; I ¼ i ¼ 1;2;3;

ejkl; I ¼ 4; K ¼ k ¼ 1;2;3;

qijl; K ¼ 5; I ¼ i ¼ 1;2;3;

qjkl; I ¼ 5; K ¼ k ¼ 1;2;3;

�jjl; I ¼ K ¼ 4;

�ljl; I ¼ K ¼ 5;

�dij I ¼ 4; K ¼ 5 or I ¼ 5; K ¼ 4:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð3Þ

Then Eq. (1) can be recast into

rIj ¼ CIjKluK;l; rIj;j ¼ 0; ð4Þ

2.2. General solutions in terms of the extended Stroh formalism

We assume that the extended 2D problem depends only on
coordinates x1 and x2; then the general solution of Eq. (4) can be
obtained by virtue of the extended Stroh formalism (Kuo and
Barnett, 1991; Suo et al., 1992; Liang and Hwu, 1996; Ting, 1996;
Jiang and Pan, 2004). More precisely, we seek the solution in the form

u ¼ ðu1;u2;u3;/;uÞT ¼ af ðx1 þ px2Þ; ð5Þ
where a is a five-dimensional vector; p is a complex number; f(⁄) is
an analytic function of its variable ‘⁄’ and the superscript ‘T’ denotes
the transpose of a matrix or vector. Thus, Eq. (4) is satisfied by the
arbitrary analytic function f given in Eq. (5) if (see, e.g., Chung and
Ting 1996)

½Q þ pðR þ RTÞ þ p2T�a ¼ 0; ð6Þ
where the 5 � 5 matrix R and the 5 � 5 symmetric matrices Q and T
are defined by

RIK ¼ CI1K2; QIK ¼ CI1K1; TIK ¼ CI2K2: ð7Þ
For the existence of a non-zero vector a, the characteristic equa-

tion of the eigenvalue problem (6), namely

det½Q þ pðR þ RTÞ þ p2T� ¼ 0 ð8Þ
must be satisfied. Furthermore, for a stable material, the roots of Eq.
(8) form five conjugate pairs with non-zero imaginary parts (e.g.,
Eshelby et al., 1953). Assuming that pI (I = 1, 2, 3, 4, 5) are the five
distinct roots with positive imaginary parts and aI (I = 1, 2, 3, 4, 5)
the corresponding eigenvectors, then the general solution (the ex-
tended displacement u and the extended stress function w) of Eq.
(4) can be written as

u ¼ ðu1;u2;u3;/;uÞT ¼ 2Re½AfðzÞ�;

w ¼ ðw1;w2;w3;w4;w5ÞT ¼ 2Re½BfðzÞ�;

9=; ð9Þ

where ‘Re’ stands for the real part and the constant matrices A and B
are defined through aI as follows:

bI ¼ ðRT þ pITÞaI ¼ �p�1
I ðQ þ pIRÞaI; I ¼ 1;2;3;4;5;

A ¼ ða1;a2;a3;a4; a5Þ; B ¼ ðb1;b2;b3;b4;b5Þ:

9=; ð10Þ

In Eq. (9), the five-dimensional vector f(z) is formed by five
arbitrary analytic functions fI(zI) (I = 1,2,3,4,5) as

fðzÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f3ðz3Þ; f4ðz4Þ; f5ðz5Þ�T ;
zI ¼ x1 þ pIx2; pI ¼ aI þ ibI; bI > 0; I ¼ 1;2;3;4;5;

9=; ð11Þ

Furthermore, the extended stress function vectorw is related to
the extended stress components by

rI1 ¼ �wI;2; rI2 ¼ wI;1; I ¼ 1;2;3;4;5: ð12Þ
The eigenvalues {pI} and eigenvectors {aI,bI} depend on the

extended material stiffness matrix CIjKl and can be equivalently
determined by the following eigenrelation (Chung and Ting, 1996):

Nn ¼ pn; ð13Þ
where N is a 10 � 10 fundamental matrix and n is a 10 � 1 column
vector, both defined by

N ¼ N1 N2

N3 NT
1

� �
; n ¼ a

b

� �
; ð14Þ
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where

N1 ¼ �T�1RT ; N2 ¼ T�1; N3 ¼ RT�1RT � Q ; ð15Þ
with Q, R, T being the real matrices defined by Eq. (7). Another ap-
proach to compute the eigenvalues {pI} and eigenvectors {aI,bI} is
via the Lekhnitskii formalism (Lekhnitskii, 1963), where the eigen-
vectors can be given explicitly after the eigenvalues {pI} are solved.

2.3. Alternative expressions

It is often useful to write the extended stress and strain fields
explicitly in a different form (a symmetric form in elasticity as in
Mantic and Paris, 1997; Ting 1998, 2000). Actually, from

rI2 ¼ 2Re
P
M
BIMf 0MðzMÞ

� �
; rI1 ¼ �2Re

P
M
BIMpMf

0
MðzMÞ

� �
; ð16Þ

and

B1M ¼ �pMB2M ðno summationÞ ð17Þ
which are given by Eq. (12) and r21 ¼ r12, we can reach

rIj ¼ 2Re
P
M
BIMB

�1
2Mf

0
MðzMÞBjM ðfor j ¼ 1;2Þ: ð18Þ

Similarly, from

uI;1 ¼ 2Re
P
M
AIMf 0MðzMÞ

� �
; uI;2 ¼ 2Re

P
M
AIMpMf

0
MðzMÞ

� �
; ð19Þ

using the notation

B21 �B11 0 0 0
B22 �B12 0 0 0
B23 �B13 0 0 0
B24 �B14 0 0 0
B25 �B15 0 0 0

26666664

37777775 ¼ BT

0 �1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

26666664

37777775 � BTK; ð20Þ

and the geometric relations eIJ = (uI,J + uJ,I)/2 with uI,4 = 0 and uI,5 = 0,
one can further arrive at

eIj ¼ Re
P
M
AIMB

�1
2Mf

0
MðzMÞBNMKNj þ AjMB

�1
2Mf

0
MðzMÞBNMKNI

� �
;

for j ¼ 1;2: ð21Þ

3. General solution to Eshelby’s inclusion problem in an
anisotropic multiferroic full plane

3.1. An inclusion in a full plane

We will solve the problem via the extended Stroh formalism. In
so doing, we first define the following matrix notations

rp ¼ ½r1p;r2p;r3p;Dp; Bp�T ;
ep ¼ ½e1p; e2p; e3p;�0:5Ep;�0:5Hp�T ; p ¼ 1;2; ð22Þ
where Ep and Hp are the electric and magnetic fields defined by
Ep = up, Hp = up, respectively; and

f 0 ¼ ½f 01ðz1Þ; f 02ðz2Þ; f 03ðz3Þ; f 04ðz4Þ; f 05ðz5Þ�T ; ð23Þ
where f 0I ðzIÞ ðI ¼ 1;2;3;4;5Þ are the derivatives of the eigenfunc-
tions fI(zI) with respect to zI. Furthermore, a diagonal matrix com-
posed of five elements, say {pI}, is denoted by hp⁄i.

Let X be the x1–x2 plane made of a homogeneous but aniso-
tropic multiferroic medium. It contains a subdomain, say x, which
undergoes an extended uniform eigenstrain e* (i.e., elastic eigen-
strain fe�ip; i ¼ 1;2;3; p ¼ 1;2g, plus eigenelectric and eigenmag-
netic fields fE�

p;H
�
p; p ¼ 1;2g). Let - denote the supplement of x

in the x1–x2 plane, C ¼ @x the curve separating x and - (Fig. 1),
and with x and - being defined as open sets. Throughout this
paper, we indicate the quantities in x and - with the superscripts
(or subscripts) ‘in’ and ‘out’, respectively. The extended eigen-
displacement field u* in x corresponding to the extended eigen-
strain fields in x can be expressed as

u� ¼

e�11x1 þ e�12x2

e�22x2 þ e�12x1

2e�13x1 þ 2e�23x2

�ðE�
1x1 þ E�

2x2Þ
�ðH�

1x1 þ H�
2x2Þ

0BBBBBBBB@

1CCCCCCCCA
; ð24Þ

where fe�11; e�12; e�22g are the in-plane eigenstrains, fe�13; e�23g the anti-
plane eigenstrains, fE�

1; E
�
2g the eigenelectric field, and fH�

1;H
�
2g the

eigenmagnetic field. It is convenient to introduce a diagonal matrix

L ¼ h1;1;2;2;2i ð25Þ
and notation

~e�p ¼ Le�p; p ¼ 1;2: ð26Þ
Let {ui,u,/} be the elastic displacement, electric potential and

magnetic potential caused by the eigenstrains, eigenelectric and
eigenmagnetic fields, n the unit normal of the boundaryC pointing
from x to - (Fig. 1). The continuity conditions for the displace-
ment and traction vectors across the boundary are

uout
i ¼ uin

i þ u�
i ; njrout

ij ¼ njrin
ij : ð27Þ

The continuity conditions for the tangential electric and mag-
netic fields and normal electric displacement and magnetic induc-
tion read

n� Eout ¼ n� ðEin þ E�Þ; n � Dout ¼ n � Din; ð28Þ

n�Hout ¼ n� ðHin þH�Þ; n � Bout ¼ n � Bin: ð29Þ
As illustrated in Fig. 1, the increasing direction of dy is to keepx

on the left-hand side as the Cartesian coordinate system is coun-
ter-clockwise orientated. This implies

n1ds ¼ dx2; n2ds ¼ �dx1; ð30Þ
where ds is an infinitesimal arc length element at the boundary
point (x1, x2). Substituting Eqs. (12), (30), and Ei = �u,i, Hi = �/,i into
Eqs. (27)2, (28), and (29) gives

Fig. 1. An arbitrary inclusionx in a full plane, with its inner point z, boundary point
y, and the increasing direction of dy.
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dðwout
I � win

I Þ=ds ¼ 0 with I ¼ 1;2;3;4;5;

dð/out � /in � /�Þ=ds ¼ dðuout �uin �u�Þ=ds ¼ 0:

)
ð31Þ

Making use of the continuity conditions of the relevant quali-
ties, we must have

wout
I ¼ win

I with I ¼ 1;2;3;4;5;

/out ¼ /in þ /�;uout ¼ uin þu�: ð32Þ
Combining Eqs. (32) and (27)1 provides the equivalent continu-

ity conditions of the extended displacement and stress function
vectors across the interface:

uoutðyÞ ¼ uinðyÞ þ u�ðyÞ; woutðyÞ ¼ winðyÞ; ð33Þ
where y = x1 + ix2 2 C.

Making use of the general solution equation (9), the continuity
condition equation (33) can be expressed by

AfoutðyÞ þ �AfoutðyÞ ¼ Af inðyÞ þ �Af inðyÞ þ u�;

BfoutðyÞ þ �BfoutðyÞ ¼ BfinðyÞ þ �Bf inðyÞ;

9=; ð34Þ

where y 2 C and the overbar denotes the complex conjugate. Mul-
tiplying the two vector relations of Eq. (34) by BT and AT, respec-
tively, and adding the results, we obtain

foutðyÞ ¼ f inðyÞ þ BTu�ðyÞ; y 2 C; ð35Þ
where use is made of the extended Stroh orthogonality relation
(e.g., Chung and Ting 1996)

BT AT

�BT �AT

" #
A �A
B �B

" #
¼ A �A

B �B

" #
BT AT

�BT �AT

" #
¼ 1 0

0 1

� �
; ð36Þ

with 1 being the 5 � 5 identity matrix.
Since fI(zI) (I = 1,2,3,4,5) are five functions which are sectionally

analytic with respect to zI in the entire complex plane except for
the boundary C, it is helpful to write BTu*(y) as functions of yI.
Using

x1 ¼ pI�yI � �pIyI
pI � �pI

; x2 ¼ yI � �yI
pI � �pI

ð37Þ

on the interface, we have

BTu�ðyÞ ¼ BT~e�pxp ¼ �

c1y1 þ d1�y1
c2y2 þ d2�y2
c3y3 þ d3�y3
c4y4 þ d4�y4
c5y5 þ d5�y5

0BBBBBB@

1CCCCCCA; ð38Þ

which gives us a decoupled form of the condition as in Eq. (35)
across the interface:

f outI ðyIÞ ¼ f inI ðyIÞ þ ðcIyI þ dI�yIÞ; I ¼ 1;2;3;4;5: ð39Þ
The detailed expressions of cI and dI are given in Eq. (123)

below.
We now recall the following Lemma (Henrici, 1986; Ablowitz

and Fokas, 2003): Let C be a simple, closed, regular, positively
oriented curve enclosing the origin, and let b(t), t 2 C be a Hölder
continuous function (namely for t, s 2 C, we have |b(t) � b(t)| 6
C|t � s|a, C > 0, a 2 (0,1)) on C, the degenerated Privalov (or Rie-
mann–Hilbert) problem fout(t) = fin(t) + b(t) has the general solution
(Muskhelishvili, 1963)

f ðzÞ ¼ 1
2pi

I
C

bðtÞ
t � z

dt: ð40Þ

The jumping relation (39) over the boundary

CI ¼ fyI ¼ x1 þ pIx2jy ¼ x1 þ ix2 2 Cg; I ¼ 1;2;3;4;5; ð41Þ

directly yields

fIðzIÞ ¼ 1
2pi

I
CI

cIyI þ dI�yI
yI � zI

dyI

¼ cIzIvx þ dI

2pi

I
CI

�yI
yI � zI

dyI; I ¼ 1;2;3;4;5: ð42Þ

where vx is the characteristic function of x that equals to 1 or 0
according to whether z is inside or outside x.

The extended strain and stress components are then given by

u;1 ¼ 2Re½Af 0�; u;2 ¼ 2Re½Ahp�if 0�; ð43Þ

r2 ¼ 2Re½Bf 0�; r1 ¼ �2Re½Bhp�if 0�; ð44Þ
where for I = 1,2,3,4,5,

f 0I ðzIÞ ¼ cIvx þ dI

2pi

I
CI

�yI
ðyI � zIÞ2

dyI ¼ cIvx þ dIgðpI; zIÞ ð45Þ

with

gðpI; zIÞ ¼
1
2pi

I
CI

d�yI
yI � zI

: ð46Þ

Sometimes, it is convenient to write g(pI;zI) as gðp; z;�zÞ which
takes the form

gðp; z;�zÞ ¼ 1
2pi

I
C

ð1þ i�pÞd�yþ ð1� i�pÞdy
ð1� ipÞðy� zÞ þ ð1þ ipÞð�y� �zÞ : ð47Þ

3.2. General expressions of Eshelby tensors in the multiferroic inclusion
problem

In this subsection, summation convention for repeated indices
does not apply. From Eqs. (38) and (45), we have

f 0I ðzIÞ ¼ �P
K;p

BKI~e�KpFIpðzIÞ ð48Þ

in which

FI1ðzIÞ ¼ pIgðpI; zIÞ � �pIvx

pI � �pI
; FI2ðzIÞ ¼ vx � gðpI; zIÞ

pI � �pI
: ð49Þ

Substituting Eqs. (48) and (26) into Eq. (21) results in

eIj ¼ � P
L;M;N;K;p

RefðAIMBLMKLj

þ KLIBLMAjMÞB�1
2MBKMLKNFMpðzMÞge�Np; ð50Þ

from which we deduce the Eshelby tensor Rx, defined by
eIj ¼ Rx

IjNpe�Np, as

Rx
IjNp ¼ �Re

P
L;M;K

ðAIMBLMKLj þ KLIBLMAjMÞB�1
2MBKMLKNFMpðzMÞ

( )
:

ð51Þ
Similarly, substituting Eqs. (48) and (26) into Eq. (18) gives

rIj ¼ �2
P

M;N;K;p
RefBIMB

�1
2MBKMLKNFMpðzMÞBjMge�Np ð52Þ

which delivers the eigenstiffness tensor Xx, defined by
rIj ¼ Xx

IjNpe�Np, as

Xx
IjNp ¼ �2Re

P
M;K

BIMB
�1
2MBKMLKNFMpðzMÞBjM

( )
: ð53Þ

Recall that the eigenstiffness tensor rather than the Eshelby ten-
sor is directly involved in various micromechanics schemes for
composites of inclusion-matrix types (e.g., Zheng and Du, 2001;
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Zheng et al., 2006). Here, we can see that the expression for
the eigenstiffness tensor Xx is simpler than that for the Eshelby
tensor Rx.

4. An inclusion in an anisotropic multiferroic bimaterial plane

4.1. General integral expressions of eigenfunctions

The Eshelby’s problem for an inclusion in a bimaterial full plane
is of practical importance. For example, for buried strain semicon-
ductor devices, the top barrier layer may be much thinner than the
underlying substrate. Hence, the buried device can be modelled,
more realistically, by an inclusion in a half-plane, rather than in
an entire plane. In general, due to the presence of a free surface,
analysis of the Eshelby’s problem in a half-plane is more
complicated.

We consider the more general case where two anisotropic mul-
tiferroic media M�, M+ occupying the lower half-plane S� (x2 < 0)
and upper half-plane S+ (x2 > 0), respectively. Furthermore, the
lower half-plane S� contains an internal subdomain x which
undergoes the uniform eigenstrains, eigenelectric and eigenmag-
netic fields. We letx and- denote the subdomain and the remain-
der of x in the lower half-plane, respectively, and C the interface
separating x and - (see Fig. 1). Hereinafter, we indicate the quan-
tities in S� and S+ with the superscripts (or subscripts) ‘�’ and ‘þ’,
respectively. In virtue of the superposition model proposed by Zou
et al. (in press), the solution of the Eshelby’s inclusion problem in
the bimaterial plane can be expressed as

fðzÞ ¼ f1ðzÞ þ fbðzÞ; ð54Þ
where f1(z) is the corresponding Eshelby solution of inclusion in
the full plane, as given in Section 3, and the complementary term
fb(z), which is piecewise analytic in the lower half-plane and the
upper half-plane, will be solved below.

Across the interface x2 = 0 the continuities of the extended
traction and displacement are

rþ
I2 ¼ r�

I2; uþ
I ¼ u�

I ; I ¼ 1;2;3;4;5; ð55Þ
which can be expressed by

uþ ¼ u�; wþ ¼ w�; on x2 ¼ 0: ð56Þ
On the other hand, similar to Eq. (33), the interface conditions

along the curve C in the lower half-plane are

uout ¼ uin þ u�; wout ¼ win; when x1 þ ix2 2 C: ð57Þ
It is noted that due to the analyticity of fb(z):

fboutðyÞ ¼ fbinðyÞ; y 2 C; ð58Þ
the second interface condition in Eq. (57) is satisfied naturally. Sub-
stitution of Eqs. (9) and (54) into Eq. (56) yields

Aþf
b
þðx1Þ þ �Aþf

b
þðx1Þ ¼ A�f

b
�ðx1Þ þ �A�f

b
�ðx1Þ þ F1

A ðx1Þ;

Bþf
b
þðx1Þ þ �Bþf

b
þðx1Þ ¼ B�f

b
�ðx1Þ þ �B�f

b
�ðx1Þ þ F1

B ðx1Þ;

9=; ð59Þ

where the two real function vectors are defined by

F1
A ðx1Þ ¼ ðA� � AþÞf1ðx1Þ þ ð�A� � �AþÞf1ðx1Þ;

F1
B ðx1Þ ¼ ðB� � BþÞf1ðx1Þ þ ð�B� � �BþÞf1ðx1Þ:

9=; ð60Þ

Utilizing the orthogonality relations

BT
þ AT

þ
�BT
þ

�AT
þ

" #
Aþ �Aþ
Bþ �Bþ

" #
¼ BT

� AT
�

�BT
�

�AT
�

" #
A� �A�
B� �B�

" #
¼ 1 0

0 1

� �
; ð61Þ

and after some algebraic calculations, we have

C�f
b
þðx1Þ þ D�f

b
þðx1Þ ¼ fb�ðx1Þ þ ð1� C�Þf1ðx1Þ � D�f

1ðx1Þ; ð62Þ

fbþðx1Þ ¼ C	f
b
�ðx1Þ þ D	f

b
�ðx1Þ þ ðC	 � 1Þf1ðx1Þ þ D	f

1ðx1Þ; ð63Þ
where uses are made of

C	=� ¼ BT
	A� þ AT

	B�; D	=� ¼ BT
	
�A� þ AT

	
�B�: ð64Þ

From the Cauchy formulae and the properties fb�ð1Þ ¼
fbþð1Þ ¼ 0, we can derive that

fbþðzÞ ¼ C�1
� �1
2pi

R1
�1

f1ðtÞ
t�z dt � C�1

� D�
2pi

R1
�1

f1ðtÞ
t�z dt; z 2 Sþ;

fb�ðzÞ ¼ 1�C�1
	

2pi

R1
�1

f1ðtÞ
t�z dt þ C�1

	 D	
2pi

R1
�1

f1ðtÞ
t�z dt; z 2 S�:

9=; ð65Þ

Substituting the basic term on the real axis

f1I ðtÞ ¼ dI

2pi

I
CI

�yI
yI � t

dyI

into Eq. (65), and using the integrals

1
2pi

Z 1

�1

f1I ðtÞ
t � z

dt ¼
0; z 2 S�;
dI
2pi

H
CI

�yI
yI�z dyI; z 2 Sþ;

(
ð66Þ

1
2pi

Z 1

�1

f1I ðtÞ
t � z

dt ¼
�dI
2pi

H
CI

yI
�yI�z d�yI; z 2 S�;

0; z 2 Sþ;

(
ð67Þ

we finally obtain

f bþI ðzIÞ ¼
P
J
½ðC�1

� ÞIJ � dIJ� dJ

2pi
H
CJ

�yI
yJ � zI

dyJ ; zI 2 Sþ; ð68Þ

f b�I ðzIÞ ¼
P
K;J
ðC�1

	 ÞIKðD	ÞKJ
�dJ

2pi
H
CJ

yJ
�yJ � zI

d�yJ; zI 2 S�: ð69Þ

After careful observation, we find that the above formulae, as
well as Eq. (42), are all associated with a kind of simple integral
(Eq. (71)), and that the derivatives of the basic and complementary
functions can further be expressed by this simple integral as

f 0I ðzIÞ ¼

P
J
ðC�1

� ÞIJdJgðpJ ; zIÞ; zI 2 Sþ;

cIvx þ dIgðpI; zIÞ þ
P
K;J
ðC�1

	 ÞIKðD	ÞKJ�dJgð�pJ; zIÞ; zI 2 S�;

8>><>>:
ð70Þ

for I = 1,2,3,4,5, where the essential eigenfunction g(pJ;zI) is defined
by

gðpJ; zIÞ ¼
1
2pi

I
CJ

d�yJ
yJ � zI

ð71Þ

with yJ ¼ x1 þ pJx2. It should be noticed that zI ¼ x1 þ pþ
I x2 if x2 > 0

and zI ¼ x1 þ p�
I x2 if x2 < 0. Sometimes, we write gðpJ ; zIÞ as

gðpJ ;pI; z;�zÞ, taking the form

gðpJ; pI; z;�zÞ ¼
1
2pi

I
C

� ð1þ i�pJÞd�yþ ð1� i�pJÞdy
ð1� ipJÞ y� 1�ipI

1�ipJ
z

� �
þ ð1þ ipJÞ �y� 1þipI

1þipJ
�z

� � : ð72Þ

The essential eigenfunction g in the Eshelby inclusion analysis
can be very conveniently employed to derive the average of the ex-
tended eigenstrain-induced field, as presented below.

4.2. The average of the eigenfunction g

Utilizing the formula (e.g., Lavrentieff and Shabat, 2002) for any
function f ðx; �xÞ
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1
2i
H
Cf ðs; �sÞds ¼

Z
x

@f ðx; �xÞ
@�x

dx; ð73Þ

we can calculate the average of g over the inclusionx by (with a hat
on g)

ĝðpJ; pIÞ ¼ hgðpJ; zIÞi ¼
i

2pðpI � �pIÞjxj
I
CJ

I
CI

�yJ � �zI
yJ � zI

d�yJ dzI; ð74Þ

or equivalently

ĝðpJ; pIÞ ¼
1þ i�pJ

4pð1þ ipIÞjxj
I
C

I
C
ln 1þ eJ

�y� 1þipI
1þipJ

�z

y� 1�ipI
1�ipJ

z

0@ 1A
� ðd�yþ �eJ dyÞdz: ð75Þ

where |x| stands for the area of the inclusion and

eJ ¼
1þ ipJ

1� ipJ
: ð76Þ

With the average of g, the average of f 0I ðzIÞ can also be determined
by

hf 0I ðzIÞi ¼ cI þ dIĝðpI;pIÞ þ
P
K;J
ðC�1

	 ÞIKðD	ÞKJ�dJĝð�pJ;pIÞ: ð77Þ

when the upper half-plane is empty, our bimaterial-plane solution
is reduced to the half-plane solution with extended traction free
on the surface of the half plane. The related expressions for this spe-
cial case are given in Appendix A.

5. Analytical solutions for inclusions of various shapes

With the results derived in Section 4, we are now in the position
to present the explicit analytical solutions for inclusions made of
various geometric shapes. These include the ones described by
the Laurent polynomial, the polygonal shapes, and the ones de-
scribed by the Jordan curve. The details are presented below.

5.1. Inclusions described by the Laurent polynomial

By the Riemann mapping theorem (Henrici, 1986), the shape of
any given inclusion x can be approached by the Laurent polyno-
mial of w:

yðwÞ ¼ y0 þ R wþPN
k¼1

bkw�k

� �
; jwj ¼ 1; ð78Þ

where R > 0 and y0 is a unique inner point of the domainx bounded
by C. Typically, the parameters R and y0 characterize the size and
center of x. Some useful information on the shape expression
(78) can be found in Zou et al. (2010).

Considering a circular inclusion described by y(w) = y0 + Rw,
|w| = 1, then

yJ ¼
1� ipJ

2
yþ 1þ ipJ

2
�y ¼ 1� ipJ

2
½y0 þ eJ�y0 þ Rðwþ eJw�1Þ� ð79Þ

defines a deformed elliptical inclusion, since jeJ j < 1 always holds,
with its center at y0 þ eJ�y0 and with the same size parameter R.
The essential eigenfunction (71) can be written as

gðpJ; zIÞ ¼
1þ i�pJ

2pið1� ipJÞ
I
CJ

d�y0

y0 � z0
; y0 ¼ y00 þ Rðwþ eJw�1Þ 2 CJ ;

ð80Þ
with z0 ¼ zI

1�ipJ
. If the point z0 belongs to the domain surrounded by

CJ, then we have the following expansion

1
y0 � z0

¼ R�1w�1P
k
ð�1Þk½R�1ðy00 � z0Þw�1 þ eJw�2�k: ð81Þ

Using the residual theorem and substituting Eq. (81) into Eq.
(80) yields

gðpJ ; zIÞ ¼
1þ i�pJ

2pið1� ipJÞ
I
c

�eJ �w�2

y0 � z0
dw ¼ 1þ i�pJ

1� ipJ

�eJ ¼ 1� i�pJ

1� ipJ
: ð82Þ

However, the inequality of pI and pJ largely reduces the solvabil-
ity of (71) since the mismatch between the deformed domains
from pI and pJ makes the expansion like Eq. (81) generally impos-
sible. Even though the solution such as the above can be obtained,
the interior point z0 of the deformed domain is still indecisive.

5.2. Polygonal inclusions

An elegant analysis was carried by Rodin (1996) for the polyg-
onal inclusion problem in an elastic isotropic plane. Here we pres-
ent the solution for the corresponding anisotropic and multiferroic
plane. In this subsection, p,y,s, . . . can be freely replaced by
pJ,yJ,sJ, . . . in a group. Letx be an arbitrary polygonal inclusion with
its boundary consisting of N rectilinear sides @xk with
k = 1,2, . . . ,N. As illustrated in Fig. 2, denoting by yk and yk+1 the
two end points of the kth side @xk, we can parameterize all points
of this side in the following form

y ¼ yk þ ðykþ1 � ykÞt; ð0 6 t 6 1Þ: ð83Þ
Then, it followsZ
@xk

d�y
y� zI

¼
Z 1

0

�skdt
wk þ skt

¼ �sk
sk

ln
wkþ1

wk
; ð84Þ

where wk ¼ yk � zI; sk ¼ ykþ1 � yk ¼ wkþ1 �wk and lnz = ln|z| +
iarg(z) with �p < arg(z) < p (Zill and Shanahan, 2003). We sum
the integrals of all sides to obtain the explicit expression of the
essential eigenfunction (71) as follows:

gðp; zIÞ ¼ 1
2pi

PN
k¼1

�sk
sk

ln
wkþ1

wk
: ð85Þ

We point out that care must be taken in using these solutions in
which the logarithmic terms cannot be in general combined freely.
To be able to operate the terms freely, the arguments hk of wk need
to be prescribed as follows. Referring to Fig. 2, we first assign the
range of h1 to be (�p,p]. If the direction of w2 is counter-clock-
wise/clockwise rotated from the direction of w1 through an angle
less than p, then we assign h2 to be larger/smaller than h1. Analo-
gously, we assign hk+1 to be larger/smaller than hk when the coun-
ter-clockwise/clockwise rotation from the direction of wk to that of
wk+1 is an angle less than p. For a simply connected polygonal
inclusion with N sides, the complex point wN+1 can be superposed
with w1 but should possess an argument 2p + arg(w1) if z is an
interior point. The ranges of uk are defined in the same way, which
will be crucial in calculating the average Eshelby tensor. By virtue
of these prescriptions and the foregoing discussion, the general
solutions can be written as

gðp; zIÞ ¼ 1
2pi

PN
k¼1

e�2i/k ln
Rkþ1

Rk
þ iðhkþ1 � hkÞ

� �
; ð86Þ

where Rk, Lk and hk, uk are the norms and arguments of wk and sk
specified through

wk ¼ Rkeihk ; sk ¼ Lkei/k : ð87Þ

Furthermore, we parameterize point zI from the jth side and
point yJ from the kth side by

zI ¼ yIj þ sIjs; yJ ¼ yJk þ sJkt with s; t 2 ½0;1�; ð88Þ
so that
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wIJ ¼ yJ � zI ¼ sIJj;k þ sJkt � sIjs: ð89Þ
where, use is made of the notation

sIJj;k ¼ yJk � yIj ; sIj ¼ sIIj;jþ1: ð90Þ
Then, introducing notations

H	
jk ¼

e�i2/J
k 	 e�i2/I

j

2
; ð91Þ

starting from Eq. (74), and after some calculations, we can obtain
the following simple formula for the average of g:

ĝðpJ; pIÞ ¼
i

2pðpI � �pIÞjxj
P
j;k
sIj�s

J
k½Hþ

jk þ CIJ
jk�; ð92Þ

where the expression of Cjk is symmetric in j and k, and takes the
following form:

CIJ
jk ¼ H�

jk

sJk
sIj

ln
sIJj;kþ1

sJk
þ sIj
sJk

ln
sIj

sIJj;kþ1

 !
ð93Þ

if k = j + 1, and

CIJ
jk ¼

�sIJj;k �Hþ
jks

IJ
j;k

sIjs
J
k

sIJj;k ln
sIJj;kþ1s

IJ
jþ1;k

sIJj;ks
IJ
jþ1;kþ1

þ
�sIJj;kþ1 �Hþ

jks
IJ
j;kþ1

sIj
ln

sIJj;kþ1

sIJjþ1;kþ1

þ
�sIJjþ1;k �Hþ

jks
IJ
jþ1;k

sJk
ln

sIJjþ1;kþ1

sIJjþ1;k

þH�
jks

IJ
j;k

1
sIj

ln
sIJj;kþ1

sIJjþ1;kþ1

þ 1
sJk

ln
sIJjþ1;k

sIJjþ1;kþ1

 !
; ð94Þ

if k > j + 1. Remark that, in the foregoing formulae, when j (or k) is
equal to N, we have to set j + 1 = 1 (or k + 1 = 1).

5.3. Inclusions bounded by the Jordan curve

We let C be a simple closed curve, called a Jordan curve, com-
posed of straight line segments and circular arcs which are one-
by-one smoothly connected, say, (y1y2, dy2y3 , . . . ,y2M�1y2M , dy2My1 ),
where y1; y2; . . . ; y2M are N (=2M) end points. The phase angles of
the straight line segments as prescribed in Section 5.2 areuk which
satisfy

y2k � y2k�1 ¼ Lkei/k ; k ¼ 1; . . . ;M; ð95Þ

The centers of circular arcs are

ck ¼ y2k þ rkeið/kþp=2Þ ¼ y2k � ei/k
y2kþ1 � y2k
ei/kþ1 � ei/k

; ð96Þ

where rk ¼ i y2kþ1�y2k
ei/kþ1�ei/k

are the signed arc radii, namely

rk > 0; if/kþ1 > /k;

rk < 0; if/kþ1 < /k:

�
ð97Þ

A Jordan curve with 2M segments can be constructed by smoothing
an M-sided polygon. We suppose that the vertices of the polygon
are

Vk ¼ y2k þ tkei/k ¼ y2k þ ei/k
y2kþ1 � y2k
ei/kþ1 þ ei/k

; ð98Þ

where tk (>0) are distances between Vk+1 and y2k or y2k+1. We further
assume that the vertices Vk and the arc radii rk are given, then y2k,
y2k+1, and tk can be calculated from

y2k ¼ Vkþ1 � rkei/k tan /kþ1�/k
2 ;

y2kþ1 ¼ Vkþ1 þ rkei/kþ1 tan /kþ1�/k
2 ;

)
ð99Þ

tk ¼ y2kþ1 � y2k
ei/kþ1 þ ei/k

¼ rk tanð/kþ1 � /kÞ: ð100Þ

It is natural that the inequality

tk þ tk�1 6 jVkþ1 � Vkj ð101Þ
is required for all k. When the radii of arcs are taken to be constant,
say |rk| = r, the above relation yields

r 6 min
jVkþ1 � Vkj

tan j /kþ1�/k
2 j þ tan j /k�/k�1

2 j ; k ¼ 1;2; � � � ;M
( )

: ð102Þ

Assume that ek is an elliptical domain deformed from a circular
domain given by the arc @x2k and parameter p, a distorted point z
(zI) 2 ek inside the arc means that the inequality

signðrkÞ argw2kþ1

w2k
< 0 and zI 2 ek ð103Þ

must be satisfied, where wi ¼ yi � z.
It is convenient to use the arc length coordinate to label a point

on C. Letting the arc length coordinate at end yj be lj, the arc length
coordinate l of point y between two ends yj, yj+1 is calculated by

l ¼
lj þ rk½argðy� ckÞ � /k þ p=2�; if j ¼ 2k;

lj þ jy� yjj; if j ¼ 2k� 1:

(
ð104Þ

Inversely, a point with arc length coordinate l has the following
Cartesian coordinate:

y ¼
ck þ rkeið/k�p

2þ
l�lj
r Þ ¼ ck þ rf; if j ¼ 2k;

yj þ sk
jsk j ðl� ljÞ; if j ¼ 2k� 1:

8<:
After the foregoing preparation, we can now calculate the

essential eigenfunction (71) of arc @x2k through

Fig. 2. Prescriptions of the arguments for sk (i.e., the field point x is inside, left) and zk (i.e., the field point x is outside, right) of a polygonal inclusion.
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Z
@x2k

d�y�
w�

¼
Z
@x2k

1þi�p
2 d�yþ 1�i�p

2 dy
1�ip
2 ðy� zaÞ þ 1þip

2 ð�y� �zbÞ

¼ 1� i�p
1� ip

ln
w2kþ1

w2k
þ 2piv1

ksignðrkÞ
� �

� 2i
p� �p

ð1� ipÞ2
H ð105Þ

where

H ¼
Z fkþ1

fk

df�1

ef�1 þ kþ f
ð106Þ

with fk ¼ eið/k�p=2Þ; fkþ1 ¼ eið/kþ1�p=2Þ, za ¼ 1�ipI
1�ipJ

z; zb ¼ 1�i�pI
1�i�pJ

z, and

k ¼ ck � za

rk
þ e

�ck � �zb

rk
¼ 2

1� ip
cjk � zI

rk
: ð107Þ

The undetermined integral of H in Eq. (106) has branches, it
equals

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 k

2 � e
q

þ k
2

2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 k

2 � e
q ln

fþ 1
2 k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 k

2 � e
q
f

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 k

2 � e
q

� k
2

2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 k

2 � e
q ln

fþ 1
2 kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 k

2 � e
q
f

; ð108Þ

if e – 0, and

H ¼
1
k2

ln f
fþk þ 1

kf ; ifk–0;

1
2f2

; ifk ¼ 0:

8<: ð109Þ

if e ¼ 0. Combining Eqs. (105)–(109) with the known integral of a
straight segment

g�
2k�1ðp; zIÞ ¼

1
2pi

PN
K¼1

�sk
sk

ln
w2k

w2k�1
;

we can rearrange the solution of g as

gðp; zIÞ ¼ vx þPN
k¼1

�sk � sk
2pisk

ln
w2k

w2k�1
þ 1
2pi

Ik̂

� �
; ð110Þ

where use is made of the property

1
2pi

PN
k¼1

ln
w2k

w2k�1
þ ln

w2kþ1

w2k

� �
¼ vx; ð111Þ

and the integral Ik̂ herein is specified below.
Introducing the notation

h�
k ¼ cjk � zI �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcjk � zIÞ2 � ð1þ p2Þr2k

q
; ð112Þ

qk ¼
cjk � zIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcjk � zIÞ2 � ð1þ p2Þr2k
q ; ð113Þ

the integral Ik̂ can be expressed as follows:
(i) if e ¼ 0, then

Ik̂ ¼

�r2
k

ðck�zIÞ2
½ln y2kþ1�zI

y2k�zI
� ið/kþ1 � /k � 2psignðrkÞv1

kÞ�

þ irk
ck�zI

ðe�i/kþ1 � e�i/k Þ; if k–0;

� 1
2 ðe�2i/kþ1 � e�2i/kÞ; if k ¼ 0;

8>>>>><>>>>>:
ð114Þ

(ii) if e– 0, then

Ik̂ ¼
p� �p

ið1þp2Þð1þqkÞ ln
h�
k � ið1� ipÞrkei/kþ1

h�
k � ið1� ipÞrkei/k

� ið/kþ1�/k�2pv2
kÞ

� �
þ p� �p
ið1þp2Þð1�qkÞ ln

hþ
k � ið1� ipÞrkei/kþ1

hþ
k � ið1� ipÞrkei/k

� ið/kþ1�/k�2pv3
kÞ

" #

�2piðp� �pÞ
1þp2 1�signðrkÞ½ �v4

k ð115Þ

or equivalently

Ik̂ ¼
p� �p

ið1þp2Þ ln
yj;2kþ1�zI
yj;2k�zI

� ið/kþ1�/kÞ
" #

þ2p p� �p
1þp2 ½signðrkÞv1

k þqkðv2
k �v3

kÞ�

þ p� �p
ið1þp2Þqk ln

h�
k � ið1� ipÞrkei/kþ1

h�
k � ið1� ipÞrkei/k

� ln
hþ
k � ið1� ipÞrkei/kþ1

hþ
k � ið1� ipÞrkei/k

" #
;

ð116Þ
where the indicator functions v1

k ; v2
k ; v3

k and v4
k are defined by

v1
k ¼ 1; if signðrkÞ arg w2kþ1

w2k
< 0 and zI 2 ek;

0; else;

(
ð117Þ

v2
k=v

3
k ¼ 1; if arg

h�
k
�ið1�ipÞrkei/kþ1

h�
k
�ið1�ipÞrkei/k

< 0; zI 2 ek;

0; else;

8<: ð118Þ

v4
k ¼ 1; zI 2 ek;

0; else

(
ð119Þ

A special case of the Jordan curve is a semicircular arc @x2k con-
necting two parallel sides such that

ck ¼ 1
2
ðy2k þ y2kþ1Þ; rk ¼ 1

2
jy2kþ1 � y2kj; ð120Þ

which can be considered and will be shown as an example in the
next Section. In this case, due to the abnormity of the branch struc-
ture, the conditions of the two middle indicator functions v2

k ; v3
k

should be changed to

v2
k=v

3
k ¼ 1; if arg

h�
k
�ið1�ipÞrkei/kþ1

h�
k
�ið1�ipÞrkei/k

< �p=2;
0; else

8<: ð121Þ

Another extreme case, which would be interesting from a theo-
retical point of view, can be carried out if we take the sign defini-
tions of arc radii in Eqs. (97) and (120)2 inversely.

In the case of a Jordan curve, the singularity analysis of the
eigenfunction f0(z) around the end point yj is very intricate, but di-
rect numerical calculations show that, other than the logarithmic
singularity of the polygon around its vertices, there is no singular-
ity at the boundary of an inclusion bounded by a Jordan curve.

6. Numerical examples and discussion

As applications, we present a couple of numerical results on the
induced fields by the extended eigenstrain in the inclusion of dif-
ferent shapes. These include the polygonal inclusion in full and half
planes, and an inclusion made of both curved and straight line seg-
ments in the bimaterial plane.

For the sake of easy demonstration, the dimensions of extended
stress/strain are rescaled, based on the dimensions of elastic, elec-
tric displacement, and magnetic induction constants in 1011 Pa,
10 C m�2, and 103 Wbm�2. Thus the extended constitutive relation
becomes
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rijð1011 PaÞ
Dið10 Cm�2Þ

Bið103 Wbm�2Þ

2664
3775 ¼

C e q

eT �j �d

qT �dT �l

0B@
1CA eij

/;ið10�10 Vm�1Þ
u;ið10�8 Am�1Þ

2664
3775:

ð122Þ

6.1. Some fundamental features

Before presenting the numerical results, we first analyze some
of the important features associated with the problem.

In the frame of the extended Stroh formalism, the extended
strain and stress are completely determined by Eqs. (43) and (44)
where A, B and pI (I = 1,2,3,4,5) are related to the material proper-
ties in the reference plane. The spatial variances of the physical
fields are simply controlled by the five eigenfunctions fI(zI)
(I = 1,2,3,4,5), which have different expressions for different prob-
lems, say, indicated by Eq. (45) for a full-plane problem, Eq. (A6)
for a half-plane one, and Eq. (70) for a bimaterial one. Since vx is
the characteristic function of the inclusion domain x that equals
to 1 (0) if z is an inner (outer) point of x, we find that, besides the
two coefficients cI and dI and some other derived material parame-
ters, sayB in Eq. (A6) andC�,C±,D± in Eq. (70), which are all indepen-
dent of the spatial coordinates, the five eigenfunctions fI(zI) can be
ascribed to a set of essential eigenfunctions g. It is easy to count
the number of different essential eigenfunctions, namely 5 (g(pI;zI),
I = 1,2,3,4,5) for the full-plane case, 30 (g(pI;zI), gð�pJ; zIÞ,
I, J = 1,2,3,4,5) for the half-plane one, and 50 (g(pJ; zI), gð�pJ; zIÞ,
I, J = 1,2,3,4,5) for the bimaterial case. From this analysis,we can ob-
serve that: (1) the effects of the inclusion shape and material inter-
faces are controlled by the essential eigenfunction set {g}, whilst the
couplings between different physical fields by the two coefficients cI
and dI; (2) when the essential eigenfunction set {g} and the coeffi-
cients cI and dI are fixed, the combinations to form different physical
fields are stably controlled by the material matrices A and B as
shown in Eqs. (43), (44), (A6), and (70); (3) according to the expres-
sion of g in Eq. (71), only for the full-plane problem, the size and
position of the inclusion have no influence on the induced field.

The two coefficients cI and dI are linearly related to the extended
eigenstrain as below:

cI ¼ �P
J

BT
IJ
~e�J2 � �pIB

T
IJ
~e�J1

pI � pI
; dI ¼ �P

J

pIB
T
IJ
~e�J1 � BT

IJ
~e�J2

pI � �pI
; ð123Þ

where ~e�Jp is defined by Eq. (26). For instance, a hydrostatic elastic
eigenstrain e11 = e22 = 0.5 results in

cI ¼ �0:5
BT
I2 � �pIB

T
I1

pI � �pI
; dI ¼ �0:5

pIB
T
I1 � BT

I2

pI � �pI
: ð124Þ

Using property Eq. (17), the results can be further simplified to

cI ¼ �0:5
1þ pI�pI

pI � �pI
BT
I2; dI ¼ 0:5

1þ pIpI

pI � �pI
BT
I2; ð125Þ

where, for the material considered in Section 6.2 below, we have

ðB2IÞ ¼

�0:3661682þ 0:4807980i

�0:7544860þ 0:1823175i

�0:7574741þ 0:1825447i

�0:3379321� 0:8959268i

0:6047747þ 0:3394896i

0BBBBBBBB@

1CCCCCCCCA
:

Since there are different essential eigenfunctions g correspond-
ing to different pI and pJ for the given problem, we prefer to present
the induced elastic strain and E-/H-fields instead of the set of g
though the latter may be more fundamentally associated with

the geometry of the problem. Therefore, in the following numerical
examples, we calculate the invariants of the extended strains as
below: the hydrostatic strain (eh = e11 + e22), the deviatoric strain

ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe11 � e22Þ2 þ 4e212

q
, the anti-plane strain magnitude ea ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e231 þ e232

q
, and the E-/H-fields Eh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 þ E2

2

q
and Hh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

1 þ H2
2

q
.

6.2. An N-side polygon in a full and half multiferroic plane

The inclusion is a regular N-side polygon inside a circle with
unit radius (Fig. 3), which is in a full plane or a half plane, as in
Pan and Jiang (2006). In the half plane case, the center distance
of the inclusion to the surface is 2. The multiferroic composite
material properties (50% of BaTiO3 and 50% of CoFe2O4) are listed
in Property column of Table B1 in Appendix B (Xue et al., 2011).
The rescaled material properties are listed in the Rescaled column
of Table B1 in Appendix B. This composite, as well as its corre-
sponding decoupled cases (piezoelectric with qij = 0 and piezomag-
netic with eij = 0) are all analyzed to investigate the effect of
different couplings on the eigenstrain-induced fields.

For a circular inclusion, we have a constant essential eigenfunc-
tion g inside the inclusion

gðpI; zIÞ ¼
1� i�pI

1� ipI
: ð126Þ

For regular polygons with N vertices defined by

yk ¼ e2pi
k�1
N ; k ¼ 1;2; . . . ;N; ð127Þ

N=3
N=4

N=5
N=6

N=10
N=20

x1

x2

O

1

1

Fig. 3. Regular N-side polygons inside a unit circle in a full plane or a half plane. For
the half-plane case, the center distance of the circle to the surface of the half plane
equals 2.
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the center and average values of g(pI;zI) can be calculated using Eqs.
(85) and (92) in Section 4.2 with the circular inclusion case (N?1)
being calculated using Eq. (126). For the non-zero eigenstrain
e�11 ¼ 1, e�12 ¼ 1, E�

1 ¼ 1, and H�
1 ¼ 1 respectively, we calculate the

following invariants of the extended strains: the hydrostatic strain

eh, deviatoric strain ed, anti-plane strain magnitude ea, and the E-/
H-fields Eh and Hh.

It is observed that for the present eigenstrain problem, ea is
identically zero, and that some of the other quantities are zero un-
der different eigenstrain and different coupling conditions. Fur-
thermore, when the polygon side number N > 20, the results for
these quantities approach the same as those of a circular inclusion.

Listed in Tables 1a–1d are the center and average (with a hat)
values of the induced fields in the N-side polygonal inclusion

Table 1a
Invariants of extended strains under eigenstrain e�11 ¼ 1 in N-side polygonal inclusion embedded in a multiferroic composite full plane.

N Area eh (10�1) êh (10�1) ed (10�1) êd (10�1) Eh (10�2) Êh (10�2) Hh (10�4) Ĥh (10�4)

3 1.30 -2.27 -2.26 3.57 3.48 4.24 4.23 9.55 3.25
4 2.00 -2.29 -2.26 4.63 3.05 4.60 4.08 17.2 2.98
5 2.38 -2.27 -2.27 3.52 3.52 4.23 4.23 2.38 1.81
6 2.60 -2.27 -2.27 3.56 3.53 4.24 4.23 7.42 3.51

10 2.94 -2.27 -2.27 3.52 3.52 4.23 4.23 2.34 2.04
P20 3.14 -2.27 -2.27 3.52 3.52 4.23 4.23 1.99 1.99

Table 1b
Invariants of extended strains under eigenstrain e�12 ¼ 1 in N-side polygonal inclusion
embedded in a multiferroic composite full plane.

N ed (10�1) êd (10�1) Eh (10�2) Êh (10�2) Hh (10�3) Ĥh (10�3)

3 7.91 7.99 3.01 2.94 3.67 3.05
4 5.80 8.86 2.17 3.31 2.33 3.79
5 7.96 7.96 2.97 2.97 3.32 3.29
6 7.92 7.95 3.00 2.98 3.57 3.38

10 7.96 7.96 2.97 2.97 3.32 3.31
P20 7.96 7.96 2.97 2.97 3.30 3.30

Table 1c
Invariants of extended strains under eigenstrain E�

1 ¼ 1 in N-side polygonal inclusion
embedded in a multiferroic composite full plane.

N ed (10�1) êd (10�1) Eh (10�2) Êh (10�2) Hh (10�4) Ĥh (10�4)

3 3.64 3.53 5.25 5.25 4.53 8.84
4 4.39 3.24 5.18 5.28 5.70 7.11
5 3.58 3.58 5.25 5.25 6.93 7.15
6 3.62 3.59 5.25 5.25 5.25 6.57

10 3.58 3.58 5.25 5.25 6.95 7.06
P20 3.58 3.58 5.25 5.25 7.08 7.08

Table 1d
Invariants of extended strains under eigenstrain H�

1 ¼ 1 in N-side polygonal inclusion
embedded in a multiferroic composite full plane.

N ed (10�2) êd (10�2) Eh (10�3) Êh (10�3) Hh (10�1) Ĥh (10�1)

3 10.6 7.22 4.44 5.15 3.57 3.40
4 14.4 6.54 3.61 5.31 3.87 3.32
5 8.72 8.57 4.84 4.87 3.48 3.47
6 10.1 9.02 4.56 4.77 3.55 3.49

10 8.70 8.63 4.84 4.86 3.47 3.47
P20 8.61 8.61 4.86 4.86 3.47 3.47

Table 2a
Invariants of extended strains under eigenstrain e�11 ¼ 1 in N-side polygonal inclusion
embedded in a piezomagnetic full plane.

N eh (10�1) êh (10�1) ed (10�1) êd (10�1) Hh (10�4) Ĥh (10�4)

3 �2.09 �2.08 3.86 3.78 3.71 8.40
4 �2.08 �2.09 4.92 3.35 10.6 8.03
5 �2.08 �2.08 3.82 3.81 3.07 3.61
6 �2.09 �2.09 3.85 3.82 1.70 2.00

10 �2.08 �2.08 3.82 3.81 3.11 3.39
P20 �2.08 �2.08 3.81 3.81 3.44 3.44

Table 2b
Invariants of extended strains under eigenstrain e�12 ¼ 1 in N-side polygonal inclusion
embedded in a piezomagnetic full plane.

N 3 4 5 6 10 P20

ed (10�1) 8.08 5.90 8.10 8.08 8.10 8.10
êd (10�1) 8.11 9.02 8.10 8.09 8.10 8.10
Hh (10�3) 3.96 2.54 3.60 3.85 3.60 3.58

Ĥh (10�3) 3.32 4.09 3.57 3.66 3.58 3.58

Table 2c
Invariants of extended strains under eigenstrain E�

1 ¼ 1 in N-side polygonal inclusion
embedded in a piezomagnetic full plane.

N 3 4 P5

Eh (10�2) 5.15 5.11 5.15

Êh (10�2) 5.15 5.17 5.15

Table 2d
Invariants of extended strains under eigenstrain H�

1 ¼ 1 in N-side polygonal inclusion
embedded in a piezomagnetic full plane.

N 3 4 5 6 10 P20

ed (10�2) 10.5 14.3 8.58 9.90 8.57 8.48
êd (10�2) 7.10 6.37 8.43 8.88 8.49 8.48
Hh (10�1) 3.58 3.87 3.48 3.55 3.48 3.47

Ĥh (10�1) 3.40 3.32 3.47 3.50 3.47 3.47

Table 3a
Invariants of extended strains under eigenstrain e�11 ¼ 1 in N-side polygonal inclusion
embedded in a multiferroic composite half plane.

N Area eh
(10�1)

êh
(10�1)

ed
(10�1)

êd
(10�1)

Eh
(10�2)

Êh
(10�2)

Hh

(10�4)
Ĥh

(10�4)

3 1.30 �2.33 �2.14 3.40 2.27 4.26 3.32 6.84 16.4
4 2.00 �2.38 �2.26 4.38 2.71 4.64 3.98 13.0 4.24
5 2.38 �2.37 �2.16 3.22 3.41 4.28 4.08 2.62 0.701
6 2.60 �2.38 �2.14 3.24 2.68 4.29 3.79 1.95 1.00

10 2.94 �2.39 �2.13 3.17 3.26 4.30 3.98 3.85 0.899
20 3.09 �2.40 �2.12 3.16 3.22 4.31 3.94 4.53 1.46
30 3.12 �2.40 �2.11 3.16 3.21 4.31 3.93 4.59 2.08

P100 3.14 �2.40 �2.11 3.16 3.21 4.31 3.91 4.64 2.96
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(N = 3, 4, 5, 6, 10, and 20), by the nonzero eigenstrains e�11 ¼ 1,
e�12 ¼ 1, E�

1 ¼ 1, and H�
1 ¼ 1, respectively. The area of each polygon

is also listed, and the matrix is assumed to be a full plane made
of fully coupled multiferroic composite (Table B1). It is observed
that, under e�11 ¼ 1, the induced hydrostatic strain and its average
are all the same (=�2.27) for different N, except for N = 3 and 4.
However, the deviatoric strain, the E- and H-fields are different
for different N, and that for a given N, their center and average val-
ues are also different. This is particularly true for the H-field, where
the difference between its center and average values can be over 5-
times (for N = 4). Under eigenstrains e�12 ¼ 1, E�

1 ¼ 1, and H�
1 ¼ 1,

the center and average values of the induced hydrostatic strain
are identically zero. The center and average values of the other in-
duced fields depend slightly on N, and for fixed N, small difference
between the center and average values can be observed (Tables
1b–1d).

We have also calculated the center and average values of the in-
duced fields in the N-side polygonal inclusion in the corresponding
piezoelectric full plane. For this case, since there is no coupling be-
tween the piezoelectric and magnetic fields, it is obvious that un-
der eigenstrains e�11 ¼ 1, e�12 ¼ 1 and E�

1 ¼ 1, the induced H-field is
identically zero, and under H�

1 ¼ 1, the only induced nonzero field
is the H-field. It is interesting, however, that the center and average
values of the induced nonzero fields in the piezoelectric full plane
are nearly the same as those in the corresponding multiferroic
composite full plane. In other words, the effect of the magnetic
coupling coefficients qij on the induced fields is very small.

Table 3b
Invariants of extended strains under eigenstrain e�12 ¼ 1 in N-side polygonal inclusion
embedded in a multiferroic composite half plane.

N ed (10�1) êd (10�1) Eh (10�2) Êh (10�2) Hh (10�3) Ĥh (10�3)

3 7.97 15.2 3.04 5.82 3.74 7.07
4 5.95 9.28 2.22 3.55 2.45 4.34
5 8.17 5.46 3.05 2.02 3.48 2.04
6 8.18 4.49 3.10 1.64 3.75 1.54

10 8.30 4.32 3.10 1.55 3.54 1.37
20 8.34 5.09 3.11 1.86 3.53 1.79
30 8.34 5.52 3.11 2.03 3.54 2.04

P100 8.35 6.20 3.11 2.30 3.54 2.44

Table 3c
Invariants of extended strains under eigenstrain E�

1 ¼ 1 in N-side polygonal inclusion
embedded in a multiferroic composite half plane.

N eh (10�2) êh (10�2) ed (10�1) êd (10�1) Eh (10�1) Êh (10�1) Hh (10�4) Ĥh (10�4)

3 �0.0129 �1.31 3.14 4.00 4.98 4.49 2.93 8.92
4 0.00 0.00 4.04 3.14 4.98 5.30 3.94 5.82
5 �0.00136 �0.276 3.15 3.82 5.01 4.66 4.82 7.15
6 0.00 0.00 3.14 4.00 4.98 4.49 2.93 8.92

10 0.00 0.00 3.02 4.00 4.95 4.45 4.29 8.27
20 0.00 0.00 2.98 3.92 4.93 4.63 4.27 8.32
30 0.00 0.00 2.97 3.86 4.93 4.71 4.24 8.24

P100 0.00 0.00 2.97 3.77 4.93 4.84 4.22 8.04

Table 3d
Invariants of extended strains under eigenstrain H�

1 ¼ 1 in N-side polygonal inclusion embedded in a multiferroic composite half plane.

N eh (10�2) êh (10�2) ed (10�2) êd (10�2) Eh (10�3) Êh (10�3) Hh (10�1) Ĥh (10�1)

3 0.00 �1.94 9.73 7.15 4.59 6.56 3.51 3.34
4 0.00 0.00 13.0 7.08 3.86 5.13 3.76 3.28
5 0.00 �0.0366 7.01 10.8 5.14 3.68 3.35 3.31
6 0.00 0.00 8.18 12.1 4.89 2.85 3.40 3.17

10 0.00 0.00 6.55 11.2 5.23 3.31 3.32 3.23
20 0.00 0.00 6.33 10.7 5.27 3.58 3.30 3.26
30 0.00 0.00 6.31 10.4 5.28 3.93 3.30 3.28

P100 0.00 0.00 6.29 9.84 5.28 3.98 3.30 3.28

Material #1 

Material #2 

x2

x1

(-3,-4) (3,4) 

O 

(-3,1) (3,1) 

(0,-2) 
1 

A B 

C D 

Fig. 4. An inclusion with its boundary made of straight and curved lines in material
#2 (x2 < 0) of the bimaterial plane (a square with side length 2 plus two half disks
with radius 1). The center of the inclusion is at (x1,x2) = (0,�2), and the domain for
the numerical calculation is �3 < x1 < 3, �4 < x2 < 1.

Fig. 5a. Contour of eh in the multiferroic bimaterial plane due to the eigenstrain
e�11 ¼ 1 in the inclusion made of a square plus two half circles (dash lines denote
negative values).
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Listed in Tables 2a–2d are the center and average (with a hat)
values of the induced fields in the N-side polygonal inclusion in
the corresponding piezomagnetic full plane. Similar to the piezo-
electric half plane case, that under eigenstrains e�11 ¼ 1, e�12 ¼ 1
and H�

1 ¼ 1, the induced E-field is identically zero, and under
E�
1 ¼ 1, the only induced nonzero field is the E-field. However,

the center and average values of the induced nonzero fields in
the piezomagnetic full plane are substantially different to those
in the corresponding multiferroic composite full plane (Tables 2a
and 2b vs. Tables 1a and 1b), or apparent difference between them
can be observed (Tables 2c and 2d vs. Tables 1c and 1d). In other
words, the effect of the piezoelectric coupling coefficients eij on
the induced fields is important.

Listed in Tables 3a–3d are the center and average (with a hat)
values of the induced fields in the N-side polygonal inclusion
(N = 3, 4, 5, 6, 10, 20, 30, and 100), respectively, by the nonzero
eigenstrains e�11 ¼ 1, e�12 ¼ 1, E�

1 ¼ 1, and H�
1 ¼ 1. The matrix is

now assumed to be a half plane made of fully coupled multiferroic
composite (Table B1 in Appendix B), and the distance of the center
of the N-side polygon to the surface is 2. On the surface of the half
plane, the extended traction is assumed to be zero. From Tables
3a–3d, the following features can be observed: (1) Due to the effect
of the free surface, the center and average values are both more
sensitive to N when N is large. (2) In general, the center and aver-
age values are much different in the half-plane case as compared to
the full-plane case (these values could be increased or decreased).
(3) For example, comparing Tables 3a to 1a, it is observed that un-
der e�11 ¼ 1, the magnitude of the hydrostatic strain at the center is
increased in the half-plane case, whilst its average is decreased. (4)
Under E�

1 ¼ 1 or H�
1 ¼ 1, the center and average value of the hydro-

static strain is nonzero when N = 3 and 5 (Tables 3c and 3d), a fea-
ture again different to the corresponding full-plane case.

6.3. Inclusions bounded by both straight and curved lines in a
bimaterial plane

In strain energy band engineering, the self-assembled or self-
organized quantum-wires can be in various shapes (Faux et al.,
1997; Pan and Jiang, 2004; Maranganti and Sharma, 2007),
bounded by straight and curved line segments. Therefore, as a
new example, we consider now that there is an inclusion bounded
by both straight and curved lines in the lower half plane of the
bimaterial system as shown in Fig. 4. The inclusion is actually com-
posed of a square with side length 2, and two half circles of unit
radius on both sides of the square. The distance of the center of
the inclusion to the interface is equal to 2. The material properties
in both half planes are taken from Pan (2002), and the correspond-
ing rescaled values are listed in Table B2 and B3 in Appendix B.

Again, we are interested in the behavior of the combined Eshel-
by tensor components, that is, the hydrostatic, deviatoric and anti-
plane strains (eh, ed, ea), and the E-/H-fields (Eh;Hh). Under the ap-
plied non-zero eigenstrain e�11 ¼ 1 and e�12 ¼ 1 respectively, the in-
duced fields are calculated in the region �3 < x1 < 3, �4 < x2 < 1 (as
shown by the dashed rectangle in Fig. 4). This region covers both
inside and outside of the inclusion, as well as both half planes. Be-
fore the numerical calculation, the solution was checked to satisfy
the continuity conditions along the interface of the bimaterial
plane.

First, under the nonzero eigenstrain e�11 ¼ 1, the contours of eh,
ed, ea, Eh, and Hh are shown, respectively, in Figs. 5a–5e. Fig. 5a
shows that there is a large compressive hydrostatic strain inside
the inclusion; however, outside, this field is positive, particularly
near the interface in the lower half plane. Strain concentrations
can be also observed near the left and right ends of the inclusion.
Fig. 5b shows that the deviatoric strain is much larger inside than
outside. Compared to the in-plane strain field in Figs. 5a and 5b,

Fig. 5b. Contour of ed in the multiferroic bimaterial plane due to the eigenstrain
e�11 ¼ 1 in the inclusion made of a square plus two half circles.

Fig. 5c. Contour of ea in the multiferroic bimaterial plane due to the eigenstrain
e�11 ¼ 1 in the inclusion made of a square plus two half circles.

Fig. 5d. Contour of Eh (�10�10 V/m) in the multiferroic bimaterial plane due to the
eigenstrain e�11 ¼ 1 in the inclusion made of a square plus two half circles.
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the anti-plane strain is much smaller as shown in Fig. 5c. The con-
tour of the E-field magnitude Eh (�10�10 V/m) is shown in Fig. 5d.
In contrary to the strain feature, a large Eh-field is observed in the
matrix, instead of in the inclusion. More interestingly, there are

four concentrations around points A, B, C, and D marked in Fig. 4.
As for the magnetic Hh(�10�8 A/m)-field, large values are all lo-
cated inside the inclusion, just as for the strain distribution. In all
these figures, the values in the upper half plane are very small as
compared to those in the lower half plane.

Fig. 5e. Contour of Hh (�10�8 A/m) in the multiferroic bimaterial plane due to the
eigenstrain e�11 ¼ 1 in the inclusion made of a square plus two half circles.

Table 4.1a
Center and average values of the field quantities in the inclusion induced by the nonzero eigenstrain e�11 ¼ 1 in a multiferroic bimaterial plane (Fig. 4).

Shape Area eh (10�1) êh (10�1) ed (10�1) êd (10�1) ea (10�2) êa (10�2) Eh (10�2) Êh (10�2) Hh (10�2) Ĥh (10�2)

Square 4.000 �3.717 �3.591 3.934 4.904 3.681 5.445 6.714 4.817 10.04 10.26
�3.908 �4.898 3.337 2.046 6.106 4.787 0.3151 �0.1009
0.4441 0.2364 �1.555 �5.047 2.792 �0.5404 10.03 10.26

L-half 1.571 �0.2226 �2.776 2.264 2.295 1.347 3.376 0.9110 3.530 3.953 5.311
�2.264 �2.293 �0.2798 �0.1313 �0.7783 3.530 �0.7074 0.3630
0.005177 0.08315 �1.318 �3.373 0.4734 0.02099 3.889 5.299

R-half 1.571 �0.3847 �2.769 1.997 2.414 3.231 3.349 0.9833 3.750 3.893 5.371
�1.973 �2.312 1.744 �3.348 0.7160 3.749 1.096 0.3535
0.3087 0.08267 �2.721 �0.07260 0.6739 0.09506 3.736 5.359

Sum 7.142 �4.324 �4.437 8.181 7.397 7.371 9.157 7.214 5.435 17.67 14.32
�8.145 �7.389 4.801 0.8638 6.044 5.420 0.7039 0.7541
0.7580 0.3231 �5.594 �9.1116 3.939 0.3965 17.66 14.30

Fig. 6a. Contour of eh in the multiferroic bimaterial plane due to the eigenstrain
e�12 ¼ 1 in the inclusion made of a square plus two half circles (dash lines denote
negative values).

Fig. 6b. Contour of ed in the multiferroic bimaterial plane due to the eigenstrain
e�12 ¼ 1 in the inclusion made of a square plus two half circles.

Fig. 6c. Contour of ea in the multiferroic bimaterial plane due to the eigenstrain
e�12 ¼ 1 in the inclusion made of a square plus two half circles.
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The center and average (with a hat) values in the inclusion are
listed in Table 4.1a, separately for the square, the two half circles,
as well as for the entire inclusion. Also in this table, for the devia-
toric strain ed, anti-plane strain magnitude ea, E-field Eh, and H-field
Hh, the upper and lower subrows are, respectively, their corre-
sponding components (e11–e22) and 2e12, 2e31 and 2e32, E1 and E2,

and H1 and H2. It is interesting to note that the values of eh ed, ea,
Eh, and Hh at the center of the inclusion equals, respectively, the
summation of its individual center values; however, the corre-
sponding average values have no such superposition property.

Similarly, under the nonzero eigenstrain e�12 ¼ 1, the contours of
eh, ed, ea, Eh, and Hh are shown, respectively, in Figs. 6a–6e. It is
interesting to observe from Fig. 6a that the distribution of the
hydrostatic strain eh is anti-symmetric with respect to the two
symmetry lines of the inclusion (horizontal and vertical lines),
and that again there are four concentrations around points A, B,
C, and D as marked in Fig. 4. Also, under this eigenstrain, the in-
duced hydrostatic strain is much larger outside! The induced devi-
atoric strain (Fig. 6b) shows concentrations along the interface
between the inclusion and matrix, and also concentrations com-
pletely within the matrix. Two large concentrations can be ob-
served near points B and C. Four concentrations at points A, B, C,
and D are also observed for the contours of ea (Fig. 6c), Eh
(Fig. 6d), and Hh (Fig. 6e).

The center and average (with a hat) values in the inclusion are
listed in Table 4.1b, separately for the square, the two half circles,
as well as for the entire inclusion. Similarly, it is observed that the
values of eh, ed, ea, Eh, and Hh at the center of the inclusion equals,
respectively, the summation of its individual center values, whilst
the corresponding average values have no such superposition
property.

7. Concluding remarks

In this paper, we have proposed a comprehensive and unified
approach to solve the Eshelby’s inclusion problem in an anisotropic
multiferroic bimaterial plane. The solutions are not only general
but also in explicit analytical forms. The inclusion can be of an arbi-
trary shape, described by a Laurent polynomial, a polygon, or the
one bounded by a Jordan curve. Our solutions contain further the
results in the corresponding half plane and full plane. We have also
identified the essential eigenfunctions by which the induced fields
can be simply determined. Numerical results are presented to
investigate the features of these eigenfunctions as well as the
strain, electric and magnetic fields (components of the extended
Eshelby tensor). Particularly, we presented the values of these
fields at the center of the N-side regular polygonal inclusion and
also the average values of these fields over the inclusion. The effect
of the half-plane traction-free surface condition and the effect of
various couplings on the induced fields are discussed in detail.
For the N-side regular polygonal inclusion, we found that, when
the inclusion is in the full plane, both the center and average values
of the induced fields are independent of N, except for N = 4. We also
showed that the piezoelectric and piezomagnetic coupling coeffi-
cients could significantly affect the Eshelby tensor. This feature

Fig. 6d. Contour of Eh (�10�10 V/m) in the multiferroic bimaterial plane due to the
eigenstrain e�12 ¼ 1 in the inclusion made of a square plus two half circles.

Fig. 6e. Contour of Hh (�10�8 A/m) in the multiferroic bimaterial plane due to the
eigenstrain e�12 ¼ 1 in the inclusion made of a square plus two half circles.

Table 4.1b
Center and average values of the field quantities in the inclusion induced by the nonzero eigenstrain e�12 ¼ 1 in a mulitferroic bimaterial plane (Fig. 4).

Shape Area eh (10�2) êh (10�2) ed (10�1) êd (10�1) ea (10�2) êa (10�2) Eh (10�2) Êh (10�2) Hh (10�2) Ĥh (10�2)

Square 4.000 4.729 0.3400 7.055 3.968 4.977 1.998 14.95 7.880 8.695 2.359
�1.195 �0.1782 �4.395 1.282 �3.896 0.8725 �8.495 �1.908
�6.953 �3.964 2.336 �1.533 �14.43 �7.832 1.852 1.387

L-half 1.571 �0.9870 �0.7842 0.2364 3.905 1.276 2.198 2.476 7.180 1.863 0.7398
�0.05897 0.01428 �0.9933 1.128 �0.1445 0.06666 �1.706 �0.5611
0.2290 �3.902 �0.8013 �1.886 �2.471 �7.179 �0.7489 0.4822

R-half 1.571 2.692 0.7893 0.9423 3.926 1.740 2.140 1.087 6.863 2.271 0.7925
�0.6911 0.1455 1.375 1.053 �0.5009 �0.03369 �0.8665 �0.6416
0.6406 �3.923 1.067 �1.862 0.9646 �6.863 2.099 0.4652

Sum 7.142 6.435 1.220 6.387 3.816 4.783 6.733 16.57 10.04 11.52 2.219
�1.945 0.2440 �4.014 5.310 �4.542 �0.2271 �11.07 �1.682
�6.083 �3.808 2.601 �4.139 �15.94 �10.03 3.203 1.448
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should be useful in controlling the Eshelby tensor for the design of
better multiferroic composites. Typical contours of the field quan-
tities in and around the inclusion bounded by both straight and
curved line segments in a multiferroic bimaterial plane are also
presented.
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Appendix A. Solution of the Eshelby’s inclusion problem in a
multiferroic half-plane

From the bimaterial-plane solutions given in Section 4, we can
obtain the solution in the corresponding half plane. We assume
that the inclusion is in the lower half-plane, and that its surface
is (extended) traction free. In other words, the conditions in Eq.
(56) are changed to

w ¼ 0; on x2 ¼ 0: ðA1Þ
We can derive the half-plane solution with the extended trac-

tion-free boundary condition as

fðzÞ ¼ f1ðzÞ þ fbðzÞ; ðA2Þ
with the relation

Bfbðx1Þ þ Bfbðx1Þ ¼ �Bf1ðx1Þ � Bf1ðx1Þ: ðA3Þ
From the Cauchy formulae and the property f b�ð1Þ ¼ 0, we can

find that

f bðzÞ ¼ 1
2pi

Z 1

�1

f1ðtÞ
t � z

dt þ B�1B
2pi

Z 1

�1

f1ðtÞ
t � z

dt; ðA4Þ

namely

f bI ðzIÞ ¼
P
K;J

B�1
IK BKJ

�dJ

2pi
H
CJ

yJ
�yJ � zI

d�yJ;

f b0I ðzIÞ ¼
P
K;J

B�1
IK BKJ

�dJ

2pi
H
CJ

dyJ
�yJ � zI

; ðA5Þ

Combining the basic part in Eq. (45) with Eq. (A5)2 and making
use of Eq. (71), we finally have

f 0I ðzIÞ ¼ f10
I ðzIÞ þ f b0I ðzIÞ

¼ cIvx þ dIgðpI; zIÞ þ
P
K;J
B�1
IK
�BKJ

�dJgð�pJ ; zIÞ: ðA6Þ

Appendix B. Multiferroic material properties in full, half, and
bimaterial planes

Table B1
Material coefficients for the BaTiO3–CoFe2O4 multiferroic composite, 50% of BaTiO3

and 50% of CoFe2O4 (Xue et al., 2011). In the Property column, the units are: elastic
constants Cij in 109 N/m2, piezoelectric constants eij in C/m2, piezomagnetic constants
qij in N/A m, dielectric constants jij in 10�9 C2/N m2, magnetic constants lij in
10�4 N s2/C2. In the rescaled column, the dimensions of the elastic stress, electric
displacement, and magnetic induction fields are, respectively, in 1011 Pa, 10 C m�2,
and 103 Wb m�2, and the electric and magnetic fields are in 10�10 V m�1 and
10�8 A m�1.

Property Rescaled Property Rescaled

C11 225 2.25 q31 = q32 290.2 0.2902
C12 125 1.25 q33 350 0.35
C13 124 1.24 q15 = q24 275 0.275
C33 216 2.16 j11 = j22 5.64 5.64
C44 44 0.44 j33 6.35 6.35
e31 = e32 �2.2 �0.22 l11 = l22 2.97 29.7
e33 9.3 0.93 l33 0.835 8.35
e15 = e24 5.8 0.58

Table B2
The rescaled extended material property matrix in the upper half plane of the bimaterial case (the dimensions of the elastic stress, electric displacement, and magnetic induction
fields are, respectively, in 1011 Pa, 10 C m�2, and 103 Wb m�2, and the electric and magnetic fields are in 10�10 V m�1 and 10�8 A m�1).

1:66 0:77 0:78 0 0 0 0 0 �0:44 0 0 0:5803
0:77 1:66 0:78 0 0 0 0 0 �0:44 0 0 0:5803
0:78 0:78 1:62 0 0 0 0 0 1:86 0 0 0:6997
0 0 0 0:43 0 0 0 1:16 0 0 0:55 0
0 0 0 0 0:43 0 1:16 0 0 0:55 0 0
0 0 0 0 0 0:445 0 0 0 0 0 0
0 0 0 0 1:16 0 �11:2 0 0 0 0 0
0 0 0 1:16 0 0 0 �11:2 0 0 0 0

�0:44 �0:44 1:86 0 0 0 0 0 �12:6 0 0 0
0 0 0 0 0:55 0 0 0 0 �0:5 0 0
0 0 0 0:55 0 0 0 0 0 0 �0:5 0

0:5803 0:5803 0:6997 0 0 0 0 0 0 0 0 �1

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

Table B3
The rescaled extended material property matrix in the lower half plane of the bimaterial case (The dimensions of the elastic stress, electric displacement, and magnetic induction
fields are, respectively, in 1011 Pa, 10 C m�2, and 103 Wb m�2, and the electric and magnetic fields are in 10�10 V m�1 and 10�8 A m�1).

0:8674 �0:0825 0:2715 �0:0366 0 0 1:71� 10�2 0 0 0 0 0:5803
�0:0825 1:2977 �0:0742 0:057 0 0 �1:52� 10�2 0 0 0 0 0:5803
0:2715 �0:0742 1:0283 0:0992 0 0 �1:87� 10�3 0 0 0 0 0:6997
�0:0366 0:057 0:0992 0:3881 0 0 6:7� 10�3 0 0 0 0:55 0

0 0 0 0 0:6881 0:0253 0 1:08� 10�2 �7:61� 10�3 0:55 0 0
0 0 0 0 0:0253 0:2901 0 �9:5� 10�3 6:7� 10�3 0 0 0

1:71� 10�2 �1:52� 10�2 �1:87� 10�3 6:7� 10�3 0 0 �3:921� 10�2 0 0 0 0 0
0 0 0 0 1:08� 10�2 �9:5� 10�3 0 �3:962� 10�2 �8:6� 10�4 0 0 0
0 0 0 0 �7:61� 10�3 6:7� 10�3 0 �8:6� 10�4 �4:042� 10�2 0 0 0
0 0 0 0 0:55 0 0 0 0 �0:5 0 0
0 0 0 0:55 0 0 0 0 0 0 �0:5 0

0:5803 0:5803 0:6997 0 0 0 0 0 0 0 0 �1

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA
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