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The conventional displacement discontinuity method is extended to study a vertical crack under
electrically impermeable condition, running parallel to the poling direction and normal to the plane of
isotropy in three-dimensional transversely isotropic piezoelectric media. The extended Green’s
functions specifically for extended point displacement discontinuities are derived based on the Green'’s
functions of extended point forces and the Somigliana identity. The hyper-singular displacement
discontinuity boundary integral equations are also derived. The asymptotical behavior near the crack
tips along the crack front is studied and the ordinary 1/2 singularity is obtained at the tips. The
extended field intensity factors are expressed in terms of the extended displacement discontinuity on
crack faces. Numerical results on the extended field intensity factors for a vertical square crack are
presented using the proposed extended displacement discontinuity method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to the coupling effects between mechanical and electric
properties, piezoelectric materials are finding more and more
applications in modern technological fields such as electronics,
lasers, supersonics, sensors, actuators, transducers and micro-
waves [1,2]. In practice, however, defects (such as inclusion, void/
crack, etc.) in such materials and related structures are unavoid-
able and these defects greatly affect the integrity and reliability of
the structures. For this reason, analysis of cracks in piezoelectric
materials has been always important [3-10].

For some piezoelectric materials, when temperature is higher
than the Curie point, spontaneous polarization phenomenon
occurs and the hysteresis loop of the polarization P versus the
electric field strength E also occurs; meanwhile, the formative
aligned electric dipoles remain in the material microstructure.
Therefore, the linear constitutive relationship is concerned with
the poling direction, and, thus, different poling directions affect
the material properties and fracture behavior. A conductive crack
(with the crack cavity filled with silver paint) with different
poling direction under purely electric loading was studied in
[11]. Results showed that the direction of the electric field and the
poling direction both could affect the fracture and breakdown
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resistance of piezoelectric materials. For an arbitrarily oriented
crack in a piezoelectric medium [12], the polarization direction
plays an important role in the fracture behavior of piezoelectric
materials. By carrying out a four-point bending test on a specimen
with cracks parallel, perpendicular and inclined to the poling
direction under both mechanical and electric field loadings,
Banks-Sills et al. [13] and Motola et al. [14] showed that neglect-
ing the piezoelectric effect in calculating stress intensity factors
may lead to errors. For a crack normal to the poling direction of a
two-dimensional (2D) ferroelectric ceramics [15], crack growth
can be retarded under electric and mechanical loadings. There are
numerous studies on cracks lying within the plane of isotropy in
three-dimensional (3D) transversely isotropic piezoelectric media
[16-26]. However, the corresponding problem where the cracks
are normal to the isotropic plane has never been investigated.
This motivates the work presented in this paper.

The displacement discontinuity boundary integral equation
method or boundary element method proposed by Crouch [27]
has been demonstrated to be a good framework in handling
fractures in elastic and piezoelectric media [6,19,22,25-28]. In the
boundary element method [28-34], an important role is played
by the Green’s function corresponding to a point force or
displacement discontinuity. In the present paper, the method
proposed by Zhao et al. [35] is extended to derive the extended
displacement discontinuity fundamental solutions for the case
where a crack is vertical to the isotropic plane and parallel to the
electric poling directions in a 3D transversely isotropic piezo-
electric medium. These fundamental solutions are then applied to
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obtain the boundary integral equations, and calculate the
extended field intensity factors of an arbitrarily vertical crack in
terms of the extended displacement discontinuity on the crack
face. The extended displacement discontinuity boundary element
method is also presented, and the finite element method is
further utilized to verify the accuracy of the developed method.

2. Basic equations

In the absence of the body force and electric charge, for a 3D
piezoelectric medium with the poling direction along the z-axis in
the Cartesian coordinates (x, y, z), the equilibrium equations, Eq.
(1a), the kinematic equations, Eq. (1b), and the constitutive
equations, Eq. (2), are given as [4,6]

0ijj=0, D;;=0, (1a)
&j=5uij+u), Ei=—q; (1b)
0ij = Cijri&xi—exiEr, (2a)
D; = eiéwi+ KixEx, (2b)

where o3, &5, D; and E; denote the stress, strain, electric displace-
ment and electric field strength, respectively; u; and ¢ are the
elastic displacements and electric potential, respectively; and G,
e;x and i stand, respectively, for the elastic, piezoelectric and
dielectric coefficients.

3. Boundary integral expressions of extended displacements

For a transversely isotropic piezoelectric infinite medium, we
again set up the Cartesian coordinate system oxyz such that the
plane of isotropy coincides with the oxy plane, and the poling
direction is along the z-direction. An arbitrarily-shaped vertical
crack S lies in the oyz plane, as shown in Fig. 1. The two faces of
the crack S are denoted by S and S, respectively. The outward

normal vectors of S* and S~ are respectively given by
{ni}s’ = {_1’0'0}- {ni}S’ = {],0,0} (3)

Then, making use of the extended point-force Green’s func-
tions [36] and the Somigliana identity for piezoelectric media
[37], the elastic displacements and the electric potential at any

Back crack face S~

Poling direction

Crack S is in 0yz plane

/

Front crack face S* y

oxy is the isotropic plane

X

Fig. 1. A transversely isotropic piezoelectric infinite medium with an arbitrarily-
shaped crack in the oyz plane.

internal point (x, y, z) can be expressed by the following integrals:

ui(x,y,2) = / [Pl + Q] il dS,

—p(x,y,2) = —/ (PPl + Q] dS, (4)
S+

where P,-Fj and Q,F are, respectively, the induced tractions and the
electric displacement boundary value on the crack surfaces when
a unit point force is applied in the ith direction; PJ'»3 and QP are
those corresponding to a unit point electric charge. In Eq. (4), lly;ll
and ll¢ll denote, respectively, the elastic displacement and electric
potential discontinuities across the crack face, defined as

Hu,—H = u,-(S*)fu,-(Sf),

ol =@(S™)—p(S7), ©)

which are called the extended displacement discontinuities.
Inserting the extended point-force Green’s functions [36] into

Eq. (4) yields the following explicit expressions for the elastic

displacement ((u, v, w)=(us, uz, us)=(uy uy, u,)) and electric

potential

1 2(— 2 YA
u= / { |:—2C66D4X< 5 = (’12 N}é) — (’13 %2 >
Js+ R« RR, RR,

3 . 2 2
XzDi<5§2C66<3~22x~3x~2>>]u
i1 \Ri RR; RIR; RR;
1 & 2 42 2x?
+C66(’7}’)|:D4R32D,‘<~2~3 ~2>:|1/|

2 i1 \RR; RR; RR

_p, (L =y -y
R4Rs  R3R4 Rif{i

3 2 2
+>°D; (L - x— —ﬁ) (i 1wl +a),—2I(pI)} dsm,c),  (6a)
i

' ¢ w2
= S D lul
-/S*Hm y)<,_z1 R?HGG; ( RR R3R RR2>>} !
13 2 4m-y)? 20-y)
|:C66X<D4R32Di<n~3 - ;73 Il

)
2 i1 \RR; RR; 3R

1

)(am Wil 4+ w4l pll)

1 1
+x(n y)ZD <R3~ R2R2>(w,1|w|+wlzqol)}dS(n,s)

i=1 i

(6b)

. 2
Gi—zi
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ZCssx(n—y)ZA L T ) i
RRi " R2R

i=1

XZR3 (a),llw+a),zl(pl)}d5(n,5) (60)

i=1"

¥ X ()
—p= / 26 B<~ ~)+ &8 S |y
{[ ; RiRi RPRi RR 21 R
2¢ x(n—y)ZB L +L vl
66 R3R RiZRZ

i=1 i

3
B;
—x Z ng (i1 IWl 4+ iy |<p|)} asm.,c). (6d)
=1
Eq. (6) indicates that the extended displacements at any internal
point (X, y, z) can be expressed in terms of the extended
displacement discontinuities across the surface of the vertical
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crack, where

zi=siz, gi=si¢ (i=1.23,9),
Ri= /X2 +1-y7 +(c—20),
Ri= @+ -9+ i~z —(Gi~2), %

and s; are the roots of the material characteristic equation, while
wjj, &, A, Bi and D; are material-related constants given in [32]. It
is noted that the constants D; are different to the electric
displacements defined in Egs. (1) and (2).

4. Green’s functions for extended displacement
discontinuities

We assume that the vertical crack S is of a square shape with
side length 2b=2d centered at the origin of the coordinate
system, as shown in Fig. 2. First, when the size of the crack
approaches zero, we then have the Green’s functions or the
fundamental solutions corresponding to a unit extended point
displacement discontinuity. Therefore, these Green’s functions
should satisfy the governing equations of piezoelectric media
subjected to the following conditions:

ll)iﬂl(q)./s.{Hull,HvH,HwH,HgoH}dS={1,0,0,0}, (8a)
ll)iir(l)/s.{l\ull,HUH,HWH,H(pH}dS:{0,1,0,0}, (8b)
ll)i%/s.{HuII,HvH,HwH,H(pH}dS: {0,0,1,0}, (80)
Igiiq‘(l)/s{l\ull,HvH,HWH,H(pH}dS: {0,0,0,1}. (8d)

Making use of the method in deriving the extended point-
displacement discontinuity Green’s functions [35], we obtain the
extended point-displacement discontinuity Green’s functions
satisfying Eqgs. (8a)-(8d) for the case where a crack is vertical to
the isotropic plane and parallel to the electric poling directions in
a 3D transversely isotropic piezoelectric medium in Appendix A.

Now we assume that there is a rectangular element S, of length
2b x 2d in the oyz plane centered at the origin with its sides parallel
to the axes of the coordinate system, as schematically shown in Fig. 2.
The uniformly distributed extended displacement discontinuities
luell, llvell, lwell and ligell are applied on the element. Integrating
the extended point-displacement discontinuity Green’s functions
given in Appendix A on the element, we can obtain the extended
Crouch fundamental solution due to the uniformly distributed
extended displacement discontinuities as given in Appendix B.

2b

y

d -
2d |

Fig. 2. Arectangular crack in the oyz plane centered at the origin of the coordinate
system.

5. Extended displacement discontinuity boundary integral
equations

Based on the Green’s functions for unit extended point
displacement discontinuities obtained in the previous section,
the boundary integral equations of the vertical crack of arbitrary
shape will be derived in this section and furthermore the nature
of the singularity of the extended stresses along the crack front
will be studied in the next section.

If the applied extended tractions on the crack faces satisfy

Pils+ =—Dils» O+ =—o|g-, i=1,2,30r xy.2, ©)

and in the absence of the body force and electric charge, by using
the Somigliana identity for a 3D piezoelectric medium [37] and
the boundary conditions in Eq. (9), we obtain

pi= [ ]+ 2" 1pnas,
w:/ PP+ Q' ol s, (10)
Js+

where (Py, €;) and (U, ®;) denotes, respectively, the extended
traction and the extended displacement due to a unit extended
point displacement discontinuity in the ith direction, and the
superscripts |U|| and |@| denote the Green's functions corre-
sponding to the displacement discontinuity and electric potential
discontinuity, respectively.

Substituting the displacement discontinuity Green'’s functions
obtained in the last section into Eq. (10), we obtain the extended
displacement discontinuity boundary integral equations for an
arbitrarily-shaped vertical crack

‘ 2 1 1
/ {4L‘1‘1 [(71 y)( +3—>— >
Js+ 2 r4 T, r4 Taly

- Z 2L’3(11—y)2< 2>

i=1 T

+ Z((5L12+2Ll3)T

i=1 lz

Z(Ll4+L15+2L16 +14 7) =
i=1

i y) i i Z)
+Z3L +Z3L s }IIuIdS_—px(yz),

i=1 i=1 i

" 4 2 3 8 4
L | —5— 50—y —Stoat 52
/{[( i ”( 7 o
2 1
+45 L —y)2< -+ ))}Ivl
; <I’1 1’11’13 rl.r,»
U] y) 3 4 4
+ - + == L3 Iwll 4+ L3 llepll
( o )< o ) ()

_ZZ(n—y)< ot 3~_)(L34|w|+L35(pn)}als_—py(yz)

i=1

(11a)

(11b)

' (s D) (2 3 3 )
/y{[(zm y)<r f§+r4r4> -y ( TR T ))Lzl
1

(L LIwl+LE gl

3
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i=1"1

(11¢)
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i=1"1

11d)

where
ri=\/(-y)* +(Gi—z)%
Fi=\ -y +(Gi-z)* +(ci—z) (=1,2,34), (12)

and the material-related constants L}, are given by
4 . .

L7y =DacesCo6,  Lip =DicssC1, Lis =DiCesCi2,

Lis=Diéict1,  Lis=Di&ic12, Ljg=(Aic13—-Bies1)CeeSi,

Ly; = (Aici3—Bies1)&isi,  Ly; = Diwjjces,

a z b

Gy

—

r

'

Fig. 3. (a) Local coordinate system at the crack tip of its lower front of the vertical
crack in the oyz plane of the oxyz system. (b) Local coordinate system at the crack
tip of its left front of the vertical crack in the oyz plane of the oxyz system.

where A,, Ay, A;, A, are coefficients to be evaluated at the origin o,
and oy, oy, o, o, are the so-called singular indices of the extended
displacements with values lying between (0,1).

Substituting Eq. (14) into Eq. (11), letting ¢ be sufficiently
small and taking the limit z— 0, and further making use of the
finite-part integral theory, we obtain the conditions for the
existence of a non-trivial solution

L3; = DyCppCaaSa,
L4; = DaCaayisa,
L3, = Dacesei5S4,
Lg; = Dse1swy;sa,

Of particular
discontinuity in

i
Ly, = ce6(C44D;si + CaaAi—e15By),

i
Ls; = w;j(C44D;s; + caaAi—e15By),

cotmoy = cotmoy, = cotmo, = cotmar, = 0. (15)
Therefore, we obtain the singular indices
Ox =0y =0z =0p =1/2. (16)

L5 = ces(e1sDisi +esAi+£11By),
Lh; = wy(e1sDisi +e1sAi+&11B). (13)

interesting is the fact that the displacement
the normal direction |u| appears only in Eq.

(11a). In other words, it is decoupled from the other extended
displacement discontinuities and dependent only on the normal
traction p,. On the other hand, the other three extended displace-
ment discontinuities ||v|, [w| and | ¢|| are clearly coupled in Egs.
(11b)-(11d). This feature is fundamentally different to that
associated with a horizontal crack (or a crack in the isotropic
plane [6,22]) where the displacement discontinuities |u| and |v||
on the crack faces are coupled, and the displacement disconti-
nuity |w| and the electric potential discontinuity |[¢| are
coupled. As such, it is important to investigate the fracture
mechanics of the vertical crack in a transversely isotropic
piezoelectric solid.

6. Singular behavior and field intensity factors

Knowing the singular behavior of fields near the crack tip and
calculating the field intensity factors are the key tasks in fracture
mechanics. Due to the complexity of the three-dimensional
problem, only the singular behaviors near some special points
are investigated in the present paper.

Consider the special point on the smooth portion of the crack
front I where z reaches the minimum value, we place a Cartesian
coordinate system oxyz such that the y-axis and z-axis are,
respectively, tangential and normal to I', while the x-axis is
normal to the crack plane S, as depicted in Fig. 3a.

We define the infinitesimal ¢ as the radius of a circle >
centered at point o on crack S as shown in Fig. 3a. Based on the
elastic fracture theory [38], the extended displacement near the
crack tip o can be obtained by superposing the extended in-plane
and anti-plane displacements. Therefore, at the neighborhood of
point o, the extended displacement discontinuities can be
expressed asymptotically as

lu =Ax)c™, [v]=Ay0)™, [w]=~A(0)c™, @] =Ap0)c™,

(14

Eq. (16) indicates that near the crack front, the field behaves the
same way as in the classical fracture mechanics with singularity
0(1/+/1), which is further identical to the singularity when the
crack is along the isotropy plane [6,22].

Substituting Eq. (16) into Eq. (14), and using Eq. (10), we
obtain the following extended stress components at point
(0,0,—p):

Oxx = k11Ax(0)T/ /P,
Oxy = —k12Ay(0)1/ /P,

3
i ; 1
O == [L51A0)+LnAg(0) 57/ /P,

i=1
3 . . 1
Dy=— Z[ngAz(o)+L‘72Aq,(o)] S—zn/f, a7
i=1 i
where

3
1. . )
ki1 = Z 57(2L32—L34—2L116 +Li7),

i=1%i

1
kiz =L} . (18)
3

Substituting Eqs. (17) and (14) into the definition of the field
intensity factors

K= /1115% \/21p0,x(0,0,—p),
KP = /l)i% \/21pDy(0,0,—p),
K= })i_r}é\/ﬁaxz(o,o.—p).
Kiy = 1im /270 04(0,0.-p), 19)

the extended field intensity factor at a crack tip along the
horizontal front of the vertical crack can be finally expressed in
terms of the extended displacement discontinuities as

KF = «/Znnlin(l)kn lull/vz,
zZ—

3 : :
KP = —V2znlim > s, lwl +L’72H(p\l]slz/ﬁ,
i i

i=1



1410 M. Zhao et al. / Engineering Analysis with Boundary Elements 36 (2012) 1406-1415

3

K =—vV2n nllmZL']HwH+L'1H(pH] /f
=1
Kb =—v2 nrlimkss v/ Vz. (20)

Similarly, for a crack tip along the left front of the vertical
crack as schematically shown in Fig. 3b, the extended field
intensity factors in terms of the extended displacement disconti-
nuities can be found as

KF = ¢2nnlilr6k21 lull//y,
y—>
KP = —«/ﬁnlirr(l)[kgg\\v\\ +ks3Iwll +kss3lll]/ /7,
ya
Kf = —«/Enling[kel Il +ksq Iwl +ksq loll]/ /7,
_y~>

K = —x/2nn;i£1(1)[k52\\vl\ + ks Wil +k3a | @111/ /7, 1)

where the material-related constants are given by

) ) 1
ko1 = *L11+Z[3L12 Lis— L'14+L’1572L’15];,
1

i=1

k31 = —L >+ Z L35. k3y = 1+ Z L71'
ki3 = lL62—|- Z L72. ks1 = 1+ Zl L34,
=S i=
ksp = —Lj, + 21 Ly, kss= —Lj,+ Z] Ls,,
= iz
kep = — L% + Zl Ly, keo=—L3;+ Zl Ly,
&= iz
kes= —L+ Z L22 (22)

171

Egs. (20) and (21) show that for a vertical crack, the mode |
stress intensity factor KIF is only related to the normal displace-
ment discontinuity |u|. It is further observed that, for the vertical
crack case, the electric displacement intensity factor KP and the
mode II stress intensity factor K} at the crack tip of the vertical
crack front depend on the displacement discontinuities ||w| and
,as well as on || v|. These features again demonstrates that the
relations between the extended field intensity factors and the
extended displacement discontinuities for a vertical crack are
remarkably different to the situation where cracks are located in
the plane of isotropy of the piezoelectric media [6,22].

7. Extended displacement discontinuity boundary element
method

Following Zhao et al. [35], an extended displacement disconti-
nuity boundary element approach is adapted to numerically
analyze the vertical crack behaviors in transversely isotropic
piezoelectric 3D media.

If the uniformly distributed extended displacement disconti-
nuities
rectangular element S, in the oyz plane, as schematically shown in
Fig. 2, the extended stress fields are given in Eq. (B1), which can
be rewritten in the following compact form:

4

Z i luf [

where Tﬁ are the Green’'s functions or the extended Crouch

fundamental solutions of the rectangular element, and ¢ = og,,

e e e _ Ne e _ q4€ e _ 1€ e __ e e __ e
G5 = 0%y, 05 =0y, 04 = D5, uf =8, u§ =8, u§ =ws, uf = ¢°.

ij=1-4 (23)

The domain of the crack is divided into N square elements. The
geometric centroid of the eth element is denoted by (ye, z.). From
the extended Crouch fundamental solution, the extended stresses
at the centroid of element g can be obtained by superposing the
contribution of all elements. Using the boundary conditions on
the crack faces, one obtain

ZZT Vg—Yeza—2) U | =@, q=12,...N, 24)

where ¢? are the applied extended loadings on the crack face.
Solving Eq. (24), we obtain the extended displacement dis-

continuities on the crack faces. With these, the extended field

intensity factors can be calculated by using Egs. (20) and (21).

8. Numerical results and discussion

We consider a square crack of side length 2a in an infinite
piezoelectric medium in the oyz plane. The material is BaTiO3
with the following coefficients:

€11 =166 x 10'°°Nm™2, ¢;3=7.7x10'"°'Nm2, c¢;3=7.8 x 10'°Nm2

€33=162 x 10°°Nm2, ¢4y =43 x 10'°Nm2,
€31 :—4.4Cm‘2, e33:18.6Cm‘2 e15:11.6Cm‘2
K11 =112 x 1071°C(Vm)™", K33 =126 x 107'°C(vm)~". (25)

Fig. 4 shows the variation of the elastic displacement discon-
tinuity |ul| at the crack center as a function of the uniform loading
P, applied to the crack surface, whilst Fig. 5 displays the variation
of the extended displacement discontinuities and ||| at
the crack center vs. the uniform surface loading D,. The results
show that there is only elastic displacement discontinuity |u||
under pure mechanical loading, whilst the extended displacement
discontinuities and ||¢| exist at the crack center under
the uniform electric loading Dy. These results also demonstrate
the special coupling behavior of the extended displacement
discontinuities in the boundary integral equations (11). In both
cases, other loads on the crack surface are assumed to be zero.
These results are calculated by the extended displacement dis-
continuity method using N=15 x 15 elements. It is observed from
these two figures that with only 225 constant elements, very
accurate results can be obtained as compared to the results using
the finite element software ANSYS (Figs. 4 and 5).

12
;r-\ L
o
- [ ]
Z‘; 10 A
= present paper °
2 ® finite element method
2 87 °
S
£ °
L
© o,
R
IS
[0}
3
a 27
L
=)

0 T T T T

0 2 4 6 8 10
P, (MPa)

Fig. 4. Variation of the displacement discontinuity |u| at the center of the square
crack with the applied mechanical load P, on the crack surface (other loads on the
crack surface are zero): present paper (via the extended displacement disconti-
nuity boundary element method) vs. finite element method.
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:‘:i; A A — A — ——t
£ A —A— AT
2 0.00 s—=—A—.
8
2
©
‘GE) -0.02
S
3
% 0044 ——— llwll/a, present paper
2 ' A llwll/a, finite element method M~
o lpll/(a*10%V/m), present paper 1
§ -0.06 ° llpll/(a*10°V/m), finite elememt method
Q ——— lIvll/a, present paper
i L] llvll/a, finite element method

-0.08 T T T T

0.00 0.02 0.04 0.06 0.08 0.10
D, (C/m?)

Fig. 5. Variation of the extended displacement discontinuities ||v|, [w| and |¢|
at the center of the square crack with the applied electric load Dy, on the crack
surface (other loads on the crack surface are zero): present paper (via the
extended displacement discontinuity boundary element method) vs. finite ele-
ment method.

1.0

Normalized intensity factor F,, Fy,

0.2 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

z/2a, y/2a

Fig. 6. Variation of the normalized mode I stress intensity factors along the crack
front parallel to z-axis (F;;) and y-axis (Fy,), under the mechanical load P,=10 MPa
on the crack surface (other loads on the crack surface are zero).

Fig. 6 shows the normalized mode I stress intensity factor F
along the crack front due to the uniform force Py applied on the
crack surface

K

Fi= ,
! Py/Ta

(26)

along the crack front, where the subscripts “z” and *“y” denote,
respectively, the crack front parallel to the z- and y-axis. It is
observed that, under this mechanical loading, the only nonzero
intensity factor along the crack fronts is F;, which is symmetrical
with respect to the midpoint of each side and reaches its
maximum value at the midpoint. Since the poling direction is
along the z-axis and vertical to y-axis, the stress intensity factor
along the crack front parallel to the y-axis is larger than that along
the crack front parallel to the z-axis.

Fig. 7a and b plot the nonzero extended normalized field
intensity factors Fp, F; and Fy; along the crack front parallel to
the y- and z-axis, respectively. The uniform shear load on the
crack surface is P,=10 MPa while other loads are assumed to
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Fig. 7. (a) Variation of the normalized extended field intensity factors along the
crack front parallel to y-axis, under the mechanical load P,=10 MPa on the crack
surface (other loads on the crack surface are zero). (b) Variation of the normalized
extended field intensity factors along the crack front parallel to z-axis, under the
mechanical load P,=10 MPa on the crack surface (other loads on the crack surface
are zero).

be zero. The extended field intensity factors are normalized by

Kp F Ky F Ky

Fp— Kb g _  Fy= 27
D PN "= b Jra 1 (27)

P,J/ma’

where y=K33/es3. Fig. 7a demonstrates that the extended normal-
ized field intensity factors Fp and F;; along the crack front parallel
to the y-axis are symmetrical, and Fy; is anti-symmetrical, with
respect to the middle point of the crack front. However, due to the
effect of the poling direction, these symmetric properties dis-
appear along the crack front parallel to the z-axis as shown in
Fig. 7b.

Fig. 8a and b show the nonzero extended normalized field
intensity factors Fp, F;; and Fy; along the crack fronts under the
mechanical shear loading P,=10 MPa while other loads are zero.
Similarly, the normalized field intensity factors are defined by

Ko K _ Ku

=P Fi=_——, Fu= .
xPy~/ma ! Py/ma . PyJ/ma

It is noticed from Fig. 8a that, along the crack front parallel to
the y-axis, Fy; is symmetrical, whilst Fp and Fj; are anti-symmetric.

Fp= (28)
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Fig. 8. (a) Variation of the normalized extended field intensity factors along the
crack front parallel to y-axis, under the mechanical load P,=10 MPa on the crack
surface (other loads on the crack surface are zero). (b) Variation of the normalized
extended field intensity factors along the crack front parallel to z-axis, under the
mechanical load P,=10 MPa on the crack surface (other loads on the crack surface
are zero).

On the other hand, along the crack front parallel to the z-axis,
these extended field intensity factors posses no symmetric
feature (Fig. 8b) due to the poling direction selected.

Fig. 9a and b plot the nonzero extended normalized field
intensity factors Fp, F; and Fy; along the crack fronts under the
electric loading Dy=0.1 C m~2 with the mechanical loads being
zero. These intensity factors are normalized by

Kp 2Kn F 2K 29)

Fp = , Fip= , =
D Dy+/Ta t Dy+/Ta

m= Dy/ma

It is observed that while along the crack front parallel to the y-
axis, these intensity factors exhibit either symmetric or anti-
symmetric behaviors (Fig. 9a), those along the crack front parallel
to the z-axis are not symmetric due to the poling direction chosen
(Fig. 9b).

9. Concluding remarks

The conventional displacement discontinuity method has been
extended to analyze vertical cracks in transversely isotropic
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Fig. 9. (a) Variation of the normalized extended field intensity factors along the
crack front parallel to y-axis, under the electric load Dy=0.1 C m~?2 on the crack
surface (other loads on the crack surface are zero). (b) Variation of the normalized
extended field intensity factors along the crack front parallel to z-axis, under the
electric load Dy=0.1 C m~2 on the crack surface (other loads on the crack surface
are zero).

piezoelectric 3D media. The Green’s functions or extended Crouch
fundamental solutions corresponding to the extended elastic
displacement discontinuities have been derived by making use
of the fundamental solutions of an extended point force and the
Somigliana identity. The hyper-singular displacement discontinu-
ity boundary integral equations and the extended field intensity
factors in terms of the extended displacement discontinuities on
the crack faces have been derived. For the special crack orientation
studied in this paper, the following conclusions can be drawn:

(1) Special coupling behavior has been found in the boundary
integral equations: the normal displacement discontinuity
|u| is decoupled from the other extended displacement
discontinuities, which is fundamentally different from that
for the crack in the isotropic plane.

(2) The singularity index near the vertical crack tip is still 1/2.
However, the expressions of the extended stress intensity
factor show the anisotropic property.

(3) The mode I stress intensity factor KIF is related only to the
displacement discontinuity or the mechanical loading in the
direction normal to the crack plane, whilst the other field
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intensity factors are coupled together, with their features
depending on the crack tip location and the poling direction.

The displacement discontinuity method has been coded to
calculate the extended displacement discontinuities on the crack
surface and the field intensity factors along the crack fronts. The
program has been validated by the commercial code ANSYS.
Numerical results have demonstrated further that the poling
direction (with respect to the crack surface) can significantly
influence the fracture mechanics behavior of the cracks in piezo-
electric 3D media.
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Appendix A. Green’s functions for extended unit point
displacement discontinuities

A.1. Green’s function satisfying Eq. (8a)

3 2 2
i 3 2x X
—x Y D; %_2(:66 — -3 =2 ) (Ala)
1 \K RR; R’R; RR;
1 1 1 1 1
2x2 2
v=-y D; +Ce6 D < — — - )) (A]b)
<,; 1 ? ; R R RR
1 X x 3 z
w=2ce > A —— |- A=, (Alc)
z—Zl (R,R, RiaRi R? 2) 1=Zl l IR?
=—2C66 B 7_7_7~ + > &iBi—, (Ald)
= \RiRi RR; R,»zRi2 =R

where

Ri=/x2+y2+22,
Ri=\/x2+y2+22+z (i=123,4). (A2)

A.2. Green’s function satisfying Eq. (8b)

1 & 2 4x2 2x2
U= —Cecy |:D4 ZDi <~22~33~2>} ) (A3a)
Ri = \RR RR RR
1 & 2 42 22
V= CeeX D4_3_ZDi<—~2_ 2y~3— 3y~2>:|, (A3b)
Ry =1 \RR; RMR; RIR;
2Ce6XY ZA < L + 1 ) (A3¢)
W= —4Ce6 o2
= \RR R
Q=2 xyZB ( L + ! ) (A3d)
66 - .
= \RRi RRY

A.3. Green'’s function satisfying Eq. (8c)

1 2 2 3 1 X2 X2
u= 7(041D4<—f“3v—~7y—>+Z%ﬂl‘(f*?* 2~2>'
R4R4 R4R4 R4R4 i=1 RiRi RR! Ri R5

(Ada)
1 1
Z w,ley< oF 2 2) (A4b)
i=1 i I
w=—X 23: @i (A4do)
=R
3
Z "B (A4d)

A.4. Green’s function satisfying Eq. (8d)

The Green’s functions satisfying Eq. (8d) can be obtained from
Eq. (A4) by simply replacing w;; by w;,.

Substituting the obtained extended displacements into the
constitutive equations (2), the extended stress can be obtained.

Appendix B. Extended Crouch fundamental solutions

When the uniformly distributed extended displacement dis-
continuities ¢|l, |w®| and ||¢¢| are applied on a rectan-
gular element S, of length 2bx2d in the oyz plane, as
schematically shown in Fig. 2, the extended Crouch fundamental
solution can be expressed as

= [451‘1 Qi+ D ((6L1,+2L13)Q5~2L15Q5

i=1

(L§4+L§5+2L§6)Q2+3L§5Q§+L§7Qg)} luell, (Bla)
3 N .
o5, = |L1:(-4Q1+3Q3-2Q1)-4 > L’“Q’l} el
i=1
3 . .
+(13,(2Q3-Q9)—-2 Ule?} el
i=1
3 . .
+ L§2(2Q‘7‘—Q§‘)—22L’22Q’7} ligell, (B1b)
i=1

3 3
o, = [L;‘l Q- 2Li34Qi7] lvell+ [Lj{] Q4-3Q9)-" Lngg} Iwell
i=1 i=1
3 . .
+|L5(Q3-3Q)- > ngQQ} llpell, (B1c)

i=1

3 . .
= [152Q5— > 2L135Q’7} Ivell +

i=1

3 . .
L§(Q3-3Q9)- > L Q;} lwel

i=1

3 . .
+ [Léz(Qi3Q‘5‘) ZL'nQL] el (B1d)

i=1

where the functions are given by

Q) =Fi;+Fi, +Mincin +Mi,Gly—Mi3Gi3—Mi 4Gy,

Q) = —(M})> Gy —(M}2)* Gy —(M}13)° Gy —(M1)* Gy
—Fyy—Fhy +Fy3+Fy,
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) . o4 . ) 4 ) 4

Q) =My (G + 3Gy ) ~Miy (Gl 5Gia ) -Mis (G + 3Gl )
) 4 4 . 4.
+Mi, (‘ 134—§ '14) + §F'11 + §F'12,

Q) =3(—Mj; G, M, G, —Mi3G33— M}, Ghy),
Qs = M3 M3, G5y + M5, M3, G5, + M3 M33G33 + M5 M3, Gay,
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Qg = F51 M, +F5;Mi3 +Fg M3y 4 Fs, M3y +Gyy =Gy + Gz —Gly,
Q= i(—cin +Gyp— Gz + Gya)—Ms; +Ms, +Ms3 —Ms,, (B2)

where Fi, Gi; and M}, are the fundamental functions listed below:
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