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Abstract
In this paper, we derive the analytical solutions for two types of surface loadings over an

anisotropic magnetoelectroelastic half-space: a uniform and an indentation-type load. Our

solutions in terms of the simple line integral over [0, π] contain various decoupled materials

and materials with high symmetry as special cases. Furthermore, the surface results of the

solutions of the half-space are also provided. It is shown that on the surface: (1) for the

uniform loading, the integrands for the extended displacements are continuous whilst those for

the extended stresses have two weak singularities of order 1/r1/2 along the integral interval

[0, π], which are integrable in the sense of Cauchy principal value and (2) for the

indentation-type loading, the order of the singularity in the extended stress is exactly Cauchy

type of 1/r, which can also be integrated via the Cauchy principal value. For a general

anisotropic magnetoelectroelastic half-space, numerical examples in the vertical plane are

presented for a uniform horizontal/vertical load and a vertical indentation-type load. The

physical quantities presented are the magnitude of the elastic displacement vector, the electric

and magnetic potentials, the hydrostatic and effective stresses, and the magnitudes of the

electric and magnetic field vectors. These numerical results not only show some distinguished

features associated with the loadings, but also can serve as benchmarks for future numerical

endeavors in this field.

(Some figures may appear in colour only in the online journal)

1. Introduction

Solutions to the problem of surface loading over an elastic

half-space are important in various engineering and science

fields. Since the exact closed-form solutions of a vertical

and horizontal point-force loading on the elastic isotropic

half-space by Boussinesq and Cerruti (see Love 1944),

a variety of extensions have been pursued. On the one

hand, these point-force solutions can be applied to find

more complicated surface loading distributions by simple

integration where solutions to the uniform load within a

circle and even a triangle can be exactly found (i.e. Li and

Berger 2001). On the other hand, the half-space materials

were extended to the case of transverse isotropy with different

loadings and even with material layering (see Wang et al 2005,

Hanson 1999, Ding et al 2006, Yue et al 2005).

Since the work by Willis (1966, 1967) and Barnett and

Lothe (1975), surface loading over a general anisotropic
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elastic half-space has received a great deal of attention

in the mechanics community due to its connection to

indentation (Yu 2001) and inversion of material properties of

solids. Representative works in this new direction are those

by Vlassak and Nix (1993, 1994), Gao and Pharr (2007),

Wang et al (2008), Chen et al (2010), Chu et al (2011).
The magnetoelectroelastic (MEE) material belongs to

the category of multi-phase materials where different phases

within the materials can interact with each other for the

best output (Nan et al 2008). It is particularly important for

the energy conversion among the mechanical, electric and

magnetic ones, and thus it has potential application in energy

harvesting using this type of material (e.g. Pan and Wang

2009, Wang et al 2010).
This paper is organized as follows: in section 2, we

present the basic equations and describe the problem. In

section 3, we derive the solution in the Fourier-transformed

domain. The physical-domain solutions are given in section 4.

Numerical results are presented in section 5, and conclusions

are given in section 6.

2. Basic equations and problem description

Under the static deformation, the governing equations for a

linear, anisotropic MEE solid can be summarized in terms of

the extended notations below (Pan 2002).
The equilibrium equations without internal source can be

recast into

σiJ,i = 0. (1)

In this and other equations, a subscript comma denotes

the partial differentiation and a repeated lower-case (upper-

case) index takes the summation from 1 to 3 (5). Also,

in equation (1) the extended stresses are defined as

σiJ =

⎧⎪⎨
⎪⎩

σij J = j = 1, 2, 3

Di J = 4

Bi J = 5

(2)

with σij, Di and Bi being, respectively, the stress, electric

displacement and magnetic induction.
The individual constitutive relation as well as the

extended one can be written as

σij = cijlmγlm − ekijEk − qkijHk

Di = eijkγjk + εijEj + αijHj

Bi = qijkγjk + αjiEj + μijHj

(3a)

σiJ = ciJKlγKl (3b)

where cijlm, eijk, qijk and αij are, respectively, the elastic, piezo-

electric, piezomagnetic and magnetoelectric coefficients, and

εij and μij are, respectively, the dielectric permittivities and

magnetic permeabilities. It should be noted that, in general,

the magnetoelectric coefficients αij are not symmetric. The

extended strains in equation (3b) are defined as

γIj =

⎧⎪⎨
⎪⎩

γij ≡ 1
2 (ui,j + uj,i) I = i = 1, 2, 3

−Ej ≡ φ,j I = 4

−Hj ≡ ψ,j I = 5

(4)

Figure 1. Sketch of an anisotropic MEE half-space subjected to
uniform surface loads within a circular area. Two types of loadings
are considered: uniform and indentation-type loads.

with γij, Ei and Hi being, respectively, the elastic strain,

electric field and magnetic field, and ui, φ and ψ being,

respectively, the elastic displacement, electric potential and

magnetic potential.

Comparing equations (3b)–(3a), we find that the extended

material coefficients in equation (3b) have the following

expression:

ciJKl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cijkl J, K = j, k = 1, 2, 3

elij J = j = 1, 2, 3; K = 4

eikl J = 4; K = k = 1, 2, 3

qlij J = j = 1, 2, 3; K = 5

qikl J = 5; K = k = 1, 2, 3

−αil/αli J = 4, K = 5/K = 4, J = 5

−εil J, K = 4

−μil J, K = 5.

(5)

We also introduce the extended displacement as

uI =

⎧⎪⎨
⎪⎩

ui I = i = 1, 2, 3

φ I = 4

ψ I = 5

(6)

and the extended traction as.

tJ = σiJni =

⎧⎪⎨
⎪⎩

σijni J = j = 1, 2, 3

Dini J = 4

Bini J = 5

(7)

where ni is the normal vector of a prescribed plane.

We assume that the anisotropic MEE half-space is

subjected to a general traction on the surface. The loading is

applied over a circular area with a radius r = R. The center

of the circular area is denoted as O. The Cartesian coordinate

system is introduced to describe the problem. We let the x1Ox2

plane be the surface of the half-space. The half-space occupies

the domain x3 ≥ 0, see figure 1. We consider two types of

surface loadings as listed below. That is, on the surface x3 = 0,
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we have (for q = 0 and 1/2)

tJ =
{

t0J/[1 − (r/R)2]q; r ≤ R

0; r > R.
(8)

It is clear that q = 0 corresponds to a uniform load and the

case q = 1/2 corresponds to the common indentation load

when the traction has only a vertical component (Gao and

Pharr 2007).

3. Fundamental solutions in the transformed
domain

We first briefly review the Fourier-domain solutions as they

are needed in the subsequent analysis. While the process is

straightforward, more details can be found in Ting (1996)

for the purely elastic solid and in Pan (2002) for the general

magnetoelectroelastic solid.

We define the following two-dimensional (2D) Fourier

transforms:

f̃ (k1, k2, x3) =
∫ ∫

f (x1, x2, x3)e
i(k1x1+k2x2) dx1 dx2 (9)

where i = √−1 is the imaginary unit. Therefore in the

transformed domain, equation (1) in terms of the extended

displacement becomes

CαIKβkαkβ ũK + i(CαIK3 + C3IKα)kα ũK,3

− C3IK3ũK,33 = 0 (10)

where α, β = 1, 2. We now introduce the polar coordinates

(η, θ) which are related to the Fourier variables (k1, k2) as⎡
⎢⎣

k1

k2

0

⎤
⎥⎦ = ηm, m =

⎡
⎢⎣

m1

m2

0

⎤
⎥⎦ =

⎡
⎢⎣

cos θ

sin θ

0

⎤
⎥⎦ ,

n =
⎡
⎢⎣

0

0

1

⎤
⎥⎦

(11)

where m and n are the two normal vectors which enter into

the Stroh formalism. The general solution of equation (10)

can then be expressed as

ũ(k1, k2, x3) = ae−ipηz (12)

with p and a satisfying the following extended Stroh

eigenrelation:

[Q + p(R + Rt) + p2T]a = 0 (13)

where the superscript t denotes the matrix transpose and

QIK = CjIKsmjms, RIK = CjIKsmjns,

TIK = CjIKsnjns.
(14)

We introduce (Ting 1996)

b = (Rt + pT)a = −1

p
(Q + pR)a (15)

where the new Stroh vector b is actually related to the

extended traction (as in equation (20) below). Then the

quadratic Stroh eigenrelation (13) can be changed into the

following linear Stroh eigenrelation:

[
N1 N2

N3 NT
1

] [
a

b

]
= p

[
a

b

]
(16)

where

N1 = −T−1Rt, N2 = T−1,

N3 = RT−1Rt − Q.
(17)

Equation (16) is the extended MEE Stroh eigenrelation

in the oblique plane spanned by m and n defined in

equations (11). We point out that the eigenvalues of

equation (16) are either complex or purely imaginary (Ting

1996). Once the eigenvalue problem is solved, the extended

displacements in the Fourier-transformed domain are then

obtained from equation (12).

In order to find the extended stresses in the Fourier-

transformed domain, we start with the physical-domain

relation. In the physical domain, the extended traction vector

t on the x3 = constant plane and the extended in-plane stress

vector s are related to the extended displacements as

t = (σ31, σ32, σ33, D3, B3)
t

= (C31KluK,l, C32KluK,l, C33KluK,l, C34KluK,l,

C35KluK,l)
t (18)

s ≡ (σ11, σ12, σ22, D1, D2, B1, B2)
t

= (C11KluK,l, C12KluK,l, C22KluK,l, C14KluK,l,

C24KluK,l, C15KluK,l, C25KluK,l)
t. (19)

Taking the Fourier transform, we then find that the

transformed extended traction and in-plane stress vectors can

be expressed as

t̃ = −iηbe−ipηx3 (20)

s̃ = −iηce−ipηx3 (21)

with

c = Ha (22)

where the matrix H is defined by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C111αmα + pC1113 C112αmα + pC1123

C121αmα + pC1213 C122αmα + pC1223

C221αmα + pC2213 C222αmα + pC2223

C141αmα + pC1413 C142αmα + pC1423

C241αmα + pC2413 C242αmα + pC2423

C151αmα + pC1513 C152αmα + pC1523

C251αmα + pC2513 C252αmα + pC2523

3
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C113αmα + pC1133 C114αmα + pC1143

C123αmα + pC1233 C124αmα + pC1243

C223αmα + pC2233 C224αmα + pC2243

C143αmα + pC1433 C144αmα + pC1443

C243αmα + pC2433 C244αmα + pC2443

C153αmα + pC1533 C154αmα + pC1543

C253αmα + pC2533 C254αmα + pC2543

C115αmα + pC1153

C125αmα + pC1253

C225αmα + pC2253

C145αmα + pC1453

C245αmα + pC2453

C155αmα + pC1553

C255αmα + pC2553

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

with α = 1, 2.

Since the eigenvalues cannot be real (Ting 1996), we let

pI, aI, and bI (I = 1–5) be the eigenvalues and the associated

eigenvectors, with the following arrangement:

Im(pJ) > 0, pJ+5 = p̄J, aJ+5 = āJ,

bJ+5 = b̄J (J = 1, 2, 3, 4, 5)

A = [a1, a2, a3, a4, a5], B = [b1, b2, b3, b4, b5]
C = [c1, c2, c3, c4, c5, c6, c7].

(24)

In equations (24), Im stands for the imaginary part and the

overbar denotes the complex conjugate. The general solutions

in the transformed domain can be obtained by superposing the

ten eigensolutions of equation (16), that is

ũ(k1, k2, x3) = iη−1Ā〈e−ip̄∗ηx3〉q̄ + iη−1A〈e−ip∗ηx3〉q′

t̃(k1, k2, x3) = B̄〈e−ip̄∗ηx3〉q̄ + B〈e−ip∗ηx3〉q′

s̃(k1, k2, x3) = C̄〈e−ip̄∗ηx3〉q̄ + C〈e−ip∗ηx3〉q′
(25)

where q̄ and q′ are two arbitrary complex vectors which can

be determined by the boundary conditions on the surface and

the radiation condition at infinity. Also in equations (25), the

diagonal matrix is defined as

〈e−ip∗ηx3〉
= diag[e−ip1ηx3 , e−ip2ηx3 , e−ip3ηx3 , e−ip4ηx3 , e−ip5ηx3 ]. (26)

It is noteworthy that, besides their obvious dependence on

the material properties, the vectors q̄ and q′, and the Stroh

eigenvalues pJ and matrices A, B, C are also functions of

the unit vector m. It is further noted that, due to the special

arrangement on the eigenvalues pJ in equations (24), the

general solutions associated with the first terms on the

right-hand side of (25) are finite in the half-space x3 > 0 and

the second terms are finite in the half-space x3 < 0. Thus, in

the present half-space occupying x3 > 0, only the first terms

on the right-hand side of (25) should be included. Specifically,

we have

ũ(k1, k2, x3) = iη−1Ā〈e−ip̄∗ηx3〉q̄
t̃(k1, k2, x3) = B̄〈e−ip̄∗ηx3〉q̄
s̃(k1, k2, x3) = C̄〈e−ip̄∗ηx3〉q̄.

(27)

In the following, the boundary conditions are introduced

to determine the unknown vector q̄. On the surface x3 = 0, the

expression for the transformed extended vector becomes

t̃(k1, k2, 0) = B̄q̄. (28)

Thus, the unknown vector can be solved as

q̄ = (B̄)−1 t̃(k1, k2, 0). (29)

We assume that the region of the traction loadings is

a circle. To handle the double infinite integral, the polar

coordinate transform will be employed so that the infinite

integral with respect to the radial variable can be performed

exactly and the solution in the physical domain can be

obtained in terms of the regular line integrals over [0, π].
Below, we first present the general relation between the

Fourier and Hankel transforms, and then, for the two loading

cases, we derive the exact closed-form expressions in the

transformed domain.

3.1. A general relation between the Fourier and Hankel
transforms

For a point (r, ψ) in the polar coordinate system within

the horizontal (x1, x2) plane, it can be transformed to the

Cartesian coordinates as

x1 = r cos ψ, x2 = r sin ψ. (30)

Also from equations (11), we have

k1 = η cos θ, k2 = η sin θ. (31)

We now look at a 2D function f (x1, x2) in the horizontal

(x1, x2) plane. Utilizing equations (30) and (31), we find that

its 2D Fourier transform can be written as

f̃ (k1, k2) =
∫ ∞

0

r dr
∫ 2π

0

f (r, ψ)eiηr cos(ψ−θ) dψ. (32)

We further assume that this function f (x1, x2) can be

expanded in terms of a multipole series as

f (x1, x2) ≡ f (r, ψ) =
∞∑

m=−∞
fm(r)eimψ. (33)

Let φ = ψ − θ , we then have

f̃ (k1, k2) =
∑

m

∫ ∞

0

r dr
∫ 2π

0

fm(r)eimψeiηr cos(ψ−θ) dψ

=
∑

m
eimθ

∫ ∞

0

r drfm(r)
∫ 2π

0

eimφeiηr cos φ dφ

= 2π
∑

m
imeimθ

∫ ∞

0

fm(r)Jm(ηr)r dr (34)
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where Jm(ηr) is the first-kind Bessel function of order m.

Equation ((34)) provides the 2D Fourier transform result

when the function f (x1, x2) is expanded as a multipole

series equation (33).

3.2. Double Fourier transforms of the two types of surface
loadings

Applying equation (34) to the uniform and indentation

loadings, we then have the following exact closed-form

expressions for the extended traction vectors applied on the

surface.

(1) When q = 0 (uniform loading case)

t̃(k1, k2, 0) = 2π

∫ ∞

0

t(r)J0(ηr)r dr

= 2π t0
∫ R

0

J0(ηr)r dr = 2πR
J1(ηR)

η
t0. (35)

(2) When q = 1/2 (indentation loading case)

t̃(k1, k2, 0) = 2π

∫ ∞

0

t(r)J0(ηr)r dr

= 2π t0
∫ R

0

J0(ηr)r

[1 − (r/R)2]1/2
dr = 2πR

sin(ηR)

η
t0.

(36)

4. Fundamental solutions in the physical domain

Having derived the general solution in the transformed

domain, we can apply the inverse Fourier transform

to equation (27) to obtain the solutions in the physical domain.

We discuss the two types of loadings separately.

4.1. Uniform traction

For a uniform traction t0 applied within the circle r = R on the

surface of the half-space, the solution in the physical domain

can be expressed as⎡
⎢⎣

u(x1, x2, x3)

t(x1, x2, x3)

s(x1, x2, x3)

⎤
⎥⎦ = 1

2π

∫ 2π

0

dθ

∫ ∞

0

⎡
⎢⎣

iη−1Ā

B̄

C̄

⎤
⎥⎦ 〈e−ip̄∗ηx3〉

× J1(ηR)e−iη(x1 cos θ+x2 sin θ)R
(
B̄

)−1t0 dη. (37)

Or, equivalently, equation (37) can be rewritten as

u(x1, x2, x3) = i

π

∫ π

0

Ā〈Q1(x1, x2, x3)〉
(
B̄

)−1t0 dθ

t(x1, x2, x3) = 1

π

∫ π

0

B̄〈Q2(x1, x2, x3)〉
(
B̄

)−1t0 dθ

s(x1, x2, x3) = 1

π

∫ π

0

C̄〈Q2(x1, x2, x3)〉
(
B̄

)−1t0 dθ

(38)

where the periodic condition has been used to reduce the

integral in the interval from [0, 2π] to [0, π], and the two

diagonal matrices are defined as

〈Q1(x1, x2, x3)〉 =
∫ ∞

0

〈e−ip̄∗ηx3〉e−iη(x1 cos θ+x2 sin θ)

× RJ1(ηR)η−1 dη

〈Q2(x1, x2, x3)〉 =
∫ ∞

0

〈e−ip̄∗ηx3〉e−iη(x1 cos θ+x2 sin θ)

× RJ1(ηR) dη.

(39)

Using the following results (Watson 1996)∫ ∞

0

e−atJ1(bt)t−1 dt =
√

a2 + b2 − a

b
[Re(a) > 0, Im(b) = 0]∫ ∞

0

e−atJ1(bt) dt =
√

a2 + b2 − a

b
√

a2 + b2

[Re(a) > 0, Im(b) = 0]

(40)

exact closed-form expressions of the diagonal matrices

in equation (39) can be obtained as

〈Q1(x1, x2, x3)〉 =
〈√

R2 − (x1 cos θ + x2 sin θ + x3p̄∗)2

− i(x1 cos θ + x2 sin θ + x3p̄∗)〉
〈Q2(x1, x2, x3)〉 =

〈(√
R2 − (x1 cos θ + x2 sin θ + x3p̄∗)2

− i(x1 cos θ + x2 sin θ + x3p̄∗))

×
(√

R2 − (x1 cos θ + x2 sin θ + x3p̄∗)2

)−1
〉

.

(41)

On the surface x3 = 0 of the half-space, these two

diagonal matrices are matrices with a proportional factor, as

given below:

〈Q1(x1, x2)〉 =
[√

R2 − (x1 cos θ + x2 sin θ)2

− i(x1 cos θ + x2 sin θ)] I

〈Q2(x1, x2)〉 =
[(√

R2 − (x1 cos θ + x2 sin θ)2

− i(x1 cos θ + x2 sin θ))

× (
√

R2 − (x1 cos θ + x2 sin θ)2)−1
]

I

(42)

where I is the 5 × 5 identity matrix.
It is observed from equations (38) and (42) that, while

the integrand for the extended displacements are regular, the

one for the extended stresses on the surface has two weak and

integrable singularities located at R±(x1 cos θ +x2 sin θ) = 0.

4.2. Indentation-type traction

Similarly, for the indentation-type traction within the circle

r = R on the surface of the half-space, the solution in the

physical domain is expressed as⎡
⎢⎣

u(x1, x2, x3)

t(x1, x2, x3)

s(x1, x2, x3)

⎤
⎥⎦ = 1

2π

∫ 2π

0

dθ

∫ ∞

0

⎡
⎢⎣

iη−1Ā

B̄

C̄

⎤
⎥⎦

× 〈e−ip̄∗ηx3〉 sin(ηR)e−iη(x1 cos θ+x2 sin θ)R(B̄)−1t0 dη. (43)

5
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Equation (43) can be recast as

u(x1, x2, x3) = i

π

∫ π

0

Ā〈P1(x1, x2, x3)〉
(
B̄

)−1t0 dθ

t(x1, x2, x3) = 1

π

∫ π

0

B̄〈P2(x1, x2, x3)〉
(
B̄

)−1t0 dθ

s(x1, x2, x3) = 1

π

∫ π

0

C̄〈P2(x1, x2, x3)〉
(
B̄

)−1t0 dθ

(44)

where the two diagonal matrices are defined as

〈P1(x1, x2, x3)〉 =
∫ ∞

0

〈e−ip̄∗ηx3〉
× e−iη(x1 cos θ+x2 sin θ)R sin(ηR)η−1 dη

〈P2(x1, x2, x3)〉 =
∫ ∞

0

〈e−ip̄∗ηx3〉
× e−iη(x1 cos θ+x2 sin θ)R sin(ηR) dη.

(45)

Noticing that (Watson 1996)∫ ∞

0

e−at sin(bt)t−1 dt = arc cot
(a

b

)
[Re(a) > 0, Im(b) = 0]∫ ∞

0

e−at sin(bt) dt = b

a2 + b2

[Re(a) > 0, Im(b) = 0]

(46)

equation (45) can be rewritten simply as

〈P1(x1, x2, x3)〉 =
〈
Rarc cot

i(x1 cos θ + x2 sin θ + x3p̄∗)
R

〉

〈P2(x1, x2, x3)〉 =
〈

R2

R2 − (x1 cos θ + x2 sin θ + x3p̄∗)2

〉
.

(47)

On the surface x3 = 0, these two diagonal matrices are

reduced to

〈P1(x1, x2)〉 =
[

Rarc cot
i(x1 cos θ + x2 sin θ)

R

]
I

〈P2(x1, x2)〉 =
[

R2

R2 − (x1 cos θ + x2 sin θ)2

]
I.

(48)

Similar to the uniform loading case, it is observed

that the integrand for the extended displacements due to

the indentation-type load is regular. However, the integrand

associated with the extended stresses on the surface due to

the indentation-type load has a high-order singularity, actually

the Cauchy-type singularity, at R ± (x1 cos θ + x2 sin θ) = 0.

Such singularities can be easily treated using various existing

integral approaches based on the Cauchy principal value.

5. Numerical examples

We have first checked our formulation for the transversely

isotropic BaTiO3 case with the poling axis in the vertical

direction of the half-space and compared our numerical results

to those in Chu et al (2011). It shows that our results are the

same as those in Chu et al (2011) under a uniform vertical

load within a circle over the half-space.

Figure 2. Geometric relation between the global (x1, x2, x3) and
local (y1,y2, y3) coordinates.

We now use the 50% MEE transversely isotropic material

data by Xue et al (2011) (see the appendix) and rotate this

local coordinate system ((y1y2y3) with y3 axis parallel to the

poling axis) with respect to the global (x1x2x3) coordinates as

shown in figure 2 by the following transform:⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣

− sin α cos β cos α sin α sin β

− cos α cos β − sin α cos α sin β

sin β 0 cos β

⎤
⎥⎦

⎡
⎢⎣

y1

y2

y3

⎤
⎥⎦ . (49)

The transform matrix between these two systems and

the corresponding global material matrices in (x1x2x3)

coordinates for α = 60◦ and β = 45◦ degrees are given in

the appendix. For easy presentation of the numerical results

below, the global coordinates (x1x2x3) are denoted by (x, y, z).
For loading within the circle of r = R (=1 m),

numerical results are presented for the following examples:

a uniform horizontal load in the x direction (q = 0 and

t = (1, 0, 0, 0, 0) MPa), a vertical load (q = 0 and t =
(0, 0, 1, 0, 0) MPa) and an indentation-type vertical load (q =
1/2 and t03 = 1 MPa). The following quantities are used

to show the response: the magnitude of the whole elastic

displacement u, the electric potential φ and magnetic potential

ψ , the hydrostatic stress σh, the effective stress σe, the

magnitude of the electric displacement D and the magnitude

of the magnetic induction B. The definitions for u, σh, σe, D
and B are

u =
√

u2
x + u2

y + u2
z ; σh = σxx + σyy + σzz

3
;

σe = ( 1
2 [(σxx − σyy)

2 + (σyy − σzz)
2 + (σzz − σxx)

2]
+ 3(σ 2

xy + σ 2
yz + σ 2

xz))
1/2

D =
√

D2
x + D2

y + D2
z ; B =

√
B2

x + B2
y + B2

z .

(50)

Under the uniform horizontal load in the x direction

within the circle of r = R (R = 1 m), figures 3(a)–(c) show

6
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(a)

(b)

(c)

φ

Figure 3. Contours of the elastic displacement u (in μm = 10−6 m)
in (a), electric potential φ (in kV = 103 V) in (b) and magnetic
potential ψ (in V s m−1 = A) in (c), in the plane y = 0, induced by a
uniform horizontal load in the x direction (with density equals
1 MPa = 106 Pa) within the circle of R = 1 m on the surface.

(a)

(b)

Figure 4. Contours of the hydrostatic stress σh (in MPa) in (a) and
effective stress σe (in MPa) in (b), in the plane y = 0, induced by a
uniform horizontal load in the x direction (with density equals
1 MPa) within the circle of R = 1 m on the surface.

the magnitude of the elastic displacement, and the electric

and magnetic potential in the vertical y = 0 plane within the

domain of x < 2.5R and z < 2.5R. While figures 4(a) and (b)

show the corresponding results of the hydrostatic and effective

stresses in this region, figures 5(a) and (b) are the magnitude

of the electric displacement and magnetic induction. It is

noticed that the pattern of the elastic displacement and

electric/magnetic potentials are very similar: all reach their

maximum magnitude at the center of the surface (the center

of the circle), with their maximum values being 16.6 μm,

−9.3 kV and −6.6 V s m−1, respectively, for the elastic

displacement, electric potential and magnetic potential. While

not shown here, we noticed that, for this given half-space

material and surface loading, the magnitude of ux is about

one order larger than uz, and uz in turn is about one

order larger than uy. As such, the magnitude of the whole

displacement is nearly the same as that of its component ux. It

7
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(a)

(b)

Figure 5. Contours of the electric displacement D (in μC m−2) in
(a) and magnetic induction B (in mT = 10−3 T) in (b), in the plane
y = 0, induced by a uniform horizontal load in the x direction (with
density equals 1 MPa) within the circle of R = 1 m on the surface.

is observed from figures 4(a) and (b) that the distributions of

the hydrostatic and effective stresses are different than those

of the elastic displacement and electric/magnetic potential.

More specifically, the field concentration for the former case

is now at x = R, i.e. on the edge of the circular loading, with

the concentration being 1.3 and 2.8 MPa, respectively, for the

hydrostatic and effective stresses. The field concentration is

also at the same edge location for both electric displacement

and magnetic induction as shown in figures 5(a) and (b), with

their maxima being respectively 141 μC m−2 and 6.2 mT.

Furthermore, the contour shapes of the electric displacement

and magnetic induction are very similar to each other.

Figures 6(a)–(c) are the contours of the magnitude of

the total elastic displacement, and electric and magnetic

potentials under a uniform vertical load. Compared to the

corresponding horizontal loading case, it is noticed that not

(a)

(b)

(c)

φ

Figure 6. Contours of the elastic displacement u (in μm) in (a),
electric potential φ (in kV) in (b) and magnetic potential ψ (in
V s m−1) in (c), in the plane y = 0, induced by a uniform vertical
load in the z direction (with density equals 1 MPa) within the circle
of R = 1 m on the surface.

8
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(a)

(b)

Figure 7. Contours of the hydrostatic stress σh (in MPa) in (a) and
effective stress σe (in MPa) in (b), in the plane y = 0, induced by a
uniform vertical load in the z direction (with density equals 1 MPa)
within the circle of R = 1 m on the surface.

only the contour shapes are different but also the field

magnitudes are different. For instance, the magnitude of the

elastic displacement under vertical loading is smaller than

that under the horizontal loading (13.0 μm for vertical load

versus 16.6 μm for horizontal load). It is further noticed

that, under a uniform vertical load, the magnitude of uz is

about one order larger than ux, and ux in turn is about one

order larger than uy. Compared with figures 6(b) and (c),

we further notice that the contours of electric and magnetic

potentials are different: while the electric potential reaches its

maximum value −8.6 kV at x = 0.5 m on the surface, the

maximum value for the magnetic potential 9.4 V s m−1 is

located at x = 0.2 m on the surface. While figures 7(a) and (b)

show the hydrostatic and effective stresses, the corresponding

electric displacement and magnetic induction are shown in

figures 8(a) and (b). It is noted from figure 7(a) that the

(a)

(b)

Figure 8. Contours of the electric displacement D (in μC m−2) in
(a) and magnetic induction B (in mT) in (b), in the plane y = 0,
induced by a uniform vertical load in the z direction (with density
equals 1 MPa) within the circle of R = 1 m on the surface.

hydrostatic stress is constant immediately under the circular

loading, implying that the three normal stresses are all equal

to 1 MPa there. (It has been checked to be true by looking

at these three components.) It is also observed that the

contours of the effective stress are different to those of the

hydrostatic stress, where the former has a singularity on the

edge x = R and a concentration of 0.6 MPa in the center at

z = 0.65 m. The electric displacement and magnetic induction

in figures 8(a) and (b) are all very different. For instance,

the electric displacement has two concentrations, at 9.8 and

73.8 μC m−2 located at (x, z) = (0.5, 0.05) and (x, z) =
(1.05, 0), and the magnetic induction has concentrations at

2.0, 1.26, 1.23 and 0.8 mT located at (x, z) = (0, 0), (x, z) =
(1, 0), (x, z) = (0.6, 0.5) and (x, z) = (0.8, 0.1).

The field distributions by an indentation-type surface load

are shown in figures 9–11. It is observed that, similar to

9
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(a)

(b)

(c)

φ

Figure 9. Contours of the elastic displacement u (in μm) in (a),
electric potential φ (in kV) in (b) and magnetic potential ψ (in
V s m−1) in (c), in the plane y = 0, induced by an indentation-type
vertical load in the z direction (with t0

3 equals 1 MPa) within the
circle of R = 1 m on the surface.

(a)

(b)

Figure 10. Contours of the hydrostatic stress σh (in MPa) in (a) and
effective stress σe (in MPa) in (b), in the plane y = 0, induced by an
indentation-type vertical load in the z direction (with t0

3 equals
1 MPa) within the circle of R = 1 m on the surface.

the uniform vertical loading case, the magnitude of the three

elastic displacement components also follows about the same

trend: the magnitude of uz is about one order larger than ux,

and ux in turn is about one order larger than uy. However,

for the indentation case, the magnitude of the displacement

is larger than that for the uniform vertical load case, and also

the displacement component uz is observed to be constant

immediately under the circular indenter, a well-known feature

in flat-end circular indentation. Figures 9(b) and (c) show

that the electric and magnetic potentials reach their maximum

values on the surface at x = 1 m (−16.5 kV for electric

potential and −16.3 V s m−1 for magnetic potential).

Comparing figures 10(a) and (b), we observe their complete

different contour features. In particular, while the hydrostatic

stress shows only one concentration at x = R (R = 1 m), the

effective stress has two concentrations: one minimum at x = 0

with value 0.13 MPa and one maximum at x = R with value

10
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(a)

(b)

Figure 11. Contours of the electric displacement D (in μC m−2) in
(a) and magnetic induction B (in mT) in (b), in the plane y = 0,
induced by an indentation-type vertical load in the z direction (with
t0
3 equals 1 MPa) within the circle of R = 1 m on the surface.

2.6 MPa. The electric displacement and magnetic induction

under indentation load also show interesting features, which

are different than the uniform vertical loading case. In

particular, the magnitudes of the electric displacement under

indentation are about three times larger than those due to the

uniform vertical load.

6. Conclusions

An analytical and rigorous solution is presented for the

circular surface loading over an anisotropic magnetoelectroe-

lastic half-space. The solution is expressed in terms of the

line integral over [0, π], with the integrand being the Stroh

eigenvalues and eigenvectors. Under uniform horizontal and

vertical loads and vertical indentation, the surface response

is also derived where the involved singularity within the

integrand is identified as integrable. The numerical results not

only show some interesting features associated with different

surface loads, but also could serve as benchmarks for future

numerical methods where indentation research is involved.
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Appendix

(1) The local material coefficients for the BaTiO3–CoFe2O4

MEE composite with 50% of BaTiO3, or called 50%MEE

where the poling axis is along the third axis.

(1) Elastic constants

[c] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

225 125 124 0 0 0

225 124 0 0 0

216 0 0 0

44 0 0

symm. 44 0

50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(109 N m−2).

(2) Piezoelectric constants

[e] =
⎡
⎢⎣

0 0 0 0 5.8 0

0 0 0 5.8 0 0

−2.2 −2.2 9.3 0 0 0

⎤
⎥⎦ (C m−2).

(3) Dielectric permeability coefficients

[ε] =
⎡
⎢⎣

5.64 0 0

0 5.64 0

0 0 6.35

⎤
⎥⎦ (10−9 C V−1 m−1).

(4) Piezomagnetic constants

[q] =
⎡
⎢⎣

0 0 0 0 275 0

0 0 0 275 0 0

290.2 290.2 350 0 0 0

⎤
⎥⎦ (N A−1 m−1).

(5) Magnetoelectric coefficients α(i, j) = 0 (for i, j = 1, 3) (in

N s V−1 C−1)

(6) Magnetic permeability coefficients

[μ] =
⎡
⎢⎣

297 0 0

0 297 0

0 0 83.5

⎤
⎥⎦ (10−6 N s2 C−2).

(2) The global material property of 50% MEE (with

rotation angles α = 60◦, β = 45◦).

For this case, the global and local coordinate transform

is given by the two orientation angles in equation (49). For
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fixed α = 60◦ and β = 45◦, we have the following coordinate

transform matrix and global material matrices.

(1) Coordinate transform matrix⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣

−0.61 0.50 0.61

−0.35 −0.87 0.35

0.71 0 0.71

⎤
⎥⎦

⎡
⎢⎣

y1

y2

y3

⎤
⎥⎦ .

(2) Elastic constants

[c] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

217.64 125.3 127.31 1.34 −2.87 −1.43

222.02 125.44 −2.72 0.49 −2.35

216.25 −1.13 −1.95 1.62

47.31 0.54 −1.68

symm. 47.94 0.09

47.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

× (109 N m−2).

(3) Piezoelectric constants

[e] =
⎡
⎢⎣

5.73 −1.35 −1.38 −0.02 4.07 2.04

−0.79 3.32 −0.80 4.09 −0.02 3.54

−1.58 −1.56 6.61 2.03 3.52 −0.02

⎤
⎥⎦

× (C m−2).

(4) Dielectric permeability coefficients

[ε] =

⎡
⎢⎢⎢⎣

6.00 0 0.35

0 5.64 0

0.35 0 6.00

⎤
⎥⎥⎥⎦ (10−9 C V−1 m−1).

(5) Piezomagnetic constants

[q] =
⎡
⎢⎣

401.95 140.19 27.62 −75.05 64.47 32.24

37.61 275.39 15.95 151.13 −75.05 130.88

75.22 161.87 420.8 10.57 18.31 −75.05

⎤
⎥⎦

× (N A−1 m−1).

(6) Magnetoelectric coefficients α(i, j) = 0 (for i, j = 1, 3) (in

N s V−1 C−1).

(7) Magnetic permeability coefficients

[μ] =
⎡
⎢⎣

190.25 0 −106.75

0 297 0

−106.75 0 190.25

⎤
⎥⎦ (10−6 N s2 C−2).
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