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a b s t r a c t

In this paper, an exact closed-form solution for the Eshelby problem of a polygonal inclusion with a
graded eigenstrain in an anisotropic piezoelectric full plane is presented. For this electromechanical cou-
pling problem, by virtue of Green’s function solutions, the induced elastic and piezoelectric fields are first
expressed in terms of line integrals on the boundary of the inclusion. Using the line-source Green’s func-
tion, the line integral is then carried out analytically for the linear eigenstrain case, with the final expres-
sion involving only elementary functions. Finally, the solution is applied to the semiconductor quantum
wire (QWR) of square, triangle, circle and ellipse shapes within the GaAs (001) substrate. It is demon-
strated that there exists significant difference between the induced field by the uniform eigenstrain
and that by the linear eigenstrain. Since the misfit eigenstrain in most QWR structures is actually non-
uniform, the present solution should be particularly appealing to nanoscale QWR structure analysis
where strain and electric fields are coupled and are affected by the non-uniform misfit strain.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Eshelby problem (Eshelby, 1957, 1961) is the subject of con-
stant studies (Mura, 1987) and has numerous applications in het-
erogeneous materials (composites, polycrystalline materials etc.).
Some recent studies include the effective elastoplastic behavior
of composites (Ju and Sun, 2001) and dynamic Eshelby tensor in
ellipsoidal inclusions (Michelitsch et al., 2003). While most Eshelby
problems associated with isotropic elasticity can be solved analyt-
ically for both 2D- and 3D-deformations (Kouris and Mura, 1989;
Rodin, 1996; Gao and Ma, 2010), the corresponding problems in
anisotropic elasticity usually require numerical solution (Dong
et al., 2003), except perhaps for the transversely isotropic elasticity
case, for which an analytical solution can be obtained (Yu et al.,
1994).

Inclusion of an arbitrary shape is particularly useful in the study
of strained semiconductor quantum devices (Freund and Gosling,
1995; Davies, 1998; Andreev et al., 1999). It should be also noted
that most semiconductor materials are piezoelectric, with some
of them being strongly electromechanically coupled (Pan,
2002a,b). Under the assumption of isotropic elasticity with
uniform eigenstrain, analytical solutions can be obtained for the
inclusion with a polygonal shape (Rodin, 1996; Nozaki and Taya,

1997; Glas, 2002a,b). Ru (1999, 2000) extended the isotropic elas-
ticity to the corresponding anisotropic elasticity and piezoelectric-
ity by using the special conformal mapping method. While the
conformal mapping method is elegant and convenient for the
inclusion with smooth boundary, it could be inefficient for the gen-
eral polygonal shape since the conformal mapping function may
involve infinite terms. An alternative to the conformal mapping
method is the Green’s function method (Pan, 2004; Sun et al.,
2012), which is particularly suited for polygonal shape. Zou et al.
(2010) recently proposed a unified approach where both smooth
and non-smooth curves can be considered. Also, to handle material
anisotropy and arbitrary shape of inclusion, the perturbation
method can be applied (Wang and Chu, 2006; Chu et al., 2011).
On the other hand, some research work has been done for spherical
and circular inclusions in a finite domain (Li et al., 2005, 2007). So
the problem of polygonal inclusion in a finite anisotropic piezo-
electric domain should be a challenging work.

An inclusion under non-uniform eigenstrain is very common,
particularly in the strained QWR due to the misfit lattice. For a
non-uniform eigenstrain problem, Eshelby (1961) showed that if
the eigenstrain inside an ellipsoidal inclusion is in the form of a
polynomial in Cartesian coordinates, then the induced strain field
in the inclusion is also characterized by a polynomial of the same
order. Only a few Eshelby inclusion problems have been solved
for the non-uniform eigenstrain case so far. This includes the inclu-
sion problem for ellipsoids with non-uniform dilatational Gaussian
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and exponential eigenstrains (Sharma and Sharma, 2003); the iso-
tropic ellipsoidal inclusion with polynomial eigenstrains (Rahman,
2002); and recently, elliptic inhomogeneity problem due to linear
and polynomial distributions of eigenstrain (Nie et al., 2007; Guo
et al., 2011). However, the corresponding arbitrarily shaped inclu-
sion with non-uniform eigenstrain problem remains to be solved.

Thus, in this paper, we present an exact closed-form solution for
an arbitrarily shaped polygonal inclusion in anisotropic piezoelec-
tric full-planes where the inclusion is under a linear eigenstrain
field. We first express the induced elastic and piezoelectric fields
in terms of a line integral on the boundary of the inclusion, with
the integrand being the multiplication of the line-source Green’s
function and the equivalent body force of the piezoelectric solid.
The line integral is then carried out analytically on each side of
the polygon, with the final results involving only elementary func-
tions. As numerical examples, our solution is applied to the inclu-
sion of square, triangle, circle and ellipse shapes under linear
eigenstrains within the GaAs (001) substrate. Our numerical re-
sults not only can be used as benchmarks, but also clearly show
the effect of linear eigenstrain on the induced field distribution,
as compared to the uniform eigenstrain case. This paper is orga-
nized as follows: In Section 2, we derive the exact-closed form
solution for a general polygon under linear eigenstrain in x and z.
In Section 3, we apply our solution to a couple of inclusion prob-
lems with linear eigenstrains and discuss certain features associ-
ated with the induced fields. Conclusions are drawn in Section 4.

2. Proposed method and solution

Let us assume that there is an extended general eigenstrain c�Ij
(i.e., the eigenstrain c�ij and the eigen-electric field E�

j ) within the
QWR domain V bounded by its surface oV (Fig. 1), with V being
embedded in an infinite substrate. The extended eigenstrain is fur-
ther assumed to be a linear function of the coordinates (x, z). Our
task is to find the eigenstrain-induced field within the QWR and
its surrounding substrate.

For a general eigenstrain c�Ij at x = (x, z) within domain V, the
induced extended displacement at X = (X, Z) can be found via the
method of superposition. In other words, the response is an inte-
gral, over V, of the equivalent body force in the square bracket be-
low, multiplied by the line-source Green’s function (Pan, 2004), i.e.,

uKðXÞ ¼ �
Z
V
uK
J ðx;XÞ½CiJLmc�LmðxÞ�;idVðxÞ ð1Þ

where uK
J ðx;XÞ is the Jth Green’s elastic displacement/electric poten-

tial at x due to a line-force/line-charge in the K-th direction applied
at X.

Integrating by parts and noticing that the eigenstrain is nonzero
only in V, Eq. (1) can be written alternatively as

uKðXÞ ¼
Z
V
uK
J;xi
ðx;XÞCiJLmc�LmðxÞdVðxÞ ð2Þ

We assume that within the QWR domain V, the eigenstrain can
be expressed as a linear function of the coordinates (x,z):

c�LmðxÞ ¼ c�0Lm þ c�xLmxþ c�zLmz ð3Þ

Thus, Eq. (2) becomes

uKðXÞ ¼
Z
V
uK
J;xi
ðx;XÞCiJLm½c�0Lm þ c�xLmxþ c�zLmz�dVðxÞ ð4Þ

or,

u0
KðXÞ þ ux

KðXÞ þ uz
KðXÞ �

Z
V
uK
J;xi
ðx;XÞ½CiJLmc�0Lm þ CiJLmc�xLmx

þ CiJLmc�zLmz�dVðxÞ ð5Þ
where the superscripts 0, x, z denote the terms corresponding,
respectively, to the eigenstrains which are uniform, linear in x,
and linear in z. We now discuss these terms one by one below.

(1) The first integration is associated with a uniform eigenstrain
field that was well studied. For example, based on Pan (2004),
this area integral can be easily transformed to the following
boundary integration

u0
KðXÞ ¼ CiJLmc�0Lm

Z
oV

uK
J ðx;XÞniðxÞdSðxÞ ð6Þ

where ni(x) is the outward normal on the boundary oV of the QWR.
(2) The second integration is associated with a linear eigen-
strain field in x, which is expressed as

ux
KðXÞ ¼

Z
V
uK
J;xi
ðx;XÞ½CiJLmc�xLmx�dVðxÞ ð7Þ

By separating the two derivative terms, we have

ux
KðXÞ ¼

Z
V
fuK

J;xðx;XÞ½CxJLmc�xLmx� þ uK
J;zðx;XÞ½CzJLmc�xLmx�gdVðxÞ ð8Þ

which can be further transformed to the boundary integrals as

ux
KðXÞ ¼ CiJLmc�xLm

Z
oV

uK
J ðx;XÞxniðxÞdSðxÞ � CxJLmc�xLm

�
Z
oV
UxK

J ðx;XÞnxðxÞdSðxÞ ð9Þ

(3) The third integration is associated with a linear eigenstrain
field in z, expressed as

uz
KðXÞ ¼

Z
V
uK
J;xi
ðx;XÞ½CiJLmc�zLmz�dVðxÞ ð10Þ

Similarly, it can be written as a summation of the following two
terms

uz
KðXÞ ¼

Z
V
fuK

J;xðx;XÞ½CxJLmc�zLmz� þ uK
J;zðx;XÞ½CzJLmc�zLmz�gdVðxÞ ð11Þ

which can be further transformed to the boundary integrals as

uz
KðXÞ ¼ CiJLmc�zLm

Z
oV

uK
J ðx;XÞzniðxÞdSðxÞ � CzJLmc�zLm

�
Z
oV
UzK

J ðx;XÞnzðxÞdSðxÞ ð12Þ

In Eqs. (9) and (12), the two new functions are defined as

x

z 

V

*
Ijγ

∂V 

Fig. 1. An arbitrary QWR domain V bounded by oV under a linear eigenstrain
c�Ij ðc�ij and � E�

j Þ. The misfit eigenstrain is a linear function of the coordinates (x, z),
and the QWR is in a general anisotropic piezoelectric infinite substrate.
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UxK
J ðx;XÞ;x ¼ uK

J ðx;XÞ
UzK

J ðx;XÞ;z ¼ uK
J ðx;XÞ

ð13Þ

In summary, the induced extended displacement by the linear
eigenstrain (3) in the QWR domain V is the summation of the fol-
lowing three boundary integrals on the surface of the QWR:

u0
KðXÞ ¼ CiJLmc�0Lm

Z
oV

uK
J ðx;XÞniðxÞdSðxÞ ð14Þ

ux
KðXÞ ¼ CiJLmc�xLm

Z
oV

uK
J ðx;XÞxniðxÞdSðxÞ � CxJLmc�xLm

�
Z
oV

UxK
J ðx;XÞnxðxÞdSðxÞ ð15Þ

uz
KðXÞ ¼ CiJLmc�zLm

Z
oV

uK
J ðx;XÞzniðxÞdSðxÞ � CzJLmc�zLm

�
Z
oV

UzK
J ðx;XÞnzðxÞdSðxÞ ð16Þ

Therefore, besides the analytical integration derived before for
the uniform or constant eigenstrain case (Pan, 2004), the following
four analytical integrations are required:

Ix ¼
R
oV u

K
J ðx;XÞxniðxÞdSðxÞ; Iz ¼

R
oV u

K
J ðx;XÞzniðxÞdSðxÞ

Jx ¼
R
oV U

xK
J ðx;XÞnxðxÞdSðxÞ; Jz ¼

R
oV U

zK
J ðx;XÞnzðxÞdSðxÞ

ð17Þ

To carry out these integrals, we assume as before that the
boundary of the QWR domain is composed of piecewise straight
line segments. We define an arbitrary line segment in the (x, z)-
plane starting from point 1 (x1, z1) and ending at point 2 (x2, z2),
in terms of the parameter t (0 6 t 6 1), as

x ¼ x1 þ ðx2 � x1Þt
z ¼ z1 þ ðz2 � z1Þt

ð18Þ

Then, the outward normal component ni(x) along the line seg-
ment is constant, given by

n1 ¼ ðz2 � z1Þ=l; n2 ¼ �ðx2 � x1Þ=l ð19Þ
where l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðz2 � z1Þ2

q
is the length of the line segment.

Using the exact closed-form expression for the Green’s function
in the anisotropic piezoelectric full plane, the integration along the
line segment for Ix can be easily carried out as:

IxðXÞ ¼ ni
l
p
ImfAJRh

x
RðX; ZÞAKRg ð20Þ

where the Stroh matrix AJR is related to the material property of the
substrate (or matrix). Its detailed expression can be found in Pan

(2004). Also in Eq. (20), summation from 1 to 4 is implied for the
dummy index R.

Function hx
RðX; ZÞ and its derivatives (required for the extended

strain calculation) are given below:

hx
RðX; ZÞ ¼

Z 1

0
lnðzR � sRÞxdt

¼ x2 � x1
4a2 ½að2b� aÞ � 2ðb2 � a2Þ lnðaþ bÞ þ 2b2

� lnðbÞ� þ x1
a
½�aþ ðaþ bÞ lnðaþ bÞ � b lnðbÞ� ð21Þ

ohxRðX;ZÞ
oX ¼ � x2�x1

a2 ½a� b lnðaþb
b Þ� � x1

a lnðaþb
b Þ

ohxRðX;ZÞ
oZ ¼ � ðx2�x1ÞpR

a2 ½a� b lnðaþb
b Þ� � x1pR

a lnðaþb
b Þ

ð22Þ

where

a ¼ ðx2 � x1Þ þ pRðz2 � z1Þ
b ¼ ðx1 þ pRz1Þ � sR

ð23Þ

zR ¼ xþ pRz; sR ¼ X þ pRZ ð24Þ
with pR (R = 1, 2, 3, 4) being the Stroh eigenvalues of the anisotropic
piezoelectric material (Pan, 2004).

Similarly for Iz, its integration on each line segment in the aniso-
tropic piezoelectric full plane can be expressed as

Table 1
Induced stress component rxx (GPa) in both the circular inclusion and matrix of GaAs (001). The circular inclusion has a radius r = 10 nm and the eigenstrain inside is linear in x-
direction, i.e., c�0Lm ¼ 0, c�xxx ¼ c�xzz ¼ 0:07, c�zLm ¼ 0: The circle is approximated by the N-sided polygon (N = 10, 20, 40, 60, 80, and 100).

X = Z (nm) N = 10 N = 20 N = 40 N = 60 N = 80 N = 100

1 �0.64646 �0.64734 �0.64734 �0.64734 �0.64734 �0.64734
2 �1.29298 �1.29467 �1.29468 �1.29468 �1.29468 �1.29468
3 �1.93770 �1.94198 �1.94202 �1.94202 �1.94202 �1.94202
4 �2.58044 �2.58911 �2.58935 �2.58935 �2.58937 �2.58935
5 �3.22172 �3.23537 �3.23668 �3.23664 �3.23669 �3.23667
6 �3.81684 �3.87809 �3.88455 �3.88382 �3.88398 �3.88402
7 �8.12927 �7.87522 �4.51451 �4.54046 �4.53344 �4.53229
8 �2.27724 �2.29140 �2.31969 �2.32175 �2.32354 �2.32426
9 �2.08770 �2.14995 �2.17410 �2.17793 �2.17963 �2.18035
10 �1.92260 �1.99685 �2.01891 �2.02274 �2.02437 �2.02505
11 �1.78064 �1.85671 �1.87734 �1.88100 �1.88255 �1.88318
12 �1.65812 �1.73250 �1.75192 �1.75539 �1.75685 �1.75745
13 �1.55135 �1.62283 �1.64119 �1.64447 �1.64586 �1.64642
14 �1.45741 �1.52569 �1.54308 �1.54619 �1.54751 �1.54803
15 �1.37405 �1.43916 �1.45568 �1.45863 �1.45988 �1.46038
16 �1.29955 �1.36164 �1.37737 �1.38018 �1.38137 �1.38185

Table 2
Induced electric displacement component Dx (10�3 C/m2) in both the circular
inclusion and matrix of GaAs (001). The circular inclusion has a radius r = 10nm
and the eigenstrain inside is linear in x-direction, i.e., c�0Lm ¼ 0, c�xxx ¼ c�xzz ¼ 0:07,
c�zLm ¼ 0: The circle is approximated by the N-sided polygon (N = 10, 20, 40, 60, 80, and
100).

X = Z (nm) N = 10 N = 20 N = 40 N = 60 N = 80 N = 100

1 0.39220 0.39073 0.39073 0.39072 0.39073 0.39072
2 0.77960 0.78145 0.78146 0.78144 0.78145 0.78145
3 1.16692 1.17201 1.17218 1.17215 1.17216 1.17218
4 1.56163 1.56171 1.56288 1.56281 1.56283 1.56292
5 1.95112 1.94755 1.95365 1.95334 1.95341 1.95364
6 2.29615 2.31788 2.34698 2.34280 2.34354 2.34412
7 7.69050 8.33241 3.05932 2.63476 2.80054 2.70166
8 6.65131 7.03739 7.18099 7.19186 7.20097 7.20496
9 5.91331 6.21443 6.29966 6.31281 6.31877 6.32141
10 5.37885 5.64181 5.70984 5.72156 5.72660 5.72875
11 4.95341 5.19221 5.25249 5.26316 5.26769 5.26959
12 4.59778 4.81863 4.87409 4.88399 4.88817 4.88990
13 4.29218 4.49856 4.55040 4.55968 4.56358 4.56519
14 4.02506 4.21923 4.26806 4.27680 4.28048 4.28198
15 3.78887 3.97240 4.01862 4.02690 4.03038 4.03180
16 3.57825 3.75235 3.79624 3.80410 3.80741 3.80875
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IzðXÞ ¼ ni
l
p
ImfAJRh

z
RðX; ZÞAKRg ð25Þ

where

hz
RðX; ZÞ ¼

Z 1

0
lnðzR � sRÞzdt

¼ z2 � z1
4a2

½að2b� aÞ � 2ðb2 � a2Þ lnðaþ bÞ þ 2b2

� lnðbÞ� þ z1
a
½�aþ ðaþ bÞ lnðaþ bÞ � b lnðbÞ� ð26Þ

and its derivatives are

ohzRðX;ZÞ
oX ¼ � z2�z1

a2 ½a� b lnðaþb
b Þ� � z1

a lnðaþb
b Þ

ohzRðX;ZÞ
oZ ¼ � ðz2�z1ÞpR

a2 ½a� b lnðaþb
b Þ� � z1pR

a lnðaþb
b Þ

ð27Þ

We now derive the analytical expressions of Jx and Jz along a
straight line segment. First, we need the integration of the full-
plane Green’s function. Recalling the following expression for the
full-plane Green’s function (Pan, 2004)

uK
J ðx;XÞ ¼

1
p
ImfAJR lnðzR � sRÞAKRg

¼ 1
p
ImfAJR lnðpRzþ x� sRÞAKRg ð28Þ

and integrating it with respect to x, we have

UxK
J ðx;XÞ ¼ 1

p
Im AJR �xþ b1 lnða1xþ b1Þ

a1
þ x lnða1xþ b1Þ

� �
AKR

� �

ð29Þ
where

a1 ¼ 1
b1 ¼ pRz� sR

ð30Þ

Similarly, we have

UzK
J ðx;XÞ ¼ 1

p
Im AJR �zþ b2 lnða2zþ b2Þ

a2
þ z lnða2zþ b2Þ

� �
AKR

� �

ð31Þ
with

a2 ¼ pR

b2 ¼ x� sR
ð32Þ

Thus, integration of Eqs. (29) and (31) along the straight line
segment gives us

JxðXÞ ¼ nx
l
p
ImfAJRH

x
RðX; ZÞAKRg ð33Þ

Fig. 2. A square QWR with eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0 in GaAs (001) substrate: (a) the contour of stress rxx in N/m2, (b) the contour of stress rzz, (c) the
contour of stress rxz, (d) the contour of electric displacement Dz in C/m2.
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JzðXÞ ¼ nz
l
p
ImfAJRH

z
RðX; ZÞAKRg ð34Þ

where

Hx
RðX; ZÞ ¼

Z 1

0
�xþ b1 lnða1xþ b1Þ

a1
þ x lnða1xþ b1Þ

� �
dt

¼ � x2 þ x1
2

þ 1
4a

½2ab� a2 � 2ðb2 � a2Þ lnðaþ bÞ

þ 2b2 lnðbÞ� þ b
a
½�aþ ðaþ bÞ lnðaþ bÞ � b lnðbÞ� ð35Þ

and its derivatives are

oHx
RðX;ZÞ
oX ¼ �1

a fa lnðaþ bÞ þ b lnðaþb
b Þ � bg

oHx
RðX;ZÞ
oZ ¼ �pR

a fa lnðaþ bÞ þ b lnðaþb
b Þ � bg

ð36Þ

Similarly we also have

Hz
RðX; ZÞ ¼

Z 1

0
½�zþ b2 lnða2zþ b2Þ

a2
þ z lnða2zþ b2Þ�dt

¼ � z2 þ z1
2

þ 1
4apR

½2ab� a2 � 2ðb2 � a2Þ lnðaþ bÞ

þ 2b2 lnðbÞ� þ b
apR

½�aþ ðaþ bÞ lnðaþ bÞ � b lnðbÞ� ð37Þ

and its derivatives

oHz
RðX;ZÞ
oX ¼ �1

apR
fa lnðaþ bÞ þ b lnðaþb

b Þ � bg
oHz

RðX;ZÞ
oZ ¼ �1

a fa lnðaþ bÞ þ b lnðaþb
b Þ � bg

ð38Þ

With the extended displacements and their derivatives, we can
find immediately the elastic strain and electric fields from the fol-
lowing expressions

ckpðXÞ ¼
1
2
c�LmCiJLm

Z
oV
½uk

J;Xp
ðx;XÞ þ up

J;Xk
ðx;XÞ�niðxÞdSðxÞ;

k; p ¼ 1;2;3 ð39aÞ

EpðXÞ ¼ �c�LmCiJLm

Z
oV
u4
J;Xp

ðx;XÞniðxÞdSðxÞ; p ¼ 1;2;3 ð39bÞ

The stresses and electric displacements are obtained from
strains and electric fields via the coupled constitutive relation
(Pan, 2004).

In summary, therefore, we have derived the exact closed-form
solutions for the elastic and piezoelectric fields induced by an arbi-
trary polygonal inclusion with linear eigenstrains. Since our result
is in an exact-closed form, solutions to multiple inclusions can be
simply derived by superposing the contributions from all inclu-

Fig. 3. A triangle QWR with eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0 in GaAs (001) substrate: (a) the contour of stress rxx; (b) the contour of stress rzz; (c) the contour of
stress rxz; (d) the contour of electric displacement Dz.

L.G. Sun et al. / International Journal of Solids and Structures 49 (2012) 1773–1785 1777



Author's personal copy

sions. This is particularly useful in the analysis of QWR-array in-
duced elastic and piezoelectric fields (Glas, 2002a,b).

We remark that the solutions presented in this paper are for the
general anisotropic and piezoelectric 2D linear eigenstrain prob-
lem. It is worth emphasizing that our results include the general
anisotropic elastic case and the uniform eigenstrain case in general
anisotropic piezoelectric 2D domain (Pan, 2004) as the special
cases.

To test the accuracy of our solutions, we assume that the piezo-
electric full plane is made of GaAs (001), with an inclusion of cir-
cular QWR of radius r = 10 nm. We further assume that within the
circle, there is a linear eigenstrain distribution c�0Lm ¼ 0,
c�xxx ¼ c�xzz ¼ 0:07 (the other components c�xLm ¼ 0), c�zLm ¼ 0 (thereaf-
ter, we only study the hydrostatic linear eigenstrain in x or in z).
The elastic properties for GaAs (001) are C11 = 118 � 109 N/m2,
C12 = 54 � 109 N/m2, and C44 = 59 � 109 N/m2, and piezoelectric
constant and relative permeability are, respectively, e14 =
�16 � 10�9 C/m2 and er = 12.5 (Pan, 2002b). We point out that,
for GaAs (001), the global coordinates x, y, and z are coincident
with the crystalline axes [100], [010], and [001]. In our calcula-
tion, we approximate the curved circle with N piecewise straight-
line segments. Namely, we replace the circle with an N-sided reg-
ular polygon, for N equals 10, 20, 40, 60, 80, and 100. The induced
stresses and electric displacements along the diagonal line of the
circle (X = Z) are listed in Tables 1 and 2 for the polygon with dif-

ferent side N. Notice that points X = Z = 1 nm to 7 nm are inside
the circular QWR, whilst X = Z = 8 nm to 16 nm are points in the
substrate (or matrix).

From Tables 1 and 2, it is obvious that for any fixed point, the
induced field quantities within the circular inclusion and in the
matrix both converge with increasing N. It is further noticed that
these field quantities converge faster at points near the center
than those far from the center. Especially for points close to
the interface between the inclusion and matrix, the convergence
becomes slow. For instance, the point X = Z = 7 nm experiences
the slowest convergence rate among other points because it is
the closest point to the boundary of the circle (X = Z = 7.07 nm).
We have also checked the stresses and electric displacements
both in the inclusion and matrix induced by different linear
eigenstrain distribution and found that they all converge when
N is large.

3. Numerical examples

We now apply the exact closed-form solutions to the QWR
made of different shapes. We first consider a square QWR
(20 nm � 20 nm) in piezoelectric GaAs (001) with three different
eigenstrain distributions: Case #1 with a linear eigenstrain in x
(c�0Lm ¼ 0, c�xxx ¼ c�xzz ¼ 0:07, c�zLm ¼ 0); Case #2 with a linear eigen-

Fig. 4. A triangle QWR with eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07 in GaAs (001) substrate: (a) the contour of stress rxx; (b) the contour of stress rzz; (c) the contour of
stress rxz; (d) the contour of electric displacement Dz.
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strain in z (c�0Lm ¼ 0, c�xLm ¼ 0, c�zxx ¼ c�zzz ¼ 0:07); and Case #3 with a
linear eigenstrain in both x and z (c�0Lm ¼ 0, c�xxx ¼ c�xzz ¼ 0:07,
c�zxx ¼ c�zzz ¼ 0:07).

Shown in Fig. 2a and b are, respectively, the contours of the
stresses rxx and rzz, and in Fig. 2c and d, respectively, the contours
of the stress rxz and electric displacement Dz, due to a hydrostatic
linear eigenstrain in x (Case #1). The location of the square is also
shown by dashed lines. Some interesting features can be observed
from these figures: (1) The distributions of the induced stress and
electric displacement field clearly show certain symmetry with
respect to the x- and z-axes. This is due to the fact that the inclu-
sion is square shape and the material is cubic. (2) The induced
stresses rxx and rzz show clearly the linear variation in x within
the square QWR, with their maximum magnitudes being at
x = ±10 nm, i.e., at the left and right sides of the square. (3) The
features of stress rxz and electric displacement Dz (Fig. 2c and
d) are exactly the same except for their magnitudes. This is fur-
ther related to the cubic property of the material and the square
shape of the inclusion. Four concentrations can be observed at
the four corners of the square for rxz and Dz. (4) Different to the
uniform eigenstrain case, the induced field quantities by the linear
eigenstrain are mostly continuous across the boundary of the
inclusion. This is particularly true for the extended tractions
where they remain continuously across the inclusion boundary.
This actually partially verifies the accuracy of our analytical solu-
tions to a certain extent.

Fig. 3a–d show the corresponding contours of stresses
(rxx, rzz, rxz) and electric displacement (Dz), due to an isosceles tri-
angular inclusion with all side length of 20 nm within the GaAs
(001) substrate, under a hydrostatic linear eigenstrain in x
(c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0). The corresponding results due
to a hydrostatic linear eigenstrain in z are shown in Fig. 4a–d. Com-
paring Fig. 3a–d to Fig. 2a–d under a hydrostatic linear eigenstrain
in x, it is observed that the induced field depends strongly on the
shape of the inclusion (square vs. triangle) and that there is an
apparent concentration at the left corner of the triangular inclusion
(Fig. 3a and b). Comparing Fig. 3a–d to Fig. 4a–d for the same tri-
angular inclusion but under different linear eigenstrain (linear in
x vs. linear in z), it is seen that for the hydrostatic linear eigenstrain
in z, there is an obvious non-uniform gradient inside the triangle
for the shear stress and electric displacement (Fig. 4c and d) since
contours are curved there.

Then we would like to study the stress and electric displace-
ment distributions under a linear eigen-electric field. We calculate
the square and triangle model as above, with the linear eigen-elec-
tric field �E�x

x ¼ �E�x
z ¼ 0:07 V/m, along x-direction. Shown in

Fig. 5a–d and Fig. 6a–d are the contours of the stress rxy, ryz.and
the electric displacement Dx, Dz respectively for square and triangle
model. Observing the square model, we find that the distribution
fields for stress and electric displacement are all anti-centrosym-
metric, shown in Fig. 5a–d. However, for triangle model, the stress
and electric displacement distributions don’t show any symmetry

Fig. 5. A square QWR with eigen-electric field �E�x
x ¼ �E�x

z ¼ 0:07 V/m in GaAs (001) substrate: (a) the contour of stress rxy; (b) the contour of stress ryz; (c) the contour of
electric displacement Dx; (d) the contour of electric displacement Dz.
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(Fig. 6a–d). After analyzing on results, we find that only when the
direction of the linear distribution of eigenstrain or eigen-electric
field is vertical to the symmetric axis of the polygon, the results
satisfy the symmetry. For instance, if we give eigenstrain or ei-
gen-electric field along z-direction for triangle model, the results
satisfy some kind of symmetry (Fig. 4a and b). Furthermore, we
find that in our results, the normal stresses rxx and rzz vanish in
both square and triangle cases.

For a special circumstance where the average eigenstrain is zero
in the QWR, we would like to see the mean of the induced strain
field (or stress field), which is defined as

�uK;p ¼ 1
V

Z
V
uK;pðXÞdVðXÞ ð40Þ

Then we also consider this case for both square and triangle
model. After calculation, we find that for square model, no matter
the linear eigenstrain is along x or z-direction, which means the
average eigenstrain in the QWR is zero, the mean of the induced
stress field is zero for both the interior and exterior field. This can
be visually observed in Fig. 2a–d. However, for triangle model, to
ensure the average eigenstrain is zero, we can only assume the lin-
ear eigenstrain is along z-direction for our model. Then we also cal-
culate the mean of the induced stress field. We find �rxx and �rzz are
zero, but �rxz is not zero. These results can also be observed in

Fig. 2a–c. Furthermore, we obtain the mean of stress
�rxz ¼ 0:071 GPa for our triangle inclusion system. The results above
are useful to analyze the properties of polygonal inclusion problem.

To further investigate the features of the linear eigenstrain in-
duced fields, we plot their variations along different directions.
We first consider the non-polygonal inclusion case. A circular
(r = 10 nm) and an elliptical (semi-major and semi-minor axes
are 20nm and 10nm) inclusion in GaAs (001) substrate. For these
two cases, we approximate the smooth boundary by the N-sided
polygon with N = 100. We are interested in the variation of the in-
duced stress and electric displacement along the x-axis, z-axis and
45-degree to the x-direction (x = z) due to linear eigenstrain in x or
z, and simultaneously in both x and z. Shown in Fig. 7a–f are the
results for the circular inclusion and in Fig. 8a–f those for the ellip-
tical inclusion. There are three curves in each figure, and the field
variation includes points both inside and outside the QWR.

It is observed from Fig. 7a–d that, for linear eigenstrain in x, the
variation of stress rxx along x-axis and the diagonal line x = z is a lin-
ear function of x, whilst the variation of electric displacement Dz

along z-axis and z = x is a linear function of z. It is further seen from
these figures that the traction and the normal electric displacement
are continuous cross the interface between the QWR and substrate
either along the x-axis or z-axis. We remark that along x-axis, the
interface is at x = 10 nm, and along the diagonal line x = z, the inter-
face is at x = z = 7.07 nm. The variation of the stress and electric dis-

Fig. 6. A triangle QWR with eigen-electric field �E�x
x ¼ �E�x

z ¼ 0:07 V/m in GaAs (001) substrate: (a) the contour of stress rxy; (b) the contour of stress ryz; (c) the contour of
electric displacement Dx; (d) the contour of electric displacement Dz.

1780 L.G. Sun et al. / International Journal of Solids and Structures 49 (2012) 1773–1785



Author's personal copy

placement along x-axis, z-axis, and 45 degree to x-axis due to the
combined linear eigenstrain in x and z can be obtained by themeth-
od of superposition, which is shown in Fig. 7e–f.

It is further noticed from Fig. 7a–f that along x-axis or z-axis, the
induced stress or electric displacement could be identically zero
due to the symmetry of the material property and the circular
QWR shape, and that the maximum values of the nonzero compo-
nents are on the interface.

Fig. 8a–f show the corresponding variations of the stress and
electric displacement along the three directions (x-axis, z-axis, and
line x = z) due to an elliptical QWR under linear eigenstrains. It is
pointed out that the interface along x = z is at x = z = 8.9 nm. While
the variation of these fields is similar to that in Fig. 7a–f, we notice
that, along certain direction, the maximum Dz could be located out-
side the QWR. For instance for the electric displacement along x = z,
the maximum is reached in the substrate slightly outside the QWR.
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Fig. 7. The variation of stress rxx and electric displacement Dz along x-axis, z-axis and 45-degree to the x-direction under linear eigenstrain within a circular QWR which is
embedded in GaAs (001) substrate. (a) rxx under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0. (b) Dz under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0. (c) rxx

under linear eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07. (d) Dz under linear eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07. (e) rxx under linear eigenstrain
c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zxx ¼ c�zzz ¼ 0:07. (f) Dz under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zxx ¼ c�zzz ¼ 0:07.
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In summary, for the circular and elliptical inclusion with linear
eigenstrain in x and z, our results show that the stress and electric
displacement inside the inclusion is linear function of x and z.
However, should the inclusion is in other shape, such linear-depen-
dent feature disappear. This is illustrated in Figs. 9 and 10, respec-
tively, for the square and triangular inclusion case. The square and
triangle are oriented, respectively, the same way as in Figs. 2 and 3.
First, it is noted from Fig. 9a–f that under linear eigenstrain in
either x or z, the stress and electric displacement is no longer linear

along the diagonal direction x = z. For the triangular case, all the
lines inside the inclusion become nonlinear, except for rxx along
z-axis due to the linear eigenstrain in z as shown in Fig. 10c. It is
further noticed that due to the geometric shape of the triangle,
the x- and/or z-axis is no longer the line of symmetry. In other
words, along these axes, the field quantities may not be zero any
more (Fig. 10a, d, e and f). These phenomena are new and should
be important for us to understand the properties for inclusion
problems with graded eigenstrain.
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Fig. 8. The variation of stress rxx and electric displacement Dz along x-axis, z-axis and 45-degree to the x-direction under linear eigenstrain within an elliptical QWR which is
embedded in GaAs (001) substrate. (a) rxx under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0. (b) Dz under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0. (c) rxx

under linear eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07. (d) Dz under linear eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07. (e) rxx under linear eigenstrain
c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zxx ¼ c�zzz ¼ 0:07. (f) Dz under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zxx ¼ c�zzz ¼ 0:07.
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4. Conclusions

In this paper, we have derived an exact closed-form solution for
the Eshelby problem of arbitrarily shaped inclusions in an aniso-
tropic piezoelectric full plane. The eigenstrain field inside the
inclusion is assumed to be linear functions of x and z. Based on

the equivalent body-force concept of eigenstrain, we expressed
the induced elastic and piezoelectric fields in terms of a line inte-
gral on the boundary of the inclusion with the integrand being
the line-source Green’s function. Using the exact closed-form
Green’s function, the line integral was carried out analytically by
assuming a piecewise straight-line boundary for the inclusion,
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Fig. 9. The variation of stress rxx and electric displacement Dz along x-axis, z-axis and 45-degree to the x-direction under linear eigenstrain within a square QWR which is
embedded in GaAs (001) substrate. (a) rxx under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0. (b) Dz under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0. (c) rxx

under linear eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07. (d) Dz under linear eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07. (e) rxx under linear eigenstrain
c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zxx ¼ c�zzz ¼ 0:07. (f) Dz under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zxx ¼ c�zzz ¼ 0:07.

L.G. Sun et al. / International Journal of Solids and Structures 49 (2012) 1773–1785 1783



Author's personal copy

i.e., an arbitrarily shaped polygon. The solution is then applied to a
square, a triangle, a circle and an ellipse QWR within the GaAs
(001) substrate, with results clearly showing the importance of
linear eigenstrain, as compared to the uniform eigenstrain case.
Our numerical results can also be served as benchmarks and could
be useful to the analysis of strained QWR structures with
arbitrarily shaped cross-section and with general anisotropic
piezoelectricity.
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Fig. 10. The variation of stress rxx and electric displacement Dz along x-axis, z-axis and 45-degree to the x-direction under linear eigenstrain within a triangular QWRwhich is
embedded in GaAs (001) substrate. (a) rxx under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0. (b) Dz under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zLm ¼ 0. (c) rxx

under linear eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07. (d) Dz under linear eigenstrain c�0Lm ¼ 0; c�xLm ¼ 0; c�zxx ¼ c�zzz ¼ 0:07. (e) rxx under linear eigenstrain
c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zxx ¼ c�zzz ¼ 0:07. (f) Dz under linear eigenstrain c�0Lm ¼ 0; c�xxx ¼ c�xzz ¼ 0:07; c�zxx ¼ c�zzz ¼ 0:07.
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