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1. Introduction

ABSTRACT

Transversely isotropic materials or hexagonal crystals are commonly utilized in various engineering fields;
however, dislocation solutions for such special materials have not been fully developed. In this paper, we
present a comprehensive study on this important topic, where only Volterra dislocations of the transla-
tional type are considered. Based on the potential theory of linear elasticity, we extend the well-known
Burgers displacement equation for an arbitrarily shaped dislocation loop in an isotropic elastic full space
to the transversely isotropic case. Both the induced displacements and stresses are expressed uniformly in
terms of simple and explicit line integrals along the dislocation loop. We introduce three quasi solid angles
to describe the displacement discontinuities over the dislocation surface and extract a simple step func-
tion out of these angles to characterize the dependence of the displacements on the configuration of
the dislocation surface. We also give a new explicit formula for calculating accurately and efficiently
the traditional solid angle of an arbitrary polygonal dislocation loop. From the present line-integral repre-
sentations, exact closed-form solutions in terms of elementary functions are further obtained in a unified
way for the displacement and stress fields due to a straight dislocation segment of arbitrary orientation.
The non-uniqueness of the elastic field solution due to an open dislocation segment is rigorously discussed
and demonstrated. For a circular dislocation loop parallel to the plane of isotropy, a new explicit expres-
sion of the induced elastic field is presented in terms of complete elliptic integrals. Several numerical
examples are also provided as illustration and verification of the derived dislocation solutions, which
further show the importance of material anisotropy on the dislocation-induced elastic field, and reveal
the non-uniqueness feature of the elastic field due to a straight dislocation segment.

© 2012 Elsevier Ltd. All rights reserved.

successfully utilized to study the effect of cross-slip and short-
range interactions on dislocation patterning (Devincre and Kubin,

On the mesoscopic scale, dislocations play a crucial role in
understanding the plasticity and strength of crystalline materials.
As a powerful tool in mesoscale simulation, three-dimensional
(3D) dislocation dynamics (DD) predicts macroscopic properties
of crystals by directly simulating the interaction and evolution of
large groups of discrete and randomly distributed dislocation lines
within crystals in response to external loads (Kubin et al., 1992;
Devincre and Condat, 1992; Zbib et al., 1998, 2000; Rhee et al.,
1998; Verdier et al., 1998; Schwarz, 1999; Ghoniem and Sun,
1999; Ghoniem et al., 2000; Cai et al., 2004; Wang et al., 2006;
Arsenlis et al., 2007). For instance, DD simulations have been
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1997; Devincre et al., 2001; Madec et al., 2002), the role of collinear
dislocation interaction in multislip hardening of fcc metals (Madec
et al,, 2003), the plastic anisotropy of flow stress in fcc single crys-
tals (Wang et al., 2009), the size-dependence of flow stress in fcc
metallic micro-pillars under uniaxial loading in the absence of
strain gradients (Senger et al., 2008; Weygand et al., 2008), the dif-
ference in dislocation behavior and strengthening mechanism
between fcc and bcc sub-micrometer pillars under uniaxial com-
pression (Greer et al., 2008), the size-dependent plasticity in poly-
crystalline thin films (von Blanckenhagen et al., 2004; Espinosa
et al., 2006; Zhou and LeSar, 2012).

In 3D-DD simulations, dislocation lines are discretized into a set
of straight or curved dislocation segments of arbitrary orientations
with general Burgers vectors. The computation of long-range pair
interactions among these dislocation segments is very time-
consuming, mostly on the evaluation of the stress field of one seg-
ment on another segment. For the sake of computational simplicity
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and time efficiency, nearly all DD simulations assume linear-elastic
isotropy in spite of the fact that most of the crystalline materials
exhibit anisotropy. Attempts were made to release this constraint
by assuming general anisotropy in DD simulations (Rhee et al.,
2001; Han et al., 2003). Particularly, Capolungo et al. (2010) intro-
duced transverse isotropy in their DD simulations and found a sub-
stantial effect of the elastic anisotropy on strain hardening of hcp
metals. In their work, they used Mura’s formula (Hirth and Lothe,
1982) in anisotropic elasticity to calculate the stress field of dislo-
cation segments in hcp metals. However, for the special case of
hexagonal crystals, a numerically efficient stress formula in terms
of simple line integrals can be developed.

Line-integral representations of the elastic field in crystals due
to an arbitrarily shaped Volterra dislocation loop have attracted a
great deal of attention due to their direct applications in 3D-DD
simulations. For an arbitrary dislocation loop located in an isotro-
pic elastic full space, the Burgers displacement equation (Burgers,
1939) and Peach-Koehler stress formulae (Peach and Koehler,
1950; deWit, 1960; Devincre, 1995) are the well-known line-inte-
gral solutions for the induced displacement and stress fields,
respectively. For a generally anisotropic material which occupies
the full space, once the associated Green’s tensor is known, the
Mura’s formula enables us to express the gradient of displacements
due to an arbitrary dislocation loop in terms of line integrals over
the dislocation loop (Mura, 1963). Indenbom and Orlov (1967) gen-
eralized the work of Lothe (1967) and Brown (1967) by expressing
the elastic distortions of a general dislocation loop in an aniso-
tropic full space in terms of straight dislocations; they also con-
verted the corresponding displacement field of such a dislocation
loop to an elegant line-integral along the dislocation loop, with
the integrand itself being also a single integral (Indenbom and Or-
lov, 1968). Willis (1970) expressed the distortions due to an infi-
nite (or a finite) straight dislocation line in an anisotropic full
space analytically in terms of the roots of a sextic equation; simi-
larly Wang (1996) discussed the corresponding curved dislocation
problem. Chu et al. (2011) derived a single-integral expression for
the displacement field due to a dislocation loop of triangular shape
in infinite anisotropic crystals. For a dislocation loop located in the
basal plane of a hexagonal crystal, both the induced displacements
and stresses can be transformed into explicit line integrals (Chou
and Yang, 1973; Tupholme, 1974). In addition, Yu and Sanday
(1994) derived analytical displacement solutions due to an infini-
tesimal dislocation loop of arbitrary orientation in a transversely
isotropic full space. Ohr (1972, 1973) also obtained the elastic field
solutions due to a prismatic or glide circular dislocation loop with-
in the basal plane of an infinite hexagonal crystal.

Among various anisotropic materials, the transversely isotropic
material is the only one whose Green’s tensor takes a simple and
explicit form. However, for an arbitrary Volterra dislocation loop
in a transversely isotropic full space, an explicit line-integral for-
mula for the induced displacement field, which resembles the Bur-
gers displacement equation in the isotropic case, is still unavailable
in the literature. In this paper, we attempt to fill this gap via the
potential theory of linear elasticity and solve the displacement
and stress fields in a transversely isotropic full space produced
by (i) a Volterra dislocation loop of arbitrary shape and orientation;
(ii) a straight dislocation segment of arbitrary orientation; (iii) a
circular dislocation loop parallel to the plane of isotropy.

The present paper is organized as follows. In Section 2, for a
simple Volterra dislocation loop which is mathematically defined
in Eq. (7), we derive a line-integral representation of the induced
displacement field in terms of three potential functions. As verifi-
cation, in Section 3, our displacement solution is successfully re-
duced to the well-known Burgers displacement expression in the
isotropic case. In Section 4, the line-integral expressions of the
stresses due to a simple dislocation loop are then deduced from

the displacement solution by virtue of the stress-displacement
relations. In Section 5, the derived displacement and stress solu-
tions are further simplified and expressed uniformly in terms of
simple line integrals over the closed dislocation curve. Further-
more, the simplified elastic field solutions are reformulated via
the principle of superposition so that they are applicable also to
the case of complex dislocation loops. In Section 6, the general
line-integral solutions for an arbitrary dislocation loop are utilized
to develop exact closed-form solutions for a straight dislocation
segment of arbitrary orientation. Moreover, the non-uniqueness
feature of the dislocation segment solution is well demonstrated.
A new explicit formula is also presented for calculating accurately
and efficiently the traditional solid angle of an arbitrary polygonal
dislocation loop. In Section 7, based on the general solutions, we
deal with a circular dislocation loop parallel to the plane of isot-
ropy and obtain a new explicit expression of the induced elastic
field in terms of complete elliptic integrals. In Section 8, several
numerical examples are provided to validate the present disloca-
tion solutions, and to illustrate the non-uniqueness feature of the
displacement and stress fields induced by a straight dislocation
segment. Concluding remarks are drawn in Section 9.

2. Displacement field due to a simple dislocation loop

In the Cartesian coordinate system (xi, X, x3) (see Fig. 1),
according to the theory of dislocations, the elastic displacement
field induced by a Volterra dislocation loop C of arbitrary shape
and orientation, which bounds some curved surface A, can be ex-
pressed as (Hirth and Lothe, 1982)

0
Unm(X) = 7/AdA,*bijjk10T/lukm(y7 X) 1)

where u,(X) is the mth component of the displacement vector at x
(X1, X2, X3), and uy,(y;X) is the Green’s tensor, denoting the kth com-
ponent of the displacement vector at y (y1, y», y3) due to a unit force
in the mth direction applied at X (x4, X, X3). Gy is the elastic stiff-
ness tensor, b; is the jth component of the Burgers vector b, and
dA; at 'y (y1, Y2, ¥3) is the ith component of the vector area element
dA. The positive normal of dA is associated with the positive direc-
tion of the dislocation curve according to the right-hand rule
(Fig. 1).

Note that, in this paper, summation over a repeated (or multi-
repeated) index is assumed unless this index occurs on both sides
of an equation (or a relation). Also, the range of the Roman indices
i,j, k etc.is from 1 to 3, and that of the Greek ones «, 3, k etc. is from
1 to 2, unless otherwise specified.

X3 b

X (X1, X, X3)
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Fig. 1. Illustration of two types of simple dislocation loops in Cartesian coordinate
system: Type-I shows a generally oriented loop, and Type-II shows a specially
oriented loop which lies on a cylindrical surface with its generatrix parallel to the
X3-axis.
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For a transversely isotropic material, if the plane of isotropy is
assumed to be parallel to the x;-x;, plane, then the elastic stiffness
tensor cjj; can be expressed as (Pan and Chou, 1976)

Cijkl = 01040k + A2 (dikdji + dudjk) + A30i30;30k3913 + A4(Ji30j30
+ 0k303045) + 5(930k3 0 + 0130130jk + 30130k + O3dk3dy)  (2)

5) are related to
6) as

where §; is the Kronecker delta,and a, (n=1,2, ...,
the contracted elastic stiffness constants cpq (p, =12, ...,
a; = C11 — 2Ce6; U2 = Cep

a3 = C11 + C33 — 2C13 — 4C4 3)
a4 = C13 — C11 + 2Ce6; 5 = Caa — Cop

Based on the potential theory of linear elasticity, the Green'’s
tensor u;(y;Xx) for a transversely isotropic full space can be ex-
pressed compactly in terms of the potential functions y(y;x) as
(Fabrikant, 2004)

_ __1 P (M i—mi ) ?(31)
Uop = Upy = 4Tcay [ayxay/‘ ( my—my + Vg/(g) + 59‘/i a2
_ 1 ? (= 4
T Amcaq 0Y,0y3 ( my —nm; ) 4)

1 & (Myii-mayaly
U3z = Tnca ()y ( rp— ) for my #my

Uyz = U3y

where the constants y; are defined as

[Caqa + mm C13 + Ca4)

73 = V/Caa/Co6 (5)

m;Cs3 .
My Cag + (C13 + Caa)’

and m,, can be solved from Eq. (5) as

1
2C44(C13 + Caa)

X {(C11C33 = \/(C11C33 —c3)[cness — (a3 + 2C44)2]}
(6)

with mymy=1, and cq1633 — 132 >0 from the elastic-energy
consideration.

The potential function y; in Eq. (4) deserves further discussion
for the specific problem of dislocation loops. In general, a complex
dislocation loop could always be divided into a finite number of
simple dislocation loops by adding certain auxiliary dislocation
line pairs properly (see Fig. 2 for example). Without loss of gener-
ality, the solutions derived in this section and subsequent Sections
3 and 4 will be based upon the following simple loop assumptions
(as shown in Fig. 1 for Type-I and Type-II):

(I) The dislocation surface bounded by the loop is simply
connected and intersects at most once with an arbitrary straight

mip = -1+

D ipep=Dupe — Pupe

Fig. 2. A complex dislocation loop ABCD which can be decomposed into two
triangular simple dislocation loops ABC and ADC. In this special case, ®apcp is a
linear superposition of ®4pc and ®,pc, both of which can be easily determined by
Eq. (30).

line parallel to the xs-axis, so it can always be described by a
single-valued function

X3 = S(X1,X%;) with Cpy(xq,%2) <0 (7)

where Cpn(X1, X2) = 0 with x3 =0 is the projection of this loop onto
the x;-x, plane, and the subscript “pn” just indicates projection.

(I) The dislocation surface bounded by the loop is simply con-
nected and just lies on a cylindrical surface with its generatrix par-
allel to the xs3-axis. As such, its projection onto the x;-x, plane
degenerates into a line segment.

It is noted that Type-II can be considered as a limiting case of
Type-I. Thus, our derivation below will mainly focus on the Type-
I dislocation loop with additional discussion on Type-Il when nec-
essary. For a Type-I dislocation loop, the potential function y; can
be properly selected as

—v00n (R -5 — R,
LX) = for i(3 > S(xl,xz)iwith Con(x1,%2) <0
+¥ In R,‘ +y3TX3) — R,‘
for x3 < S(x1,X2) with Cpp(x1,X2) < 0;0r Cpn(X1,X2) >0
(8)
in which
. _ 2 2 2.2
Ri(Yi%) = /1 =50 + (0 = %) + (s — %)%/ 9)

Some basic properties of the potential function y; are shown as
follows

Oy >?

2 1 _

Vi 2 <6y1 o2 Li (10a)
Py 1

2 i_

73 R (10b)

We emphasize that, throughout this paper, multi-valued func-
tions In z and /z take values in their own single-valued analytic
branches which satisfy —m<Im(lnz)<m and Re(y/z)>0 with
—T < arg(z) < m respectively, where “Re” or “Im” denotes the real
or imaginary part of a complex number, and “arg” means its
argument.

Under the above preliminaries, we now begin our simple deri-
vation. Firstly, substitution of Eq. (2) into Eq. (1) gives

[(a1by % dAy + azby G dA, + axby % dA, |

+(a1 + a4)bﬁ s dA/j + ((12 + as)b/g ()u/m, dA
+(a2 + as)bﬁ 8u3m dA; + ((11 + a4)b3 <)u1m dA3 (11)
+((12 + a5)b3 8u3”' dA, + ((12 + a5)b3 ()u"" dA,
(

3

| (a1 + 20 + @3 + 204 + 4as)bs; S22 dAs

Then substituting Eq. (4) into Eq. (11
theorem

/A(dAa‘f’ dA

8Xj

), and utilizing the Stokes’

— & ]f $dx, (12)

together with the symmetry properties of the Green’s tensor in a
full space

7] 9]
u;i(y; X) = u(X;y) = u;i(y; X) or - o (13)
we finally obtain the displacement field of a simple dislocation loop
as
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b: 1 (737
000 =~ 259 — 72 Brtadys + sty )
1 0 2 Afiyi)
+Eﬁf{ {bﬁg““v oy, 3
+bﬁ83ﬁk (gl/le) dy,€+b38“3,( (g;/}',) dyk (14&)
0y
and
b g,/ L)
us(x) = *ﬁmngn %bﬁ‘%mc n 7 121 dy,
( Ufﬂ’yan[)

1 0
+ an 87X3 f bgéass VB ay, (14b)

where each line integral is along the dislocation loop following the
positive direction, & is the permutation tensor, and the coefficients
fi» g are defined in Eq. (25) of Section 4. In the above derivation, use
has been made of the variants of Eq. (5) for further simplification,

(a2 +as) = a3

(a1 + @z + G4 + A5)M, + (a2 + a5) = (a1 + 2a,)72

(a1 +2a + a3 + 2a4 + 4as)m, — (a7 + a3 + a4 + as))2

= (a + as)m,y;,

(15)

Also in Egs. (14a,b), Q; is defined by an area integral over the
dislocation surface or a line integral along the dislocation loop as

Q%) = /(dA 04 pdn, 020 (16a)
’ Ay, oy oy:
or

) a0 (Vix) ?{ POt
Qi(X) = [ (dA,— — dA3 — AU — gy ’dK 16b
x) /A( v, Yoy vy, — fE ay,ay, W (16D)

Egs. (10a) and (12) contribute to the derivation of Eq. (16b).
Analogous to the traditional solid angle, here we call Q; the quasi
solid angle, which contributes to the displacement discontinuities
over the dislocation surface, whilst other line-integral terms in
Egs. (14a,b) are continuous except on the dislocation line.

Eqgs. (14a,b) are the main results of this paper, which have never
appeared in the literature to the best of our knowledge, and will
form the basis of later sections.

According to Ding et al. (2006), there are only three possible
cases for the values of y,, ie., (i) y1>0, y2>0, y1# 7y, ; (ii)
Re(y1) >0, Im(y1) # 0, y1 = 7,; (iii) 1 =y2 >0, where an over-bar
denotes the complex conjugate. It should be pointed out that
Eqgs. (14a,b) are applicable to cases (i) and (ii). The degenerate case
(iii) will be considered in the next section.

3. Reduction to the Burgers displacement equation

Eqgs. (14a,b) can be reduced to the well-known Burgers displace-
ment equation of dislocation loops in an isotropic full space. To do
this, it is convenient to transform Egs. (14a,b) into the following
form

b: 1 9*(y5)
Us(X) = — 7 — 1 f(b/f&ﬂk + y3bsesn) ((;);Z/CB)dyk
1m 2 9 0 il =202
Tane V%axt?{bg‘f Wi T i

+l@ my+1-
a7z o\

g i?{ b.& i+b & i
"/% ax;: Je ﬂ'3ﬂx8y3 3‘13K8ya
1 = Vaka g ii;{ 29
o O T amax o P gy, s

0
+bﬁ83ﬁlcaiy3dyx + b3£a3x@dyic> (V3X3 —N Xl) (178)

and
_ %Xl 11296
s (X) = — 47‘C - 4n%b83’ 47 0 72 9x3
0 ViA1= V2X 11 < 2) 0
bje;; A2l 2h2 4 — —(my+1- —
7{ 1k0y1 Y11= "2 Vi + T o 2t 73/ 0%3

byespe —— + b >Md,€ 17b
i(way W) - (17b)

where use has been made of the following relation (Fabrikant,
2004)

My —my = O(); —7;); O =)y +72)/(C13 + Caa) (18)

We now consider the case of multiple roots in Eq. (6). When
my — My — Mg, Or Y1 — Y2 — Yo, We obtain

lim 4=k _ 9(YoXo) _ “Ry;
n—-1-% Y1 — Y2 aVO

. 2¢117,

lim @=6y=_""170_ 19
Yo * 7 (c13 + caa) (19

where yo and Ry are defined in Egs. (8) and (9), with the index “0” in
place of “i” there.
Substitution of Eq. (19) into Egs. (17a,b) gives

o
ox:

ux) = - 2o 1%% 02

b 1 m
4" 4n 73Rs KT Am @y 2 ax
IRy 1 mgp 2 0
7{ b; Sﬂk dyk +— an @ (mo +1- ﬁ) x.

0 ORg 1 0
]{ (bﬁ‘gﬂi‘ifc Y5 dyK + b33k ay, dy;c) + a1 X
" 2 0 0 7]
75‘ <b,;8aﬁ3 E 8—yadJ’3 + byéspic a—deylc + b3észi ay, dyh')

(20a)

(V343 — YoXo)

b, L by 1120 g,
470 « 7oRo T O 2 dx3 Jo

ORo 1 1 2\ 0
x—dy,(+ <m°+1_ﬁ>8_x3

Ry
dy,c + b3ésuc 5~ . dyK> (20b)

where Qy is defined in Eqgs. (16a,b), again, with the index “0” in
place of “i” there. Egs. (20a,b) give the displacement field for the
degenerate case of y; =7vy,>0.

For isotropic materials, we have

Mo =1; 73 =7=1; Re=Ro: J3=1o 2

By virtue of Eq. (21), Eq. (20a,b) can be reduced exactly to the
Burgers displacement equation (Hirth and Lothe, 1982).

4. Stress field due to a simple dislocation loop

The dislocation-induced stresses can be derived from Egs.
(14a,b) by virtue of the following stress-displacement relations

0ij(X) = Cijt—-— (22)

Thus, we need to calculate the spatial derivatives of the quasi
solid angle ©; as follows
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0Q;(X) /( 0 2 3) 9 (i)
=— dA, —+ y7dAs — | — 121
0x; A Y, Vichs dys) 9y; 0y}

i} o\ o ()
_ dA— _ dAa I iAi
/A ( Yoy, Oyj> 0y, 0y3

2(aa 2 a2\ 2 P
i <dA’ oy, ~ W 8y,> dys 3

0 ViXi
= % (%:xk (9}/ V; ’j3k (9}/ > é;,y ) dyk (23)

2), and (13) in the

where use has been made of Egs. (10a), (1
derivation.

After some lengthy derivations, the final results for the stress
field of a simple dislocation loop are found to be

2 9 9 (243
byeuys 2y 07 (Eﬁy’ Xi— giViXi>dY3

Caq . 0 P (24 3 N
ey (X) = 70 7{ +hpespests B (38030 — havala) Wi
2 (hgysp)
*b33a3lc 9? ;y’zﬁ £ dyIC
o PUiK) (@)
bﬁga/B 72y, oy dys +bpespc g s ay -, dy K
1 i) 7 315)
+C44 2 E(b 83;11<+b 83:1\)();/3 (;; dyh
41 y2 (&712)
y3 C |45 b3(81L3 Wy +8w1 Oy) nyéy); dy3
P (gpr31p)
+§b3(813y,dy5 + swdyn) & %
(24a)
and

Lo e P (hayyy)
b/igot/ﬁ 2 W 3 ('('I)y; d.y3 + b/i83/fl< : 5},2 * dy}x

Caq 9 ( 2 (
0:3(X) :_ﬂfﬁ +bgéps (,i : '3)(3 dy; — bpéyps ()ﬁ - y3/3 dy,

hu’x i il hﬁ Q o
+b3&e 3(,y o 4 dy, +b3i3u<()y3 o L) dy,
(24b)
and
U URE] 7’
Caa b[fgo’./ﬂ.’%(-)y g;yu/, dy; + byespe 2= s 10;7 ~dy,
033(X) = E% P
¢ +b3sxakdy ,’y” o dy,
(24c¢)
where
f={fifofs} = {5l i 1}
1 1
g = {g]7g27g3} = {rrr::z,tn27nr|n21,tnl 71} (25)
h = {hy, by, hy} = {meema2 momes? |

When deriving Egs. (24a,b), use has been made of the following
identities (Hirth and Lothe, 1982)

Oca3pic + Oep€osie = —OcicEup3
511!{80(3: + 5§lc£o<311 + 550{£173K + 5r,o<£i3lc = 2551730f31c (26)
Oep8ans + Onpacs + Opabeps + Ocubyps = 20neEap3

and Eqgs. (27a,b) below

VYD) ]{ 9 ViV
2?{ Eo3ic 75— aya 3}’ ay" dy;c 3k 75— 8}/,, + 8713h 3}& 8}@ d}/lc

(M,)

9
= Epe
fg ( " oy, y) oy,y;

(27a)

‘ & o) o Puin)
?{ Eo3xkc ayxay 3}’ dyh % ay ayg dyK
o (i)
= ¢ & 27 d 27b
f Syt s (27b)

& (viy) ]g &)
?{ Bk Gy 0y Wit f o 3 Wi

(27¢)

Egs. (27a-c) can be easily proved via Eqs. (10a) and (12). Eq.
(27c) is needed in later derivation.

It can be verified that, in the transversely isotropic case, our
stress formulae in Eqs. (24a-c) are simpler and more efficient than
the Mura’s formula (Hirth and Lothe, 1982) after substituting Eq.
(4) into it. We also point out that a similar limiting process as in
Section 3 can be followed if one is interested in the stress field
for the degenerate case of y; =y, > 0.

We should keep in mind that, although the displacements and
stresses in terms of line integrals over the closed dislocation loop
have to satisfy the stress-displacement relations (22), their corre-
sponding integrands do not necessarily satisfy such relations. In
addition, Egs. (27a-c) are generally valid for a “closed” loop, but
may not be if otherwise. This implies the non-uniqueness of the
integrands of the line integrals in Eqs. (14a,b) and (24a-c), and thus
the non-uniqueness of the displacement and stress fields due to an
“open” dislocation segment (see, e.g., Hirth and Lothe, 1982; Wang,
1996; Paynter et al., 2007; Yin et al., 2010). This issue will be fur-
ther illustrated in Section 8.

In summary, Egs. (14a,b) (Egs. (20a,b) for the degenerate case)
and Eqs. (24a-c) are, respectively, the displacement and stress
fields induced by a simple Volterra dislocation loop of arbitrary
shape with a constant Burgers vector in a transversely isotropic
elastic full space. However, the derived solutions are expressed
explicitly in terms of the potential functions y; defined in Eq. (8),
which is only suitable for a simple dislocation loop. As such, we
further simplify, clarify and generalize these solutions by eliminat-
ing yx; in the next section.

5. Further simplification and generalization of the elastic field
solution

For future applications, we now simplify the displacement field
solution in Egs. (14a,b) and the stress field solution in Egs. (24a-c)
by substituting those three potential functions y; as shown in Eq.
(8). After some elementary calculations, we can write Egs. (14a,b)
and Egs. (24a-c) concisely as

b 1 b
Ug(X) = in <(D+/ 8131»1;33;\) +4_3 <)} 8x<312 i3 T Vu8ube3 01;»)

b 2 2 1
4;; { 2Vf{ v/f3</ 1;;;;3+12,3> — &3 </; Ize‘”os)]

1 -
+)7335/i3]0;33 *%83/@%;} (282)
i
b g
s (%) = 5> (cD + sxskl%‘i,c)
n
by (2 m ~
+ L <_2 nfn oc/f312 n3 - :Igﬂ 83/“\10 mc> (28b)
y3 yi ))11

and
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i - " 33
by % (57 - .}%yf;-) euplos + b,;% % Vifiaps < 263 32 215, 13>

Caq . s \Vi
Oe(X) _ﬁ a|
*b/f <%§% - 7 *) 83/f/<_]0 aK b/f z }TSBﬁK 2 iK + b3 80{3!\_][) ;K
Enp3 (IE:B +3 l4 13) + e (1113 +3 lTé)
by Vi
o (1 - 4038 - 31527
Caa 2
473 | by (S + 2150 ) — 3 & (betape + byesce)a
b3 % (e (3 + 2102 ) + e 0573 + 2153)|
*%bf//gg/; (81317_]%;/;; + 8a3iJg:ﬁ:1)
(292)
C44b3 h h
03 (X) = a7 (,y oé 3.]0 3t 7, 83Js.]0 (0K
i o
 Caaby 2 : :
o ﬁ{ & [8cli3[2 s — e (5 + 212?%)}
3 Vi
h ¢ 1/1
+ 2 &3pcli e + ( eeploas — Eali, 3<> } (29b)
Va 73 \13
C44b3
033 (X) = ’)),7h;7813KJ0 nK
C44b/5 h
a1 (,yz /;7gr,89¢/33.]0 03 + /” 83l3l’<.]O K (29C)

where the coefficients f;, g; and h; are defined the same as those in
Eq. (25), and

O(X) = sgn(S(x1,%2) — X3>£3mc% (yirz;xx)dyk
C pn
= sgn(S(x;,X2) — X3) ?{ darctan?2— 2
c 1~ X1
= Tt[1 — sgn(Cpn(X1,X2))|SEN(S(X1,X2) — X3) (30)

in which S(x4, x;) and Cpn(x1, X2) are defined in Eq. (7) and also illus-
trated in Fig. 1, and sgn(x) is the sign function, and

Fon (Vi) =\ 01 = %0 + (> — %2 31)
Also in Egs. (28a)-(29c),
M
//\ ,—’—
1 (%) = § %ﬁyn')”dyk with N=0,2,4,6;: M<N, M N
M M
Uy = ¢ VX0 =%) 4 \ith N—0,2; M<N+1, MeN

N p3
pn Rin

[Nm (%) = ¢ rgﬂ%,,fb% Jime(X) = ¢ rl’;’:T?,,dy

(32)

We further point out that in the derivation of Eq. (28a), use has
been made of the relation (27c).

Thus, by eliminating the three potential functions y; from Egs.
(14a,b) and Egs. (24a-c), we have achieved an alternative yet more
explicit solution of the elastic field due to a simple dislocation loop,
as given in Egs. (28a)-(29c¢).

It is observed from Eqs. (28a,b) and Eq. (30) that, for a simple
dislocation loop of Type-I described by Eq. (7), the displacement
discontinuities over the dislocation surface are totally attributed
to the function ®, which is extracted from the quasi solid angle
Q,‘, i.e.,

Q= -0 — 3,12, /7; >

However, for a simple dislocation loop of Type-II, we can see
that ® =0, and thus it is the other part on the right hand side of

Eq. (33) that contributes to the displacement discontinuities over
the dislocation surface.

Moreover, we emphasize that, in Egs. (28a,b), the function ®
defined in Eq. (30) is the only term which depends upon the con-
figuration of the dislocation surface bounded by the dislocation
loop. Therefore, we can conclude that: (i) the stress field solutions
(29a-c) are generally valid for an arbitrary dislocation loop,
whether simple or complex; (ii) the displacement field solutions
(28a,b) are also applicable to a complex dislocation loop, provided
that one can express function @ of this complex loop as a superpo-
sition of functions ®’s of its constituent simple-loops (see Fig. 2 for
example). This is feasible due to the existing simple and explicit
form of Eq. (30) for a simple dislocation surface.

The function ® we introduced possesses certain attractive fea-
tures and it can be very convenient in analyzing the dislocation-in-
duced elastic field. As an illustration, let us consider an assembly of
simple and complex dislocation loops. We introduce a finite cylin-
der which is parallel to the x3-axis and just contains all the dislo-
cation surfaces in it, with its top on the plane X3 = X3max and its
bottom on the plane X3 = X3min and its side on the cylindrical sur-
face F(xq,x2)=0, as shown in Fig. 3. Based upon the principle of
superposition, function ® makes no contribution to the displace-
ment field outside the cylindrical surface (i.e., F(x{,Xx2)>0 in
Fig. 3). However, it is not the case inside the cylindrical surface
(i.e., F(xq, x2) <0). For example, for all the field points above the
top (or similarly below the bottom) which lie on a line parallel to
the xs-axis, function ® contributes a constant 2nn to the displace-
ments, with n being some integer. Furthermore, it can be easily
proved that, at infinity, the quasi solid angles become zero. Due
to the above facts, we can derive an alternative expression for ®
from Eq. (33) as

(I)(XE} >X3max) :XSILT%(*QE - 80(3KI§§;\-/V{) = —&30k % %dyk

— 1i o3 _ Yy
D(X3 < X3min) Xllm*x.(_Qi —&o3icl55/ Vi) +g3m7{ wrgx \dy,
3——00 Jc n

It can be seen that the function ® given in Eq. (34) is now inde-
pendent of the configuration of the dislocation surface, whether
simple or not; and it actually applies to all the field points outside
the finite cylinder. We can thus conclude from Egs. (28a,b) and (34)
that, the closed dislocation lines themselves totally determine the
induced displacement field outside the finite cylinder which is
parallel to the xs-axis and circumscribes the dislocation-loop
assembly.

As an immediate application of our general elastic field solu-
tions (28a)-(29c), we now consider a planar dislocation loop of
arbitrary shape which is parallel to the plane of isotropy and lies
on the plane X3 = X3const. IN this special case, Eqs. (28a)-(29¢) can
be considerably simplified to

X3 A

N
2 %3 = X3max

|

I,

L Bottom .
~ -

-~ -

X F(x1,x)>0

Fig. 3. An assembly of simple and complex dislocation loops which is circum-
scribed by a finite cylinder parallel to the xs-axis.



166 J.H. Yuan et al./International Journal of Solids and Structures 50 (2013) 160-175

b N b: 1
Ug(X) = ﬁyagagﬁkl&zk in Q+— 7 (X3const — X3)3a31<[§;3x}
b L
+ ﬁ (X3c0nst - X3) % SBﬁKIE;ik (35&)
bs m,g o by, myg -~
us (X) 47'C D+ (X3c0nst - X3) ));7 —=h £M3K[2 nK:| - ﬁ %83/“10 nK
(35b)
and
x) Caa b/i (X3const — X3) (% % - y_ _> E3picJ o
Oey(X) = — 72— O -
4n +b[i (X3c0nst - X3) % %83/}}\'12;[‘K - b3 T/{ 80(3ch(0;;/{;<
b/f(x3ctmst - X3) 83/i1< <J2 [k + 21:qu1€)
Ca4q 2 ~
47[ V - j E (X3c0nst - X3)(b§83r]h' + br]8351c)J0;3K (363)
*b3 Vﬂg/f(godﬂ.]g;/;g + 80{35.]3;/;;1)/2
 Casb h,,
G3(X) = [27.; (X3const — X3) — . 53\;\J0 oK
o
C44b h . £
47-[/; (V3 1/13-10 3¢ T 7, 83/f1€J6:1K) (36b)
o b Casb hy,
033(X) = 4217; VuhnEosiloe — %(XW“S‘ X3) - T L E3dgp
(36¢)
where @ takes the following simple form via Eq. (30)
D (x) = 7[1 — sgn(Cpn(X1,X2))]SEN(X3c0nst — X3) (37)

It can be easily shown that, Egs. (35a)-(36¢) are mathematically
identical to those derived by Tupholme (1974), and that our solu-
tions are more explicit. Particularly, in our Eqgs. (35a,b), the terms
accounting for displacement discontinuities over the dislocation
surface are separated naturally from the regular parts. If the dislo-
cation loop is a circular one, then Egs. (35a)-(36¢) can be inte-
grated analytically in terms of complete elliptic integrals, as will
be shown in Section 7.

6. Elastic fields due to a straight dislocation segment of
arbitrary orientation

We now consider a directional straight dislocation segment AB
which begins at A (x14, X24, X34) and ends at B (X1, X2, X3p). We ex-
press AB in terms of a parameter t as

te[0,1] (38)

Without loss of generality, we assume that AB lies on a closed
simple dislocation loop C generally defined in Eq. (7), and goes
along the positive direction of this loop.

As discussed in Section 4, although the closed dislocation loop C
always induces a unique elastic field, the open dislocation segment
AB taken out of this loop yields non-unique solutions (see, e.g., Hir-
th and Lothe, 1982; Wang, 1996). Due to the above fact, we stipu-
late that the displacement and stress fields of the dislocation
segment AB share the same form with those of the dislocation loop
C, as given in Egs. (28a)-(29c). However, the involved integrals
originally defined in Egs. (30) and (32) have to be integrated along
the straight segment AB, rather than the closed loop C.

From the original integrals on C in Eqgs. (30) and (32), we can
also obtain the corresponding integrals on AB as

Xi = Xia + (Xip — Xia)t,

— X3) |arctan

1
D(x) = sgn(S(x1,x) (X8 — Xoa)t — (X5 — XZA)]

(%18 — X14)t — (X1 — X14)

0

where S(x1, x3) is defined the same as that in Eq. (30), and

M
M (xig — Xi)t — (Xi —Xia)] -+
AN (Gl gt for 1y 0
IN:mk (x) = M
(xkad,;vnxm n [(xig — Xia )t ;'](Xi =Xi)l"* 4t for oy =0, dpy %0
M
M (xig — Xia)t — (Xi —Xia)] -+
2L e [Nt Kl o g, 0
Iy (X) = M
(Xde,:;l:kA) i [(xip — Xia)t ;%(x,» —Xia)|" 4¢ for Ipn =0, dp #0

(40)

where the over-arrow “—" denotes a directional straight dislocation
line, and

Ypn(E5%5) = Ton [V (6); Xp] /lon = 4/ DIZJn —2Tpat + 2 > 0 (pn #0)

Ri(t:X) = Ry(t):X) = \/(D? - 2Tit + 12)
(41)
in which
Dpn = % (lpn # 0) Tpn = dpnz‘ lpn (lpn # 0)7 D %, T1 = %
pn pn i ;
(42a)
and

Ton = {(%15 — X1), (%25 — X2} bon = /(15 — X14)® + (Xom — Xan) s
Li = {(x18 — X14), (X2 — X24), (X33 — X34)/ Vi },

li= \/(Xw - X1A)2 + (X25 — XZA)Z + (X35 — X3A)2/Vi2§

dpn = {(X1 —X14), (X2 —X24) }, dpn = \/(Xl —Xm)2 + (X2 — X2A)2§
di = {(X1 — x14), (X2 — X24), (X3 — X34)/ Vi }

d; = \/(Xl - X]A)2 + (X2 — XzA)2 + (%3 — X3A)2/Vi2

(42b)

Note that [; (or d;) is the length of the vector I; (or d;) and should
not be confused with the ith component of this vector.

According to the properties of the integrals defined in Eq. (40),
three orientation cases of AB are considered in detail as follows.

Case 1. A straight dislocation segment normal to the plane of
isotropy (lpn = 0)

In this case, we assume that AB lies on the intersection of two
planes X, = Xyconst, Where X,const are two constants. When dp, # 0,
Egs. (28a)-(29c) can be reduced to

b j
ux(x) = ﬁ (Xaconst — Xa)%

by 1 -
gx3ly 3 — 4;5/ &esloas — 47ty for

X [(Xfconst - XE)(Xotconst - Xi)gm/ﬁ (214;1'3 /%2 + 12;i3>

—E¢p3 ( salV+ [0 13)} (43a)
b 2 m,
Us(X) = ﬁ (Xuconst — Xx) g #%/;3122,’3 (43b)
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C44b/; 2 g - 2 ™3
Oey(X) = dey an 2 (Xaconst — Xo) €23 nR V;f Jo st 2 7 Vf I2 B3 T2 72 5 lais
i i
2 (xaconst - xoc)(xiconst - XV)(xrlconst - Xn)goz/B (Jz,‘g - 41;;,‘3 16313)
Caq 2 bﬁz’yxfl
an 2 +{(Xeconst = Xe)Engs + (Xyeonse — Xy)ecsn) (5 + 2035 /77) (442)
+ ; b3 (Xocconst Xfx)[(xéconst - X§)8a113 + (chonst - Xn)gaciﬂ(,]zz,g + ZE;B)
C44b3 h - C44b1; i ( . 2 Ay ty)
03(X) = ———(x X,)—& 3(V;X) = — 7 7 eu3 7 T,
s () 4n (aconst =) Vi walon 4n " ’ P2 b FYP,
2 g - U:(y;X) = {&/ ygyg + Eup3 ,2 aylsy ] 1 Eoc (g#;/l)
X ) T [85133[2;,‘3 - (x:const - xf)(xacconst - Xoc)soclB b 2 ( )
'))3 /z 0.33 (y X) C44 Caabp ga/ l a;g/’]g/f’]
TP 1. o 2y
X <J2:i3 + 2]4;,-3)} +§85/f3.]0;33} (44b) G (Y;X) = 544b/< [81# /zg Oa}igxé;)ﬁ) + e 9%( Vals)] +CAZ,71[J3 Exc3 Oag:;;/)ix)
P casb . 7 (fiytvn)
C44b[g O (V;X) = ‘Z‘n/‘ Sup3 %2 [(3@1 8yfay3 (%fl% Xi— gi))iXi) + % Byxi?}igay,7]
O33(X) = an — (Xaconst — XX)ngnSoc/BJo "3 (44c) cabs oAy
y +~4x ',z (&agi} y, + &3 By: ) [)ly; :
(49)

The involved functions T and ] in Egs. (43a)—(44c) can be re-
duced to two types of integrals below (Gradshteyn and Ryzhik,
2007)

Y Py N _ [T Pa(t) _
Int._./o Rm(t;x)dt (n=0,1,2); lnt._./o R3m(t;x)dt (n=0,1)

(45)

where P,(t) is a polynomial of degree n with respect to t.
Eq. (45) can be further expressed in terms of two basic integrals
below

[ i = o O0R + ne= T]

(%),
T2)\ Rm

where the trivial case of D,,2 = T2 (i.e., d,,, x 1, = 0) is omitted due
to its simplicity. Analytical expressions of the line integrals needed
in Eqgs. (43a)-(44c) for Case 1 are given in Appendix A.

Alternatively, by introducing three higher-order potential func-
tions ; defined as

(46)

/0 R(tx) (D -

0

7Y X) =Vi%;

LM__RZ] In(R; — %) ~3 %8R,

¥i(¥;X) for x; > S(x1,%;) with Cpa(x1,%;) < 0.
iy =

+[%0/3;—?3)2—%Rf2] ln(Ri+y3?+iX3)_%y3TjX3Ri

for x3 < S(x1,x;) with Cpn(x1,X2) < 0; or Cpn(X1,X2) > 0.

(47)

the elastic field solution in Eqs. (43a)-(44c) can then be rewritten
concisely as

X) - ﬂi (chonst , X2const ;s X343 X)

Jij (Xl const; X2const ;s X34} X)

u,»(x) =1y (Xl const; X2const; X3B;

48
gij(X) = (48)

aij (Xl const X2consts X3B; X) -

where

Note that the elastic field solution given in Eq. (48) is also appli-
cable to the trivial case of dp, = 0.

Case 2. A straight dislocation segment parallel to the plane of
isotropy (Ty = Tpn)

In this case, we assume that AB lies on the plane X3 = X3const
where Xs3const 1S @ constant. Thus the elastic field solutions have
the same form as in Eqs. (35a)-(36¢). The involved functions T
and J can be reduced to the following integrals

o Py(1)d1
Int. = /
v (dpn + T2V (i + 72)7

Z=1; N=0,2,4, n=0,1,2; n<N 50)
orZ=3; N=0,2; n=0,1,2; n<N+1 (
with
To :*Tpnv T1=1 *Tpn§ (51)

) 2 ) 2
Apnpon—Tpn > 0, Amem—Tpn

where Ay, = Apy if and only if X3 = X3const, and Ap, =0 if and only if
(di x 1) - k=0, with k being the unit basis vector in the x3-direc-
tion of the Cartesian coordinates.

Eq. (50) can be further expressed as a linear combination of two
types of integrals below (Gradshteyn and Ryzhik, 2007)

Int /“ tdt
 Jr (pn + NP [E (G + T2

B (7 — 7pn)
I(Z“)() _ }'pn)(N1+Z—l)/2

m

@) dé .
X / (ZI)W (Am#2pn; Ny is even,Z = 1,3)

i) (& —
(52a)
R dt
Int. = /

Jr (i o+ T2 (B (G + T2)[

/ = ;pnz /(m — zp Y| NatZ=32q,
(t0) /m A — Z 1) z 1)/ N2 1/2(y2+1)N2/2

(Am# Apn, /Lpn?é07N2 iseven, Z = 173) (52b)

with
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. 12, (m+72 , )
ET) = YL (I # pn);

m (Zm—/pn

12, (Jm—Apn) e , ) (53)
{(7r)= N/ oy (Am # Zpn, Apn # 0)

The trivial case of Ay = Apn OF Apy =0 is omitted here due to its
simplicity.

It can be shown that, Egs. (52a,b) can be integrated analytically
in terms of elementary functions via the following recurrence
relations

f(z2 dlz)" 2 [(zz 1y 1z 7dz + f 2- 1 (neN);
J lzzfﬁznz dz=(1+a) f(lzzafl m—dz—af sz:n’;‘ Z (1,1 € N);
[mi iZn : ‘zzil :tzln ZZil) (neN;
JA% =1zl [ —arctanz =% InZ with i = V=1
(54)

Analytical expressions of the line integrals needed in Egs.
(35a)—(36c) for Case 2 are given in Appendix B.

Case 3. A straight dislocation segment neither normal nor par-
allel to the plane of isotropy (I, # 0 and T # Tpy).

In this case, the integrals defined in Eq. (40) can always be ex-
pressed in terms of linear combinations of the integrals in Eq.
(45) and those of the form

-1
Int. = / %dt (N=2,4,6; Z=1,3; o, are constants)
0 pn 'm
(55)
where y,, and Ry, are defined the same as those in Eq. (41).

It can be shown that Ty, = Ty, if and only if [1,;, x (diy x 1,)] - k=0,
with k being again the unit basis vector in the x3-direction of the
Cartesian coordinates. For the trivial case of T, = Ty, one only needs
to follow the same procedure as presented for Case 2. We thus dis-
cuss the non-trivial case in which Ty, # Tpp.

By means of the following substitution (Gradshteyn and Ryzhik,
2007, where a printing error has been corrected here)

-1
t7w1+w2 71 (56)
with
oy - 1D =Dy
2Ty —Tp'
1 /(D% = DZ)? — 4(DETyn — D2, T} (T — Tyn) .
Tm — Tpn (57)
the integrals in Eq. (55) can be transformed into those of the form
Int. :/ sgn(T + 1)Py(7)d7
(o +72)" 2 [ ) G+ T2)]2
N=2,46; Z=1,3;
b} 7 b b k) 58
<0§n§N+Z—27 n+leN) (58)
with
A )
Ipn = 1 > 0, im:z—T;ﬁO; Boh =L >0 (59)
‘pn m
where
)u;n = DIZm — ZTPH(W1 + WQ) + (w1 + wz)z >0
21;11 :Dlszszn(w1 — ;) + (U, *’(Dz)z >0 (60)

2y = D% = 2T(w + @) + (W) + @,)° #0
o = D% = 2Ty (@) — @,) + (W) — @,)° #0
in which 2,, = 0 if and only if (d;; x I,) - k=0.

When handling the integrals in Eq. (58), one should keep in
mind the following two important points:

(i) Regardless of the complexity of y,, the integral variable 7 is
always real-valued due to the following relations

TER, W -Ty=pEER;
(D? —Df)n)274<D'2 Tpn*DpzanTi)(Ti*Tpn) (VA+VE)? (61 )
i Tf — = I/ ’, 7 > O
(Ti~Tpn) [Wis (2,0 /71]
where
di x i ={Vy,Vpp,Vis}
I x (di x I) = {Wy, Wi, Wiz} (62)

d; x (d; x I;) = {My;,Mp, Mj3}

(ii)) When min{xss,X3p} < X3 < max{xsa,X3p}, the integral inter-
val with respect to T must be divided into two parts because of
the following relation

X3 — X3z
W+ @ =———¢€ (0,1
! X3p — X34 €01
when min{xss, X3z} < X3 < Max{xsa,Xsp} (63)

Based on the above observations, the integral in Eq. (58) is
equivalent to

Int.
00sgN(Tp+1)
— Pp(1)dT
=sgn(to+1) U+ 2 (B i) G+ )P
%0 (64)
P!
Pn( )dt
+sgn(ty + 1) / ot 2 2 (B G e 22
cosgn(t; +1)
in which
'L' :'(D'szl :'(Uz*(wl*]) (65)
0 '(D'z+wl> ‘(Uz+(w171).

For further reduction and simplification of Eq. (64), we only
need to follow exactly the same procedure as presented in Case
2. Analytical expressions of the line integrals needed in Egs.
(28a)-(29c) for Case 3 are listed in Appendix C.

As an immediate application of the above analytical integrals,
we now calculate the quasi solid angle Q5 of an arbitrary polygonal
dislocation loop ABC...DA, which consists of a finite number of
straight dislocation segments AB, BC, ... and DA. By virtue of Eq.
(33), we are able to derive an explicit formula for Q5 as

1
Q3 (X) =-0- ,y3 [(15331 1;332)/15 (15331 [;332) BC’ (1533] 1;332)DA:|
(66)

where, for example,
4w§ (X3 — X3A)[(X1B —X14) (X2 — X24) — (X1 — X1a) (X28 — X24)]
pn pn)3/2 \V/ 4pny/ 43— }'Dﬂ
x[sgn(To + 1)arctan {(t)[3 ‘“g““””)
-‘rSgl'l(T] + 1)arctan Q( )|ocsgn(‘cl+l)]

23 13
(12 31 l2 :32 )AB

(67a)

corresponding to Case 3,

23 13 (X3 — XaA)[(XlB - X1A)(X2 —Xoa) — (X1 — X1A)(X23 - XzA)]
(531 — L3o)as =

B/ Zonr/75 — Jpn

x arctan {(1)l;} (67b)
corresponding to Case 2, and
(1531~ 193)ps = O (67¢)

corresponding to Case 1, and the calculation of ® has been illus-
trated in Section 5.
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The most striking advantage of Egs. (67a-c) lies in the fact that,
the result is totally determined by two end points A(Xq4, X24, X34)
and B(x1p, X2, X3p) Of the straight segment AB and one field point
(%1, X2, X3); thus one does not need to introduce any auxiliary point
into the calculation and know any information about the cut sur-
face. Moreover, the function arctan(x) is single-valued which
ranges from -n/2 to m/2. In other words, Egs. (67a-c) is very con-
venient and efficient in calculating the quasi solid angle Q3 and the
traditional solid angle Q (y; = 1 in this case). The related issue was
also discussed by Barnett (1985, 2007).

In summary, for a straight dislocation segment of arbitrary ori-
entation, the induced displacement and stress fields are expressed
in terms of elementary functions. We also remark that our stress
formulae for segments are more explicit than Willis’ formula (Wil-
lis, 1970) in the transversely isotropic case, and that, to the best of
our knowledge, the displacement formulae for segments presented
in this paper are new and simple. In the next section, we return to
the closed dislocation loop case and provide a new analytical solu-
tion for a circular dislocation loop parallel to the plane of isotropy.

7. A circular dislocation loop parallel to the plane of isotropy

As a special case of our solutions (35a)-(36c¢) in Section 5, we now
consider a flat, circular dislocation loop of radius ry parallel to the
plane of isotropy with its center at the origin of coordinates. The Bur-
gers vector b (bq, by, bs) over the circle is uniform and the induced
fields are expressed in terms of the cylindrical coordinates (p, 0, x3).

From Egs. (35a)-(36¢), the displacements and stresses can be
written explicitly as

Uy = — 2= {b1Qs + 2robs cos 0(,8,11)
+70X3 % [b1 Ly + (by €05 20 + b, sin 20)131}}

68a
Uy = — 4— {b2(23 + 2robs sin0(y,8,114) (68a)
+103 5 [byl; + (by sin 20 — by cos 29)131}}
1 myg,
Uz = — in [b3mo{g0 , + 2ro9(by c0s 0 + b, sin 0) m IW} (68b)

and
011 =40xs <b1 €0s 0 + b sin é)) [(% & ’f—;)]u % & (cos? 0% + sin 0'3*)}

;g,[ﬁ) if:;fob [( ,; )ja—c0526<”g“]3a)}

2P

C.
+ %l x3 by cos 6(%]13 -

Oy =Wy, <b1 cos 0 + by sin 9) [(l L ”*) g (sm 0% + cos? 0]

+ S, b Sin 03]y — % 5 1) + oy [<;—§* AT cos 20(14
3 3

012 = —Lrob 51n26<y“g“]3“) +mx3(b1 sind + b, cos 0) %jw
3

27

_ culy L
o B V% by {b1 51n9<cos 0= ) +sin®0 p)
+b, cos 6 (sin2 ol +cos? 2 )} (69a)
p p

Caql [ 1 ho( . hi

O3 =4 -b1 (g]ﬁ - %]21) — (b1 cos26 + b, sin20) ?i]y
+2x3b5 cos 0 <%]m)}
Caalo [, (1 hy, . h;

023 = _bz <£123 - “/7.121) — (by sin20 — b, cos 20) ?i]y
+2x3b5 sin 0(%]11” (69b)

o3 =0 [xxbl cos 0+ by sin o) “Jm + b3 (7, had2s) (69¢)
where (Gradshteyn and Ryzhik, 2007)
Q; = msgn(x3)(1 + sgn(ro — p)) — 2roX3l2i/y; (70)
and
/" cos (pdq)
Ilac =
0
VP4 (km)} for p#0 (71a)
Pro
o — pCos @
1217/0 41' R d(p
1 To—p :|
=———|K(k) + I(n,k;)| for p #r 71b
e (KO + b k)| for p (71b)
o ToCOS2¢p — pCos @
13, 7/0 —Tz R d(p
1 pi+q Di+ 713 (ro - p)rg ]
= E(k; K(k;) + II(n, k;
ro\/p,-+q{ p? (ki) = p? ) + (ro + p)p? ()
for p#roand p #0 (71c)
and
cospde _ [P p; }
= —K(k;)| for p#0
.]11 A ng ,0"0\/P,— ( ) p
(72a)
Jue [P - L BB 4 k|
0 R; TovPi+4| Pi—4q
(72b)
rpCos2 cos
gy = [ TS0 P05,
0 R;
1 i(2p; — p?) — 6p°rg 2p, - p? }
= E(k;) — K(k;)| for p#0
ro\/pﬁq{ p*(pi—q) ) p? () P
(72¢)
Jo_ g1 [aeEk) 2B )
0 L royPi+q | 300 ,
P ’ (ro+p)p? I(n. ki)
for p#roand p #0 (72d)

in which K(k) and E(k) are the complete elliptic integrals of the first
and second kinds with modulus k, and I1(n, k) is the complete ellip-
tic integral of the third kind with modulus k and parameter n, and
(Khraishi et al., 2000)

Ri=/Pi —qCOS®, Tpn =+/S—(qCOS P,
n=2q/(s+q), ki=+/2q/(p; +q),

pi=S+x3/y q=2pry, s=p?+r13,
p: X%+X%7

(73)
0 = arctan(x,/x1).

During the derivation of Eq. (69a), use has been made of the follow-
ing relation

ol 0(p?I3)
200 _
o o (74)
which can be proved by direct substitution.

We remark that Eqgs. (71a)-(72d) are also applicable to the
trivial case of p =ry, provided that all the terms involving I1(n, k;)
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vanish. For the trivial case of p = 0, the integrals in Eqs. (71a)-(72d)
can be integrated directly and the results are omitted here due to
its simplicity. Furthermore, when p = 0, Egs. (68a)-(69c) are valid,
provided that all the terms involving I3;/p and J4/p vanish, which
can be verified by utilizing the L'Hopital’s rule when p — 0. We fi-
nally remark that our new solutions given in Eqs. (68a)-(69c) are
mathematically identical to those derived by Ohr (1972, 1973);
however, our solutions are more explicit, and are applicable to
arbitrary field points.

8. Numerical examples and discussions

In this section, our explicit solutions are applied to a couple of
dislocation cases to verify their accuracy while illustrating certain
interesting features we pointed out in previous sections.

Example 1: The quasi solid angle Q3 of a planar triangle ABC.

In this example, the quasi solid angle Qj is investigated by vir-
tue of Eq. (66). In Cartesian coordinates (xy, X, X3), Fig. 4 shows the
variation of Q3 with x5 for a generally oriented planar triangle ABC,
with its three vertices being at dimensionless locations A(3,0,0),
B(0,2,1) and ((0,0,3). Fig. 5 shows the variation of Q3 with x; for
a planar triangle ABC, with its positive normal in the x;-direction
and its vertices at dimensionless locations A(0,0,0), B(0,2,1), and
((0,0,3). As verification, the traditional solid angle Q of a planar tri-
angle ABC is also calculated by simply setting y; = 1 in Eq. (66), and
the numerical results are compared with those by Oosterom and
Strackee (1983). It is clear from Figs. 4 and 5 that Eq. (66) is accu-
rate. Moreover, the discontinuities in these two figures are clearly
illustrated by our expression (66): The discontinuities at x3 =1 in
Fig. 4 are totally due to the function ®, while those at x; =0 in
Fig. 5 are due to the remaining part on the right-hand side of Eq.
(66). The effect of 3 on Q3 is also observed from these figures.

Example 2: A glide circular dislocation loop parallel to the plane
of isotropy.

For this problem, on the one hand, the analytical solution in
terms of complete elliptic integrals is available, as given in Sec-
tion 7 of this paper and in Ohr (1973). On the other hand, a circular
loop can be approximated with arbitrary accuracy by a series of
end-to-end connected straight dislocation segments. Therefore,
this will help verify our solutions for both circular dislocation loops
and straight dislocation segments.

Shown in Figs. 6 and 7 are, respectively, the displacement
component u; and the stress component o3 produced by a glide
circular dislocation loop of radius ry (=50b) with its centre being
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Fig. 8. (a) An inclined, planar hexagonal dislocation loop. (b) A planar prismatic
hexagonal dislocation loop parallel to the plane of isotropy.

at (0,0,0), subjected to a constant Burgers vector (b,0,0) on its face.
When applying the straight segment solution, an inscribed regular
32-side polygon is used to approximate such a circle. It is observed
from Figs. 6 and 7 that, the numerical results of our polygonal loop
solution in terms of the straight segment solutions, i.e., (35a)-(36¢)
plus (39) and (40), are in good agreement with those of our circular
loop solution (68a)-(69c¢) and those of Ohr’s solution. For other dis-
placement and stress components, the numerical results via these
three different approaches also agree well with each other. The
elastic stiffness constants of transverse isotropy used here, as well
as in the subsequent Examples 3 and 4, are those of graphite (Ohr,
1973), Hamely, c11 =106, c33=3.65, c44=04, c13=1.5, cg6=44
(10" dyn/cm?). The corresponding isotropic Lamé constants used
in Example 3 below are /= 14.00, u = 21.94 (10'! dyn/cm?), which
are determined by the Voigt average for graphite (Hirth and Lothe,
1982). We also remark that all the results presented in Example 2,
3 and 4 are dimensionless.

Example 3: An inclined, planar hexagonal dislocation loop.

In this Example 3, we consider an inclined, planar hexagonal
dislocation loop ABCDEF subjected to a constant Burgers vector
(b/v/2,-b[\/2,0) on its face, with the six vertices being at
A(a,0,—-a), B(0,a,—-a), C((-a,a0), D(—a,0,a), EO,—a,a),
F(a, —a, 0) where a = 50b, as shown in Fig. 8a. Fig. 8b is needed in
the next example.

The induced displacement and stress components are evaluated
based on our exact closed-form solutions (28a)-(29c) plus (39) and
(40) for a single straight line segment, along with the method of

0.5+

— Transverse isotropy

0.4 = === [sotropy of the Voigt average

0.3 4
0.2 4

0.1

0.0

u'lb

-0.1 4 =
-0.2 4
-0.3

-0.4

05+t
100 80 60 40 20 0 20 40 60 80 100

Fig. 9. The non-zero displacements in local coordinates due to an inclined, planar
hexagonal dislocation loop ABCDEF (with fixed x} /b =0, x,/b = 0).
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Fig. 10. The non-zero stresses in local coordinates due to an inclined, planar
hexagonal dislocation loop ABCDEF (with fixed x}/b =0, x,/b = 0).

superposition. The results are shown in Figs. 9 and 10 in local
Cartesian coordinates (x}, x5, x;), with the local unit basis vectors
being

i=(1,-1,0/v2, j=(1,1,-2)/v6, K =(1,1,1)/V3 (75)

Only the non-zero components of displacements and stresses
are depicted here. It is observed from Figs. 9 and 10 that, while
the dislocation-induced displacements are very close to each other
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Fig. 11. The displacements (u in (a) and u; in (b)) due to one side AB of a prismatic
hexagonal loop parallel to the plane of isotropy and due to the closed loop (with
fixed x,/b = 25, x3/b =5).
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in the transversely isotropic and isotropic full spaces, the induced
stresses in these two full spaces are very different. Furthermore,
due to the material anisotropy, an extra shear stress component
013 is introduced, apart from the stress component g3 which is
also observed in the isotropic full space.

Example 4: Non-uniqueness of the elastic field of a straight dis-
location segment.

To illustrate the non-uniqueness of the displacement and stress
fields due to a straight dislocation segment, we consider a planar
hexagonal dislocation loop of side-length a parallel to the plane
of isotropy, with its six vertices being at A(a, 0, 0), B(a/2, /3a/
2,0), ((—a/2,,/3a/2,0), D(-a,0,0), E(—af2, —./3a/2,0) and
Fa/2, —+/3a/2,0), as shown in Fig. 8b. Since the introduction of
the three integral identities (27a-c) only changes the form of the
elastic field solution related to the third component of b, a pris-
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Fig. 12. The stresses (a7 in (a), g2, in (b), and o3 in (c)) due to one side AB of a
prismatic hexagonal loop parallel to the plane of isotropy and due to the closed loop
(with fixed x,/b = 25, x3/b =5).

matic loop with Burgers vector (0,0,b) is studied here (a=50b),
and we focus only on the representative segment AB of this loop
in our discussion.

Two types of infinitesimal dislocation line element, correspond-
ing to two different line-integral representations of the elastic field
due to an arbitrary dislocation loop, are adopted to develop the
straight dislocation segment solutions, i.e.,

Solution-1: the one corresponding to Egs. (28a)-(29¢), and

Solution-2: the one constructed by re-substituting Eq. (27c) into
Eq. (28a), Eq. (27a) into Eq. (29a), and Eq. (27b) into Eq. (29b). Note
that us and o33 are not affected by this procedure, thus will not be
discussed below.

The numerical results for the displacement and stress fields
based on these two different solutions are shown in Figs. 11 and
12. It is observed that, the displacements and stresses due to the
single segment AB based on Solution-1 are obviously different from
those based on Solution-2; however, for the closed planar hexago-
nal loop, both solutions predict the same unique elastic field, no
matter which kind of dislocation line element is utilized to con-
struct this closed loop. We also point out that, since the stresses
g,3 due to segment AB based on these two solutions differ from
each other only slightly, the corresponding curves are omitted.

9. Conclusions

In this paper, we have derived a simple line-integral represen-
tation of the displacement and stress fields due to an arbitrary dis-
location loop in a transversely isotropic elastic full space. In the
case of transverse isotropy, our displacement formulae are simpler
and more explicit than Indenbom and Orlov’s formula (Hirth and
Lothe, 1982), and our stress formulae are simpler and more effi-
cient than Mura’s formula (Hirth and Lothe, 1982). Particularly,
we apply our line-integral solution for dislocation loops to a
straight dislocation segment of arbitrary orientation, and for the
first time we express both the induced displacements and stresses
uniformly in terms of elementary functions. Meanwhile, we rigor-
ously demonstrate the non-uniqueness of the elastic field due to an
open dislocation segment. We further give a new explicit formula
for calculating accurately and efficiently the traditional solid angle
of an arbitrary polygonal dislocation loop. For a circular dislocation
loop parallel to the plane of isotropy, a new explicit expression of
the induced elastic field is also presented in terms of complete
elliptic integrals, which is valid for arbitrary field points.

Unlike the previous treatment of the corresponding isotropic
case in the literature, we have introduced three quasi solid angles
to describe the displacement discontinuities over the dislocation
surface in a transversely isotropic full space. Based on a convenient
line integral representation of the quasi solid angle, we are able to
extract a simple and intuitive step function to characterize the
dependence of the displacements on the configuration of the dislo-
cation surface. Further, we conclude that, for any complex assem-
bly of dislocation loops which is entirely located within a finite
cylinder normal to the plane of isotropy, the induced displacement
field outside the cylinder can be totally determined by the integra-
tion over the closed dislocation lines, independent of the disloca-
tion surface configurations inside.

We finally point out that, from the present line-integral repre-
sentation for a finite dislocation loop, a closed-form solution for
an infinitesimal dislocation loop can also be achieved by the limit-
ing process, which is useful in developing numerical solutions of
3D crack problems via the distributed dislocation technique (Hills
et al., 1996). The present approach is also applicable to infinite
straight dislocations of arbitrary orientation, provided that one cal-
culates the involved divergent integrals properly in the finite-part
sense.
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Appendix A. A straight dislocation segment normal to the plane
of isotropy

Corresponding to Case 1 in Section 6, the line integrals required
in Eqgs. (43a)-(44c) are listed as follows

I _ (X35 —X3a) [ de
Nam3 dy o Rm

w5 (Xp— X3A) X3 — X34 ! g o
R =2 Lz Raly+ (T2 t) [ o] (N=2.4)
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— 1 1
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(X3 — X34)

B = T[ g (/R (

X3p — X34 R

x3_x3">/ﬂ dt] (N=0,2) (A2)

The integrals in Eq. (46) are also needed here.

Appendix B. A straight dislocation segment parallel to the plane
of isotropy

Corresponding to Case 2 in Section 6, the line integrals required
in Eqgs. (35a)-(36c¢) are listed as follows
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where
Iy = 2(Xp — Xea) (Xys — Xya) Ton — (Xe — Xen) (Xpg — Xya)
—(Xep — Xea) (X — Xya) (B3)
To = (X: — Xea) (Xy — Xya) — (X8 — Xea) (Xyp — XWA)Dgn

Again, the integrals in Eq. (46) are needed in Eqgs. (B1) and (B2).
Meanwhile, we also need to evaluate the integrals of the form
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where 7¢, 71, Apn, 4m are defined in Eq. (51), and the following inte-
grals are involved
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with ¢ and { defined in Eq. (53). The trivial case of Z; = Apn OF Jpp =0
is omitted here.

Appendix C. A straight dislocation segment neither normal nor
parallel to the plane of isotropy

The line integrals required in Eqs. (28a)-(29c) for Case 3 are
listed as follows
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where
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71 = 3100 + T21A10 + (2Tpnl 21 4 T20) Aai
70 = (U31 = D3,Ta1)An + T30Ag0 + T20Av0
I's1 = I'31(2TpnA11 + Avo) + T30Aq1;
I'go = —Dlzml";n/\n +I'30Aq0 (©3)

When [l x (dy, x 1,)] - k=0, ie., T, =Ty, we need Eq. (46), Egs.
(B4)-(B6) and the following integrals

14

(12, — 2n)*?

/ tdt B
(pn + 72)° [ (om + 72)]'/2

3 E-1 3 ¢ 1 ¢
[m1n6+1+85214(g2_1)2 for Am # Apn
7dt 1 1
=—— (C4)
/ﬁium+raﬁz b [ (o + 72)]'7?
and
/ dr [
(Zpn + T2 [, (7 +ﬂwﬂ PR G — 2

(3 /m — pnm) 75 + 4 m
K| Bm e e Jim 7 Jpn, Jpn # 0
+@ 22— pnm + ).fm) arctan{

dt 1 T
_— — for J, #0 C5
/uium+raﬁﬂ o[BG + ) )

with ¢ and ¢ being defined in Eq. (53). Again, the trivial case of i, =
Jpn OT Apn =0 is omitted here.

When [l x (diy x 17)] - kK # 0, i.e., T, # Tpn, we need the follow-
ing integrals

ll;lH_dethWZ /Tl (®11T + Oqg)sgn(T + 1)
7 (

0 YRy Ton Sty (pn + T)[(By) o + 7))
r T1 (921T+®2u) gn(t+1) 7
/ 1H1f+1"0d 2w, +f0 Cpn+72)[(Iy ) m+72)] 2 dt
+ 32 T (@31‘c+(~)30 sgn(t+1)
(%n) _+ffo Cpn+72)? (I3 /) O +72)] 72 dr

i T1  (O417+O40)sgn(T+1) 7

+fu (pn+T2) (%25 Gm+12)] /2 dt
T1 (®51r+®50 sgn(t+1)

+ffu Gt 722 (B, m(/mﬂ?)ﬂ/zdr
T1 (O617+Og0)sgN(T+1)

+ Cpn+72) (0, ;></m+r2>1“2d

/ F1t+1"0dt7 2w,

()’

L)

o (©17+00)sgN(T+1) (7
%0 [l ) U722

j‘c] (031 7+0O30)sgn(t+1)
0 (dpn+72)[(lpy ) Um+72 P2

1 f]f-‘rfo 72@2 |:+ (C6)

YR

pnitm

where 7q, 71 and Ap,, An are defined in Egs. (65) and (59) respec-
tively, and

(OO :fl(w1 +w2)+f0; (02 :fl(wl — ;) + I

@21 = @]]; ®20 = 2@)11 + ®10
@31 = 2@10 + (1 - ;hpll)(al]; ®30 = (1 - ;“DH)®10 - 2}“13“@11
B4 =011; Oy =401 + Oy

05 =2[(3 -
Os0 = 2[(3 -

;Lpn)gll + 2(")10}?
Jpn)©O10 + 2(1 — 225n)O14]

@61 = [(1 = Jpn)? — 42pn]O11 + 4(1 — 7pn)O1o )
®60 = [(1 - ;“Dn)z - 42Pn}®10 - 4;vpn(‘1 - }vpn)®11

As is discussed in Section 6 for Case 3, the integrals involved in
Eq. (C6) can be integrated analytically via Eq. (64).
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