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a b s t r a c t

We consider a functionally graded magneto-electro-elastic rod made of piezoelectric
BaTiO3 and piezomagnetic CoFe2O4. The materials properties are assumed to vary exponen-
tially along the rod direction. We derive the one-dimensional wave-motion equation for
the functionally graded magneto-electro-elastic rod. Furthermore, for this one-dimensional
problem, we demonstrate the phase velocity and frequency spectrum, and discuss the
important influence of the gradient factor as well as material coupling on the wave fea-
tures. We also calculate and compare the effective Young’s modulus and effective Poisson’s
ratio in the BaTiO3- CoFe2O4 composite rod made of different volume fractions of BaTiO3,
showing clearly the important effect of the material coupling on these parameters.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The functionally graded material (FGM) structure has attracted wide and increasing attentions to scientists and engineers
(i.e., Rubio, Silva, & Paulino, 2009). FGM plays an essential role in most advanced integrated systems for vibration control and
health monitoring. Recently, owing to its three phase coupling, the magneto-electro-elastic (MEE) material is being studied
extensively (i.e., Bayrashev, Robbins, & Ziaie, 2004; Wu & Huang, 2000). Structures made of such materials could be applied
to convert energy from one type to the other, and therefore, could be utilized for energy harvesting.

Pan (2001) and Pan and Heyliger (2002) derived the three-dimensional exact closed-form solution for anisotropic MEE
plates under simply supported edge conditions for both static and vibration cases. Bhangale and Ganesan (2006) investigated
the static deformation of the corresponding functionally graded magneto-electro-elastic (FG-MEE) plates using a semi-ana-
lytical finite element method. The bending problem of the anisotropic FG-MEE beams subjected to polynomial loads was
analyzed by Huang, Ding, and Chen (2007).

Wave propagation in piezoelectric beam and plate structures based on the classical and refined models was studied by
Wang and coworkers (Quek & Wang, 2000; Wang & Quek, 2000). Based on both the classical and Mindlin–Herrmann rod
models, Wang and Varadan (2002) further investigated the longitudinal wave propagation in rods with a coated piezoelectric
layer. Recently, using the Legendre orthogonal polynomial series expansion approach, Yu and Wu (2009) studied the circum-
ferential wave in FG-MEE cylindrical curved plates and obtained the electric and magnetic potential distributions at different
wave numbers. Zhang and Chen (2010) discussed the characteristics of the torsional wave propagating in a piezoelectric hol-
low cylinder with unattached electrodes.
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In this paper, we study the wave propagation in an FG-MEE long and circular rod made of piezoelectric BaTiO3 and piezo-
magnetic CoFe2O4. The one-dimensional longitudinal wave equation is derived and solved in Section 2. Numerical results on
the effect of the gradient factor as well as material coupling on the wave features are presented in Section 3, and conclusions
are drawn in Section 4.

2. Longitudinal wave in a functionally graded magneto-electro-elastic rod

2.1. Basic equations

For a circular rod of radius R made of transversely isotropic FG-MEE material, we assume that the z-axis is normal to the
plane of material isotropy (Fig. 1), and that the material coefficients vary exponentially along the longitudinal z-direction of
the rod in a unified manner as (i.e., Bhangale & Ganesan, 2006; Pan & Han, 2005; Zhao & Chen, 2010):

cij ¼ c0
ije

az; eij ¼ e0
ije

az; qij ¼ q0
ije

az; jij ¼ j0
ije

az; dij ¼ d0
ije

az; lij ¼ l0
ije

az; q ¼ q0eaz ð1Þ

where cij, eij, qij, jij, dij, lij and q are, respectively, the elastic, piezoelectric, piezomagnetic, dielectric, magnetoelectric, mag-
netic coefficients and the density of the material. The superscript 0 is used to denote the constant factor of the material prop-
erty, and a is the gradient index of the material. We point out that complicated variation of the material properties could be
approximated by the piecewise exponential function variation, and thus the study presented in this paper is fundamentally
useful. In the cylindrical coordinate system (r, h, z), z is along the rod direction, i.e., the wave propagation direction, and
h 2 [0,2p], 0 6 r 6 R. The constitutive relations in the cylindrical coordinate system are

rr ¼ c11er þ c12eh þ c13ez � e31Ez � q31Hz

rh ¼ c12er þ c11eh þ c13ez � e31Ez � q31Hz

rz ¼ c13er þ c13eh þ c33ez � e33Ez � q33Hz

srz ¼ c44crz � e15Er � q15Hr

shz ¼ c44chz � e15Eh � q15Hh

srh ¼ c66crh

ð2Þ

Dr ¼ e15crz þ j11Er þ d11Hr

Dh ¼ e15chz þ j11Eh þ d11Hh

Dz ¼ e31er þ e31eh þ e33ez þ j33Ez þ d33Hz

ð3Þ

Br ¼ q15crz þ d11Er þ l11Hr

Bh ¼ q15chz þ d11Eh þ l11Hh

Bz ¼ q31er þ q31eh þ q33ez þ d33Ez þ l33Hz

ð4Þ

where ri and sij are the normal and shear stresses; ei and cij are the normal and shear strains; Ei, Hi, Di, and Bi are, respec-
tively, the electric field, magnetic field, electric displacements, and magnetic inductions. For a transversely isotropic material,
the relation c11 = c12 + 2c66 holds.

In the absence of body forces with further free electric/magnetic body source, the equations of motion in the long rod are

Fig. 1. An FG-MEE circular rod of radius R with wave propagating in the longitudinal z-direction, which is also the poling direction of the material.
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@rr

@r
þ @srh

r@h
þ @srz

@z
þ rr � rh

r
¼ q

@2ur

@t2

@srh

@r
þ @rh

r@h
þ @shz

@z
þ 2srh

r
¼ q

@2uh

@t2

@srz

@r
þ @shz

r@h
þ @rz

@z
þ srz

r
¼ q

@2uz

@t2

ð5Þ

@Dr

@r
þ @Dh

r@h
þ @Dz

@z
þ Dr

r
¼ 0 ð6Þ

@Br

@r
þ @Bh

r@h
þ @Bz

@z
þ Dr

r
¼ 0 ð7Þ

where ur, uh, and uz are, respectively, the mechanical displacements in r-, h-, and z-directions.
The elastic strain–displacement relations can be expressed as:

er ¼
@ur

@r
; eh ¼

@uh

r@h
þ ur

r
; ez ¼

@uz

@r

crh ¼
@ur

r@h
þ @uh

@r
� uh

r
; chz ¼

@uz

r@h
þ @uh

@z
; crz ¼

@uz

@r
þ @ur

@z

ð8Þ

In this study, the following assumptions are made: (1) the cross section of the rod remains plane before and after the defor-
mation; (2) the lateral surface of the rod is axial symmetry, implying that uh = 0 and @/@h = 0, which gives further chz = 0,
Eh = 0, and Hh = 0; (3) in order to consider the Poisson’s effect, we assume (Xue, Pan, & Zhang, 2011; Zhang & Liu, 2008) that
the gradient of the longitudinal displacement uz and the radial displacement ur is connected by ur = �meffr@uz/@z where meff is
the effective Poisson’s ratio to be determined later.

Thus, for the one-dimensional long rod made of FG-MEE, the field quantities depend only on the z-coordinate in the rod
direction. Furthermore, the extended tractions on the lateral boundary (r = R) of the rod should be zero. Consequently, one
could assume that in the whole problem domain rr = 0, srz = 0, srh = 0, Dr = 0, Br = 0. From these and the symmetric deforma-
tion assumption above, we obtain the following relations:

crh ¼ chz ¼ 0; Er ¼ Eh ¼ 0;Hr ¼ Hh ¼ 0;Dh ¼ Bh ¼ 0; ; ð9Þ

eh ¼
e31Ez þ q31Hz � c11er � c13ez

c12
ð10Þ

According to the Maxwell’s equations, the E- and H-fields in z-direction are related to the electric potential / and magnetic
potential w by the following relations:

Ez ¼ �
@/
@z

; Hz ¼ �
@w
@z

ð11Þ

Furthermore, the equations of motion are reduced to

rh

r
¼ meffqr

@3uz

@t2@z
;
@rz

@z
¼ q

@2uz

@t2 ð12a;bÞ

@Dz

@z
¼ 0;

@Bz

@z
¼ 0 ð12c;dÞ

2.2. Longitudinal wave equations

First, in terms of uz, / and w, Eqs. (12a–d) become

A1
@/
@z
þ A2

@w
@z
þ ðA4 � A3meffÞ

@uz

@z
¼ meffqr2 @

3uz

@t2@z
ð13Þ

@

@z
½B1

@/
@z
þ B2

@w
@z
þ ðB3 � A4meff Þ

@uz

@z
� ¼ q

@2uz

@t2 ð14Þ

@

@z
C1
@/
@z
þ C2

@w
@z
þ ðA1meff � B1Þ

@uz

@z

� �
¼ 0 ð15Þ

@

@z
C2
@/
@z
þ D1

@w
@z
þ ðA2meff � B2Þ

@uz

@z

� �
¼ 0 ð16Þ

where
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A1 ¼ 1� c0
12

c0
11

� �
e0

31eaz � A0
1eaz; A2 ¼ 1� c0

12

c0
11

� �
q0

31eaz � A0
2eaz

A3 ¼ c0
11 �

c0
12c0

12

c0
11

� �
eaz � A0

3eaz; A4 ¼ c0
13 1� c0

12

c0
11

� �
eaz � A0

4eaz

ð17aÞ

B1 ¼ e0
33 �

c0
13

c0
11

e0
31

� �
eaz � B0

1eaz; B2 ¼ q0
33 �

c0
13

c0
11

q0
31

� �
eaz � B0

2eaz

B3 ¼ c0
33 �

c0
13c0

13

c0
11

� �
eaz � B0

3eaz

ð17bÞ

C1 ¼
e0

31

c0
11

e0
31 þ j0

33

� �
eaz � C0

1eaz; C2 ¼
e0

31

c0
11

q0
31 þ d0

33

� �
eaz � C0

2eaz

D1 ¼
q0

31

c0
11

q0
31 þ l0

33

� �
eaz � D0

1eaz

ð17cÞ

We now take the derivative of Eq. (13) with respect to z to obtain

A0
1
@2/
@z2 þ A0

2
@2w
@z2 þ A0

4 � A0
3meff

� � @2uz

@z2 ¼ q0meff r2 @4uz

@t2@z2
ð18Þ

Integrating both sides of Eq. (18) over the cross-section of the rod, we arrive at

A0
1
@2/
@z2 þ A0

2
@2w
@z2 þ A0

4 � A0
3meff

� � @2uz

@z2 ¼
1
2
q0meff R

2 @4uz

@t2@z2
ð19aÞ

From Eqs. (14)–(16), we can get

a B0
1
@/
@z
þ B0

2
@w
@z
þ B0

3 � A0
4meff

� � @uz

@z

� �
þ B0

1
@2/
@z2 þ B0

2
@2w
@z2 þ B0

3 � A0
4meff

� � @2uz

@z2 ¼ q0 @
2uz

@t2 ð19bÞ

a C0
1
@/
@z
þ C0

2
@w
@z
þ A0

1meff � B0
1

� � @uz

@z

� �
þ C0

1
@2/
@z2 þ C0

2
@2w
@z2 þ A0

1meff � B0
1

� � @2uz

@z2 ¼ 0 ð19cÞ

a C0
2
@/
@z
þ D0

1
@w
@z
þ A0

2meff � B0
2

� � @uz

@z

� �
þ C0

2
@2/
@z2 þ D0

2
@2w
@z2 þ A0

2meff � B0
2

� � @2uz

@z2 ¼ 0 ð19dÞ

Eqs. (19a–d) form the wave equations in terms of uz, / and w. For the wave propagating along the rod z-direction, we can
assume the solutions as:

uzðz; tÞ ¼ Ueikðz-ctÞ;/ðz; tÞ ¼ Ueikðz-ctÞ;wðz; tÞ ¼ Weikðz-ctÞ ð20Þ

where i =
p

(�1) is the imaginary unit, k the wave number, c the phase velocity of the wave. Furthermore, U, U and W are the
amplitudes of the displacement, electric potential and magnetic potential, respectively. Substituting Eq. (20) into Eqs. (19a-
d) yields

A0
1A0

1D0
1 � A0

1A0
2C0

2 þ A0
2A0

2C0
1 � A0

1A0
2C0

2 � A0
3C0

2C0
2 þ A0

3C0
1D0

1 �
1
2
q0R2k2c2 C0

1D0
1 � C0

2C0
2

� �� �
meff þ A0

1C0
2B0

2 � A0
1B0

1D0
1

� C0
1A0

2B0
2 þ C0

2A0
2B0

1 þ C0
2A0

4C0
2 � C0

1A0
4D0

1

¼ 0 ð21aÞ

ð1� ai=kÞ B0
3 � Cmee

� �
¼ q0c2 ð21bÞ

where

Cmee ¼
A0

1D0
1B0

1 � A0
2C0

2B0
1 � A0

1B0
2C0

2 þ A0
2C0

1B0
2 þ A0

4C0
1D0

1 � A0
4C0

2C0
2

� �
meff

C0
1D0

1 � C0
2C0

2

þ 2B0
1C0

2B0
2 � B0

1D0
1B0

1 � B0
2C0

1B0
2

C0
1D0

1 � C0
2C0

2

ð22Þ

is defined as the MEE coupling factor, and the effective Poisson’s ratio meff is

meff ¼ �
eh

ez
¼

q0
33q0

31 þ l0
33c0

13 þ d0
33q0

31 � e0
31l0

33

� �
e0

33l0
33 � q0

33d0
33

� �
d0

33d0
33 � j0

33l0
33

�. �
2q0

31q0
31 þ l0

33 c0
11 þ c0

12

� 	
þ 2 d0

33q0
31 � e0

31l0
33

� �
e0

31l0
33 � q0

31d0
33

� �
d0

33d0
33 � j0

33l0
33

�. � ð23Þ
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While Eq. (21a) gives a simple expression of the circular frequency x (�kc) as a function of the material property as well as
the radius of the rod, Eq. (21b) solves the longitudinal wave velocity in terms of the material gradient factor a in the FG-MEE
rod as

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0

3 � CmeeÞð1� ai=kÞ=q0

q
ð24Þ

Or using the relation x = kc, we have

k2 � aki ¼ q0x2

B0
3 � Cmee

� X2 ð25Þ

It is clear from Eq. (25) that the wave number k is in general complex and can be assumed as k = m + ib, with m and b being
real numbers. Furthermore, since the wave behaviors are similar for uz, / and w (see Eq. (20)), we only discuss those asso-
ciated with the elastic displacement uz. Substituting Eq. (25) into the first expression in Eq. (20), we have

uzðz; tÞ ¼ U exp½iðkz�xtÞ� ¼ U exp i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0

3 � Cmee

� �
=q0

r
k

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B0

3 � Cmee

� �
=q0

r
z�Xt

 !" #

¼ U exp i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0

3 � CmeeÞ=q0
q

ðKz�XtÞ
� �

ð26Þ

where K ¼ k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB0

3 � CmeeÞ=q0
q

. Depending on the k value, we have the following three cases:

Case 1: 4X2 � a2 > 0. For this case b = a/2, m2 + a2/4 = X2, k1,2 = ai/2 ±
p

(X2 � a2/4). We thus have

uzðz; tÞ ¼ Ue�ða=2Þzeið�xt�z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�a2=4
p

Þ ð27aÞ

Case 2: 4X2 � a2 = 0. For this case k1,2 = ai/2.

uzðz; tÞ ¼ Ue�ða=2Þze�ixt ð27bÞ

Case 3: 4X2 � a2 < 0. For this case k1,2 = (a/2 ±
p

(a2/4 �X2))i.

uzðz; tÞ ¼ Ue�ðða=2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=4�X2
p

Þze�ixt ð27cÞ

It is observed clearly that only in Case 1 (i.e., 4 X2 � a2 > 0), can wave propagate along the longitudinal direction of the rod,
with decreasing amplitude. We discuss this and other phenomena in the next section.

3. Numerical results

In the numerical example, we consider the FG-MEE rod made of BaTiO3-CoFe2O4 with variable volume fraction (vf) of
BaTiO3. The material properties of the composite are calculated using the micromechanics approach (Kuo & Pan, 2011;
Kuo & Wang, 2012). In what follows, we consider five different material combinations, by taking the volume fraction of
BaTiO3 as 0%, 25%, 50%, 75%, and 100%, respectively. Obviously, when vf = 0, the composite is purely piezomagnetic (PM),
whilst vf = 100% corresponds to a purely piezoelectric (PE) material (Chen, Pan, Wang, & Zhang, 2010). The effective MEE
material properties are listed in Table 1.

When U = 1, the normalized amplitude e�(a/2)z in Eq. (27b) is shown in Fig. 2 for the rod made of MEE composite (the mid-
dle column with 50% MEE in Table 1). It is noted that, on the one hand, the amplitude decreases along the wave propagation
direction when time is fixed. On the other hand, the amplitude decreases greatly with increasing gradient index a (in m�1).

The relations between the quantity X in Eq. (25) and the wave number k for the three different Cases are shown in Figs. 3–
5 for the rod made of MEE composite (the middle column with 50% MEE in Table 1). We first point out that when gradient
index a = 0 and the FG-MEE coupling factor Cmee = 0, our solution reduces exactly to the corresponding purely elastic rod case
(Achenbach, 1973), which verifies the formulation derived in this paper. We now take X as real and positive, which gives
either a complex or a purely imaginary wave number k. In physical terms, purely imaginary and complex wave numbers cor-
respond to the standing wave with decaying amplitudes as z increases. Fig. 3 shows the relationship between X and the real
part of k for different gradient factor a for Case 1 (4X2 � a2 > 0). This is the only case where wave propagates along the rod.
The curves are hyperbolas with their asymptotes being X = Re(k) (corresponding to a = 0). Their focuses are on the vertical
axis at (0,a/

p
2), linearly proportional to a. Fig. 4 shows the relationship between X and the imaginary part of k for different

a for the Cases 1 (4X2 � a2 > 0) and 2 (4X2 � a2 = 0). For these cases, Im(k) = a/2. In other words, Im(k) is independent of X.
Finally, Fig. 5 represents circles with radii a/2 for Case 3 (4X2 � a2 < 0). The curves satisfy the relation of (b � a/2)2 + X2 = a2/
4 with centers at (a/2,0).

It is noted that when a = 0, c ¼ p B0
3 � Cmee

� �
=q0

h i
. Thus, the effect of different volume fractions vf on the phase velocity of

the wave, as well as on the effective modulus B0
3 � Cmee and effective Poisson’s ratio meff in the rod, can be studied as shown in

Table 2. It is observed from Table 2 that the effective Poisson’s ratio decreases (from 0.3725 to 0.2906, or decreases about
22%) with increasing volume fraction. Similarly, the PM rod has the largest phase velocity c whilst the PE rod has the smallest
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Table 1
Effective material coefficients for the BaTiO3–CoFe2O4MEE composite rod based on the micromechanics approach (Kuo & Pan, 2011; Kuo & Wang, 2012).

vf 0% (PM) 25% (MEE) 50% (MEE) 75% (MEE) 100% (PE)

c0
11

286 245 213 187 166

c0
12

173 139 113 93 77

c0
13

170 138 113 93.8 78

c0
33

269.5 235 207 183 162

c0
44

45.3 47.6 49.9 52.1 43

e0
31

0 �1.53 �2.71 �3.64 �4.4

e0
33

0 4.28 8.86 13.66 18.6

e0
15

0 0.05 0.15 0.46 11.6

j0
11

0.08 0.13 0.24 0.53 11.2

j0
33

0.093 3.24 6.37 9.49 12.6

l0
11

5.9 3.57 2.01 0.89 0.05

l0
33

1.57 1.21 0.839 0.47 0.1

q0
31

580 378 222 100 0

q0
33

700 476 292 136 0

q0
15

550 331.2 185 79 0

d0
11

0 �3.09 �5.23 �6.72 0

d0
33

0 2334.15 2750 1847.49 0

q0 5.3 5.43 5.55 5.66 5.8

Units: elastic constants, c0
ij , in 109 N/m2, piezoelectric constants, e0

ij , in C/m2, piezomagnetic constants, q0
ij , in N/A m, dielectric constants, j0

ij , in 10�9 C2/N m2,
magnetic constants, l0

ij , in 10�4 N s2/C2, magnetoelectric coefficients d0
ij , in 10�12 N s/VC and q0 in 103 kg/m3.
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Fig. 2. Variation of the normalized amplitude of the wave uz along the longitudinal z-direction of the rod made of 50% MEE with different gradient index a
(in the unit of m�1) (for Case 2 as given in Eq. (27b)).
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Fig. 3. Variation of X vs. Re(k) when 4X2 � a2 > 0.
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one. It is also clearly shows that the PE rod has the largest ratio Cmee=B0
3 whilst the MEE rod has the smallest one. These re-

sults indicate that the influence of the FG-MEE coupling factor Cmee on the effective Young’s modulus cannot be ignored for
the rod made of PM and PE materials. For the MEE (vf = 50%) material, however, the coupling can be ignored and one could
just treat the MEE rod as a purely elastic one. The last row in Table 2 shows the circular frequency as a function of the volume
fraction ratio, which is obtained using Eq. (21a) with R = 0.05 m. It should be noticed that only for the piezoelectric (PE) case,
Eq. (21a) has a solution of the real frequency; otherwise, the frequency will be purely imaginary (this character is indepen-
dent of the value of R). These interesting features should be useful in the optimal design of magnetoelectroelastic transducers
based on multifunctionality (i.e., Rubio et al., 2009).

4. Conclusion

We studied the wave features in a functionally graded magneto-electro-elastic rod made of piezoelectric BaTiO3 and
piezomagnetic CoFe2O4. The materials properties are assumed to vary exponentially along the rod direction. By introducing
the effective Poisson’s ratio, we found that the gradient factor as well as the material coupling can substantially affect the

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Im(k)(m-1)

α=5 

α=4

α=3 

α=2

Ω(m-1)

Fig. 4. Variation of X vs. Im(k) when 4X2 � a2 P 0.
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Fig. 5. Variation of X vs. Im(k) when 4X2 � a2 < 0.

Table 2
Phase velocity c, effective Young’s moduli B0

3 � Cmee, effective Poisson’s ratio meff, and circular frequency x in PM, MEE and PE rods

vf 0% (PM) 25% (MEE) 50% (MEE) 75% (MEE) 100% (PE)

c (103m/s) 5.2131 5.171 5.1439 5.0947 5.0498

B0
3 (1011 N/m2) 1.6845 1.5727 1.4705 1. 3595 1.2535

Cmee (1011 N/m2) 0.2442 0.1221 0.00199 �0.1135 �0.2255

B0
3 � Cmee (1011 N/m2) 1.4404 1.4506 1.4685 1.473 1.479

meff 0.3725 0.3544 0.3339 0.3137 0.2906

Cmee=B0
3 (%) 14.49 7.76 0.14 �8.35 �17.99

x = kc (10�3 s�1) 2.4i 1.9i 1.7i 2.6i 1.8
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wave features in the rod. The effective Young’s modulus and Poisson’s ratio in the composite rod can be also significantly
affected by the magneto-electro-elastic coupling factor Cmee defined in this paper.
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