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Abstract
A meshless local Petrov–Galerkin (MLPG) method is presented for the analysis of functionally graded material (FGM)

plates with a sensor/actuator magnetoelectroelastic layer localized on the top surface of the plate. The Reissner–Mindlin

shear deformation theory is applied to describe the plate bending problem. The expressions for the bending moment,

shear force and normal force are obtained by integration through the FGM plate and magnetoelectric layer for the

corresponding constitutive equations. Then, the original three-dimensional (3D) thick-plate problem is reduced to a

two-dimensional (2D) problem. Nodal points are randomly distributed over the mean surface of the considered plate.

Each node is the center of a circle surrounding the node. The weak-form on small subdomains with a Heaviside step

function as the test function is applied to derive local integral equations. After performing the spatial MLS

approximation, a system of ordinary differential equations of the second order for certain nodal unknowns is obtained.

The derived ordinary differential equations are solved by the Houbolt finite-difference scheme. Pure mechanical loads

or electromagnetic potentials are prescribed on the top of the layered plate. Both stationary and transient dynamic loads

are analyzed.

1. Introduction

A number of materials have been used for active control

of smart structures. Piezoelectric materials, magnetostrictive

materials, shape memory alloys, and electro-rheological fluids

have all been integrated with structures to make smart

structures. Among them, piezoelectric, electrostrictive and

magnetostrictive materials have the capability to serve as

both sensors and actuators. Distributed piezoelectric sensors

and actuators are frequently used for active vibration control

of various elastic structures [1–3]. It requires finding the

optimum number and placement of actuators and sensors for

a given plate [4]. Batra et al [5] analyzed a similar problem

with fixed PZT layers on the top and bottom of the plate.

A rich literature survey is available on the shape control of

structures, especially through the application of piezoelectric

materials [6]. The PZT actuators are usually poled in the

plate thickness direction. If an electric field is applied in the

plate thickness direction, the actuator lateral dimensions are

charged and strains are induced in the host plate. Mechanical

models for studying the interaction of piezoelectric patches

fixed to a beam have been developed by Crawley and de

Luis [7], and Im and Atluri [8]. Later, the fully coupled

electromechanical theories have been applied. Thornburgh

and Chattopadhyay [9] used a higher-order laminated plate

theory to study deformations of smart structures.

An ideal actuator, for distributed embedded application,

should have high energy density, negligible weight, and point

excitation with a wide frequency bandwidth. Terfenol-D, a

magnetostrictive material, has the characteristics of being

able to produce large strains in response to a magnetic

field [10]. Krishna Murty et al [11] proposed magnetostrictive

actuators that take advantage of the ease with which the

actuators can be embedded, and the use of the remote

excitation capability of magnetostrictive particles as new

actuators for smart structures. Friedmann et al [12] used the

magnetostrictive material Terfenol-D in high-speed helicopter

rotors and studied the vibration reduction characteristics.

Recently, magnetoelectroelastic (MEE) materials have found

many applications as sensors and actuators for the purpose

of monitoring and controlling the response of structures,

respectively. The MEE layers are frequently embedded into

laminated composite plates to control the shape of plates. The

magnetoelectric forces give rise to strains that can reduce

the effects of the applied mechanical load. Thus structures

can be designed using less material and hence less weight.

Pan [13] and Pan and Heyliger [14] presented the analytical

solution for the analysis of simply supported MEE laminated
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rectangular plates, regarding static and free vibration. Wang

and Shen [15] obtained the general solution of the 3D

problem in transversely isotropic MEE media. Chen et al [16]

established a micromechanical model for the evaluation of the

effective properties in layered composites with piezoelectric

and piezomagnetic phases. Zheng et al [17] presented

a new class of active and passive magnetic constrained

layer damping treatment for controlling the vibration of

three-layer clamped–clamped beams. Lage et al [18] applied

the layerwise partial mixed finite element analysis for MEE

plates.

A special class of composite materials known collectively

as functionally graded materials or FGMs, first developed in

the late 1980s, is characterized by the smooth and continuous

change of mechanical properties with Cartesian coordinates

(Miyamoto et al [19]). As far as the authors are aware, very

limited works can be found in the literature for the active

control of FGM structures. There are some papers where only

piezoelectric elements are utilized for active control of the

FGM plates. Liew et al [20] have developed a finite element

formulation based on the first-order shear deformation theory

for static and dynamic piezothermoelastic analysis and active

control of FGM plates subjected to a temperature gradient

using integrated piezoelectric sensor/actuator layers. No paper

has been published to date for active control of FGM plates by

MEE elements.

The solution of a general boundary or initial boundary

value problems for laminated MEE plates requires advanced

numerical methods due to the high mathematical complexity.

Besides the well established FEM, the meshless method

provides an efficient and popular alternative to the FEM.

The elimination of shear locking in thin-walled structures

by FEM is difficult and the developed techniques are

less accurate. Focusing only on nodes or points instead

of elements used in the conventional FEM, meshless

approaches have certain advantages. The moving least-square

(MLS) approximation ensures C1 continuity which satisfies

the Kirchhoff hypotheses. The continuity of the MLS

approximation is given by the minimum between the

continuity of the basis functions and that of the weight

function. So continuity can be tuned to a desired degree.

The results showed excellent convergence; however, the

formulation has not been applied to shear deformable

laminated MEE plate problems to date. The meshless

methods are very appropriate for modeling nonlinear plate

problems [21]. One of the most rapidly developed meshfree

methods is the meshless local Petrov–Galerkin (MLPG)

method. The MLPG method has attracted much attention

during the past decade [22–27] for many problems in

continuum mechanics.

In the present paper we will present for the first time

a meshless method based on the local Petrov–Galerkin

weak-form to solve dynamic problems for the FGM plate

with MEE layer used as a sensor or actuator. The bending

moment and shear force expressions are obtained by

integration through the laminated plate for the considered

constitutive equations in the FGM plate and MEE layer. It

should be pointed out that, for FGM, the variation of the

induced field quantities in the thickness direction would be

more complicated [28] and one should be cautious when

introducing FGM into the system. The Reissner–Mindlin

governing equations of motion are subsequently solved for

an elastodynamic plate bending problem. It allows one to

reduce the original 3D thick-plate problem to a 2D problem.

Nodal points are randomly distributed over the mean surface

of the considered plate. Each node is the center of a

circle surrounding this node. A similar approach has been

successfully applied to Reissner–Mindlin plates and shells

under dynamic load [29, 30]. Long and Atluri [31] applied the

meshless local Petrov–Galerkin method to solve the bending

problem of a thin plate. Soric et al [32] have performed

a 3D analysis of thick plates, where a plate is divided by

small cylindrical subdomains for which the MLPG is applied.

Homogeneous material properties of plates are considered in

previous papers.
The weak-form on small subdomains with a Heaviside

step function as the test functions is applied to derive local

integral equations. Applying the Gauss divergence theorem to

the weak-form, the local boundary-domain integral equations

are derived. After performing the spatial MLS approximation,

a system of ordinary differential equations for certain nodal

unknowns is obtained. Then, the system of second-order

ordinary differential equations resulting from the equations of

motion is solved by the Houbolt finite-difference scheme [33]

as a time-stepping method. Numerical examples are presented

and discussed to show the accuracy and efficiency of the

present method.

2. Local integral equations for laminated plate
theory

A laminate plate contains the FGM plate and a MEE layer

bonded on the top of the elastic plate. Consider a plate of total

thickness h composed of two layers with the mean surface

occupying the domain � in the plane (x1, x2). The thickness

of the FGM plate is considered to be h1 and the MEE layer

to be h2 = z3 − z2. The x3 ≡ z axis is perpendicular to the

mid-plane (figure 1) with the origin at the bottom of the plate.
The spatial displacement field has the following form [34]

u1(x, x3, τ ) = u0 + (z − z011)w1(x, τ ),

u2(x, x3, τ ) = v0 + (z − z022)w2(x, τ ),

u3(x, τ ) = w3(x, τ ),
(1)

where z011 and z022 indicate the position of the neutral plane in

the x1- and x2-direction, respectively. In-plane displacements

are denoted by u0 and v0, rotations around x1- and x2-axes are

denoted by w1 and w2, respectively, and w3 is the out-of-plane

deflection. The linear strains are given by

ε11(x, x3, τ ) = u0,1(x, τ )+ (z − z011)w1,1(x, τ ),

ε22(x, x3, τ ) = v0,2(x, τ )+ (z − z022)w2,2(x, τ ),

ε12(x, x3, τ ) = [u0,2(x, τ )+ v0,1(x, τ )]/2
+ [(z − z011)w1,2(x, τ )+ (z − z022)w2,1(x, τ )]/2,

ε13(x, τ ) = [w1(x, τ )+ w3,1(x, τ )]/2,
ε23(x, τ ) = [w2(x, τ )+ w3,2(x, τ )]/2.

(2)

2
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Figure 1. Sign convention of bending moments, forces and layer
numbering for a laminate plate.

The FGM plate with pure elastic properties can be

considered as a special MEE material with vanishing

piezoelectric and piezomagnetic coefficients. Then, the

FGM plate with a MEE layer can be analyzed generally

as a laminated plate with corresponding constitutive

equations. The variation of material parameters with Cartesian

coordinates has to be considered there. The constitutive

equations for the stress tensor, the electrical displacement and

the magnetic induction are given by Nan [35]

σij(x, x3, τ ) = cijkl(x)εkl(x, x3, τ )− ekij(x)Ek(x, x3, τ )

− dkij(x)Hk(x, x3, τ ), (3)

Dj(x, x3, τ ) = ejkl(x)εkl(x, x3, τ )+ hjk(x)Ek(x, x3, τ )

+ αjk(x)Hk(x, x3, τ ), (4)

Bj(x, x3, τ ) = djkl(x)εkl(x, x3, τ )+ αkj(x)Ek(x, x3, τ )

+ γjk(x)Hk(x, x3, τ ), (5)

where {εij,Ei,Hi} is the set of secondary field quantities

(strains, intensity of electric field, intensity of magnetic field)

which are expressed in terms of the gradients of the primary

fields such as the elastic displacement vector, potential of

electric field, and potential of magnetic field {ui, ψ,μ},
respectively. Finally, the elastic stress tensor, electric

displacement, and magnetic induction vectors {σij,Di,Bi}
form the set of fields conjugated with the secondary fields

{εij,Ei,Hi}. The constitutive equations correlate these two

last sets of fields in continuum media including the multifield

interactions.

The plate thickness is assumed to be small as compared

to its in-plane dimensions. The normal stress σ33 is negligible

in comparison with other normal stresses. In the case

of some crystal symmetries, one can formulate also the

plane-deformation problems [36]. For the poling direction

along the positive x3-axis, equations (3)–(5) are reduced to

the following matrix forms

⎡
⎢⎢⎢⎢⎢⎣

σ11

σ22

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 0 0 0

c12 c22 0 0 0

0 0 c66 0 0

0 0 0 c55 0

0 0 0 0 c44

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ε11

ε22

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎣

0 0 e31

0 0 e32

0 0 0

e15 0 0

0 e15 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎣

0 0 d31

0 0 d32

0 0 0

d15 0 0

0 d15 0

⎤
⎥⎥⎥⎥⎥⎦

×
⎡
⎢⎣

H1

H2

H3

⎤
⎥⎦ ≡ C

⎡
⎢⎢⎢⎢⎢⎣

ε11

ε22

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎦ − L

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ − K

⎡
⎢⎣

H1

H2

H3

⎤
⎥⎦ ,(6)

⎡
⎢⎣

D1

D2

D3

⎤
⎥⎦ =

⎡
⎢⎣

0 0 0 e15 0

0 0 0 0 e15

e31 e32 0 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ε11

ε22

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎦

+
⎡
⎢⎣

h11 0 0

0 h22 0

0 0 h33

⎤
⎥⎦

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ +

⎡
⎢⎣
α11 0 0

0 α22 0

0 0 α33

⎤
⎥⎦

×
⎡
⎢⎣

H1

H2

H3

⎤
⎥⎦ ≡ G

⎡
⎢⎢⎢⎢⎢⎣

ε11

ε22

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎦ + H

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ + A

⎡
⎢⎣

H1

H2

H3

⎤
⎥⎦ ,(7)

⎡
⎢⎣

B1

B2

B3

⎤
⎥⎦ =

⎡
⎢⎣

0 0 0 d15 0

0 0 0 0 d15

d31 d32 0 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ε11

ε22

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎦

+
⎡
⎢⎣
α11 0 0

0 α22 0

0 0 α33

⎤
⎥⎦

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ +

⎡
⎢⎣
γ11 0 0

0 γ22 0

0 0 γ33

⎤
⎥⎦

×
⎡
⎢⎣

H1

H2

H3

⎤
⎥⎦ ≡ R

⎡
⎢⎢⎢⎢⎢⎣

ε11

ε22

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎦ + A

⎡
⎢⎣

E1

E2

E3

⎤
⎥⎦ + M

⎡
⎢⎣

H1

H2

H3

⎤
⎥⎦ .(8)

Maxwell’s vector equations in the quasi-static approximation

are satisfied if the electric vector and magnetic intensity are

expressed as gradients of the scalar electric and magnetic

3
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potentials ψ(x, τ ) and μ(x, τ ), respectively [36],

Ej = −ψ,j, (9)

Hj = −μ,j. (10)

Since the MEE layer is thin, the in-plane electric and magnetic

fields can be ignored, i.e., E1 = E2 = 0 and H1 = H2 = 0 [37].

It is reasonable to assume that
(|D1,1|, |D2,2|

) � |D3,3| [2]

and (|B1,1|, |B2,2|)� |B3,3|. Then, the Maxwell equations are

reduced to:

D3,3 = 0. (11)

B3,3 = 0. (12)

The electric and magnetic potentials in the elastic FGM plate

vanish. In the MEE layer both potentials are assumed to be

varying quadratically in the z direction:

ψ(x, z, τ ) = ψ1(x, τ )
z − z2

h2
+ ψ2(x, τ )(z − z2)

2, (13)

μ(x, z, τ ) = μ1(x, τ )
z − z2

h2
+ μ2(x, τ )(z − z2)

2. (14)

Substituting potentials (13) and (14) into the electrical

displacement and magnetic induction expressions (7) and (8)

one obtains

D3(x, z, τ ) = e31

[
u0,1(x, τ )+ w1,1(x, τ )(z − z011)

]
+ e32

[
v0,2(x, τ )+ w2,2(x, τ )(z − z022)

]
− h33

ψ1(x, τ )
h

− 2h33ψ2(x, τ )(z − z2)

− α33
μ1(x, τ )

h
− 2α33μ2(x, τ ) (z − z2) , (15)

B3(x, z, τ ) = d31

[
u0,1(x, τ )+ w1,1(x, τ )(z − z011)

]
+ d32

[
v0,2(x, τ )+ w2,2(x, τ )(z − z022)

]
− α33

ψ1(x, τ )
h

− 2α33ψ2(x, τ )(z − z2)

− γ33
μ1(x, τ )

h
− 2γ33μ2(x, τ )(z − z2). (16)

Both expressions have to satisfy the Maxwell equations (11)
and (12). Then, one gets the expressions for ψ2 and μ2

ψ2(x, τ )

= (α33d31 − e31γ33)w1,1(x, τ )+ (d32α33 − e32γ33)w2,2(x, τ )
2 (α33α33 − γ33h33)

,

(17)

μ2(x, τ )

= (e31α33 − d31h33)w1,1(x, τ )+ (e32α33 − d32h33)w2,2(x, τ )
2 (α33α33 − γ33h33)

.

(18)

The position of the neutral planes in a pure bending case

(vanishing electric and magnetic fields) is obtained from the

condition (no summation is assumed through α)∫ h

0

σαα(x, z, τ ) dz = 0, for α = 1, 2. (19)

Consider a two-layered composite with layer thicknesses h1

and h2, and the corresponding material parameters c(1)αβ and

c(2)αβ . In the first FGM layer, one can assume a polynomial

variation of material parameters as

c(1)αβ = c(1)αβb +
(

c(1)αβt − c(1)αβb

)(
z

h1

)n

(20)

with c(1)αβb and c(1)αβt corresponding to material parameters on

the bottom and top surfaces of the plate and n being the

exponent. We then get the position of the neutral plane for

individual deformations

zoαα

= c(1)ααbh2
1 − (c(1)ααt − c(1)ααb)h

2
1

2
n+2 + c(2)αα(h2

2 + 2h1h2)

2[c(2)ααh2 + c(1)ααbh1 − (c(1)ααt − c(1)ααb)
h1

n+1 ]
. (21)

Generally we have two neutral planes if the material

properties in directions 1 and 2 are different. For the bending

moment M12 we should define a neutral plane too. We can

generalize formula (21) to replace c(i)αα by c(i)66 to get z012.

Despite the stress discontinuities, one can define integral

quantities such as the bending moments Mαβ , shear forces Qα
and normal stresses Nαβ as

⎡
⎢⎣

M11

M22

M12

⎤
⎥⎦ =

∫ h

0

⎡
⎢⎣
σ11

σ22

σ12

⎤
⎥⎦ (z − z0αβ) dz

=
N∑

k=1

∫ zk+1

zk

⎡
⎢⎣
σ11

σ22

σ12

⎤
⎥⎦
(k)

(z − z0αβ) dz

[
Q1

Q2

]
= κ

∫ h

0

[
σ13

σ23

]
dz = κ

N∑
k=1

∫ zk+1

zk

[
σ13

σ23

](k)
dz,

⎡
⎢⎣

N11

N22

N12

⎤
⎥⎦ =

∫ h

0

⎡
⎢⎣
σ11

σ22

σ12

⎤
⎥⎦ dz =

N∑
k=1

∫ zk+1

zk

⎡
⎢⎣
σ11

σ22

σ12

⎤
⎥⎦
(k)

dz,

(22)

where κ = 5/6, as in the Reissner plate theory.

Substituting equations (2) and (6) into the formulas

for the moment and forces (22) and considering the FGM

properties (20), we obtain the expression of the bending

moments Mαβ , shear forces Qα and normal stresses Nαβ for

α, β = 1, 2, in terms of rotations, lateral displacements and

electric potential of the layered plate. Expressions are given

in appendix A.

By ignoring the coupling effect from inertia forces

between in-plane and bending cases, one has the governing

equations in the following form [38]:

Mαβ,β(x, τ )− Qα(x, τ ) = IMαẅα(x, τ ), (23)

Qα,α(x, τ )+ q(x, τ ) = IQẅ3(x, τ ), (24)

Nαβ,β(x, τ )+ qα(x, τ ) = IQüα0(x, τ ), x ∈ �,
(25)

4
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where

IMα =
∫ h

0

(z − z0αα)
2ρ(z) dz

=
2∑

k=1

∫ zk+1

zk

ρ(k)(z − z0αα)
2 dz

=
N∑

k=1

ρ(k)[ 1
3 (z

3
k+1 − z3

k)

− z0αα(z
2
k+1 − z2

k)+ z2
0αα(zk+1 − zk)],

IQ =
∫ h

0

ρ(z) dz =
2∑

k=1

∫ zk+1

zk

ρ(k) dz =
N∑

k=1

ρ(k) (zk+1 − zk)

are global inertial characteristics of the laminate plate. If the

mass density is constant throughout the plate thickness, we

obtain

IM = ρh3

12
, IQ = ρh.

Throughout the analysis, the Greek indices vary from 1 to

2, and the dots over a quantity indicate differentiations with

respect to time τ . A transversal load is denoted by q(x, τ ),
and qα(x, τ ) represents the in-plane load.

The governing equations (23)–(25) contain 5 equations

for 7 unknowns (w1,w2,w3, u0, v0, ψ1, μ1). Therefore, we

need two additional equations for the unknown ψ1 and μ1.

There are two possibilities to prescribe the electromagnetic

conditions:

(a) The layered plate is under a mechanical load and the

electromagnetic potentials are induced on the top surface of

the plate. The MEE layer is then used as a sensor. Thus, the

electric displacement D3 and magnetic induction B3 given by

equations (15) and (16) vanish on the top surface

e31[u0,1(x, τ )+ w1,1(x, τ )(h − z011)]
+ e32[v0,2(x, τ )+ w2,2(x, τ )(h − z022)]
− h33

ψ1(x, τ )
h2

− 2h33ψ2(x, τ )h2 − α33
μ1(x, τ )

h2

− 2α33μ2(x, τ )h2 = 0, (26)

d31[u0,1(x, τ )+ w1,1(x, τ )(h − z011)]
+ d32[v0,2(x, τ )+ w2,2(x, τ )(h − z022)]
− α33

ψ1(x, τ )
h2

− 2α33ψ2(x, τ )h2 − γ33
μ1(x, τ )

h2

− 2γ33μ2(x, τ )h2 = 0. (27)

The governing equations (23)–(25) with two additional

equations (26) and (27) give a unique formulation for the

solution of the layered plate under a mechanical load.

(b) The plate under prescribed electromagnetic potentials

is deformed and is now used as an actuator. Finite values of

potentials, ψ̃ and μ̃, are prescribed on the top surface and

vanishing values on the bottom,

ψ(x, h, τ ) = ψ̃ = ψ1(x, τ )+ ψ2(x, τ )h2
2, (28)

μ(x, h, τ ) = μ̃ = μ1(x, τ )+ μ2(x, τ )h2
2. (29)

Substituting equations (17) and (18) into (28) and (29),

respectively, we obtain expressions for ψ1 and μ1

ψ1(x, τ ) = ψ̃

− (α33d31 − e31γ33)w1,1(x, τ )+ (d32α33 − e32γ33)w2,2(x, τ )
2 (α33α33 − γ33h33)

h2
2, (30)

μ1(x, τ ) = μ̃

− (e31α33 − d31h33)w1,1(x, τ )+ (e32α33 − d32h33)w2,2(x, τ )
2 (α33α33 − γ33h33)

h2
2. (31)

In this case the unknowns are reduced to three mechanical
quantities, since electromagnetic quantities with quadratic
approximation along the thickness of MEE layer are
expressed through mechanical ones.

The MLPG method constructs the weak-form over local
subdomains such as�s, which is a small region taken for each
node inside the global domain [24]. The local subdomains
could be of any geometrical shape and size. In the current
paper, the local subdomains are taken to be of circular shape.
The local weak-form of the governing equations (23)–(25) for
xi ∈ �i

s can be written as∫
�i

s

[
Mαβ,β(x, τ )− Qα(x, τ )− IMαẅα(x, τ )

]
× w∗

αγ (x) d� = 0, (32)∫
�i

s

[
Qα,α(x, τ )+ q(x, τ )− IQẅ3(x, τ )

]
× w∗(x) d� = 0, (33)∫

�i
s

[
Nαβ,χ (x, τ )+ qα(x, τ )− IQüα0(x, τ )

]
× w∗

αγ (x) d� = 0, (34)

where w∗
αβ(x) and w∗(x) are weight or test functions.

Applying the Gauss divergence theorem to equa-
tions (32)–(34) one obtains∫
∂�i

s

Mα(x, τ )w∗
αγ (x) d� −

∫
�i

s

Mαβ(x, τ )w∗
αγ,β(x) d�

−
∫
�i

s

Qα(x, τ )w∗
αγ (x) d�

−
∫
�i

s

IMαẅα(x, τ )w∗
αγ (x) d� = 0, (35)

∫
∂�i

s

Qα(x, τ )nα(x)w∗(x)d� −
∫
�i

s

Qα(x, τ )w∗
,α(x) d�

−
∫
�i

s

IQẅ3(x, τ )w∗(x) d�

+
∫
�i

s

q(x, τ )w∗(x) d� = 0, (36)

∫
∂�i

s

Nα(x, τ )w∗
αγ (x) d� −

∫
�i

s

Nαβ(x, τ )w∗
αγ,β(x) d�

+
∫
�i

s

qα(x, τ )w∗
αγ (x) d�

−
∫
�i

s

IQüα0(x, τ )w∗
αγ (x) d� = 0, (37)

where ∂�i
s is the boundary of the local subdomain and

Mα(x, τ ) = Mαβ(x, τ )nβ(x)

5
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and

Nα(x, τ ) = Nαβ(x, τ )nβ(x)

are the normal bending moment and traction vector,

respectively, and nα is the unit outward normal vector to

the boundary ∂�i
s. The local weak-forms (35)–(37) are the

starting point for deriving local boundary integral equations

on the basis of the appropriate test functions. Unit step

functions are chosen for the test functions w∗
αβ(x) and w∗(x)

in each subdomain

w∗
αγ (x) =

{
δαγ at x ∈ (�s ∪ ∂�s)

0 at x �∈ (�s ∪ ∂�s),

w∗(x) =
{

1 at x ∈ (�s ∪ ∂�s)

0 at x �∈ (�s ∪ ∂�s).

(38)

Then, the local weak-forms (35)–(37) are transformed into the

following local integral equations (LIEs)∫
∂�i

s

Mα(x, τ ) d� −
∫
�i

s

Qα(x, τ ) d�

−
∫
�i

s

IMαẅα(x, τ ) d� = 0, (39)

∫
∂�i

s

Qα(x, τ )nα(x) d� −
∫
�i

s

IQẅ3(x, τ ) d�

+
∫
�i

s

q(x, τ ) d� = 0. (40)

∫
∂�i

s

Nα(x, τ ) d� +
∫
�i

s

qα(x, τ ) d�

−
∫
�i

s

IQüα0(x, τ ) d� = 0. (41)

In the above local integral equations, the trial functions

wα(x, τ ) related to rotations, w3(x, τ ) related to transversal

displacements, and uα0(x, τ ) the in-plane displacements, are

chosen as the moving least-squares (MLS) approximations

over a number of nodes randomly spread within the influence

domain.

3. Numerical solution

In general, a meshless method uses a local interpolation

to represent the trial function with the values (or the

fictitious values) of the unknown variable at some randomly

located nodes. The moving least-squares (MLS) approx-

imation [39, 40] used in the present analysis may be

considered as one of such schemes. According to the MLS

method [24], the approximation of the field variable u ∈
{w1,w2,w3, u0, v0, ψ1, μ1} can be given as

uh(x, τ ) = ΦT(x) · û =
n∑

a=1

φa(x)ûa(τ ), (42)

where the nodal values ûa(τ ) are fictitious parameters for the

approximated field variable and φa(x) is the shape function

associated with the node a. The number of nodes n used for the

approximation is determined by the weight function wa(x). A

4th-order spline-type weight function is applied in the present

work.

The directional derivatives of the approximated field

u(x, τ ) are expressed in terms of the same nodal values as

u,k(x, τ ) =
n∑

a=1

ûa(τ )φa
,k(x). (43)

Substituting the approximation (43) into the defini-

tion of the bending moments (A.1) and then using

Mα(x, τ ) = Mαβ(x, τ )nβ(x), one obtains for M(x, τ ) =
[M1(x, τ ),M2(x, τ )]T

M(x, τ ) = N1

n∑
a=1

Ba
1(x)w

∗a(τ )+ N1

n∑
a=1

Ba
2(x)u

∗a
0 (τ )

+
n∑

a=1

Fa(x)ψ̂a
1 (τ )+

n∑
a=1

Ka(x)μ̂a
1(τ ), (44)

where the vector w∗a(τ ) is defined as a column vector

w∗a(τ ) = [ŵa
1(τ ), ŵa

2(τ )]T, the matrices N1(x) are related to

the normal vector n(x) on ∂�s given by

N1(x) =
[

n1 0 n2

0 n2 n1

]
.

Also in equation (44), the matrices Ba
α are represented by the

gradients of the shape functions as

Ba
1(x) =

⎡
⎢⎣
(D11 + F12)φ

a
,1 (D12 + F13)φ

a
,2

(D12 + F22)φ
a
,1 (D22 + F23)φ

a
,2

�11φ
a
,2 �11φ

a
,1

⎤
⎥⎦ ,

Ba
2(x) =

⎡
⎢⎣

G11φ
a
,1 G12φ

a
,2

G21φ
a
,1 G22φ

a
,2

�11φ
a
,2 �11φ

a
,1

⎤
⎥⎦ ,

and

Fa(x) =
[

F11n1φ
a

F21n2φ
a

]
, Ka(x) =

[
K11n1φ

a

K21n2φ
a

]
. (45)

Similarly one can obtain the approximation for the shear

forces Q(x, τ ) = [Q1(x, τ ),Q2(x, τ )]T

Q(x, τ ) = C(x)
n∑

a=1

[
φa(x)w∗a(τ )+ La(x)ŵa

3(τ )
]
, (46)

where

C(x) =
[

C1(x) 0

0 C2(x)

]
, La(x) =

[
φa
,1

φa
,2

]
.

The traction vector is approximated by

N(x, τ ) = N1

n∑
a=1

Ga(x)w∗a(τ )+ N1

n∑
a=1

Pa(x)u∗a
0 (τ )

+
n∑

a=1

Sa(x)ψ̂a
1 (τ )+

n∑
a=1

Ja(x)μ̂a
1(τ ), (47)

6
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where

Ga(x) =
⎡
⎢⎣
(G11 + S12)φ

a
,1 (G21 + S13)φ

a
,2

(G12 + S23)φ
a
,1 (G22 + S22)φ

a
,2

�11φ
a
,2 �11φ

a
,1

⎤
⎥⎦ ,

Pa(x) =
⎡
⎢⎣

P11φ
a
,1 P12φ

a
,2

P12φ
a
,1 P22φ

a
,2

�21φ
a
,2 �21φ

a
,1

⎤
⎥⎦ ,

and

Sa(x) =
[

S11n1φ
a

S21n2φ
a

]
, Ja(x) =

[
J11n1φ

a

J21n2φ
a

]
.

Then, insertion of the MLS-discretized moment and

force fields (44), (46) and (47) into the local integral

equations (39)–(41) yields the discretized local integral

equations

n∑
a=1

[∫
∂�i

s

N1(x)Ba
1(x) d� −

∫
�i

s

C(x)φa(x) d�

]
w∗a(τ )

−
n∑

a=1

IMαẅ∗a(τ )

(∫
�i

s

φa(x) d�

)

+
n∑

a=1

[∫
∂�i

s

N1(x)Ba
2(x) d�

]
u∗a

0 (τ )

+
n∑

a=1

[∫
∂�i

s

Fa(x) d�

]
ψ̂a

1 (τ )

+
n∑

a=1

[∫
∂�i

s

Ka(x) d�

]
μ̂a

1(τ )

−
n∑

a=1

ŵa
3(τ )

(∫
�i

s

C(x)Ka(x) d�

)

= −
∫
�i

sM

M̃(x, τ ) d�, (48)

n∑
a=1

(∫
∂�i

s

Cn(x)φa(x) d�

)
w∗a(τ )

+
n∑

a=1

ŵa
3(τ )

(∫
∂�i

s

Cn(x)Ka(x) d�

)

= − IQ

n∑
a=1

¨̂wa
3(τ )

(∫
�i

s

φa(x) d�

)

= −
∫
�i

s

q(x, τ ) d�, (49)

n∑
a=1

[∫
∂�i

s

N1(x)Ga(x) d�

]
w∗a(τ )

−
n∑

a=1

IQü∗a
0 (τ )

(∫
�i

s

φa(x) d�

)

+
n∑

a=1

[∫
∂�i

s

N1(x)Pa(x) d�

]
u∗a

0 (τ )

+
n∑

a=1

[∫
∂�i

s

Sa(x) d�

]
ψ̂a

1 (τ )

+
n∑

a=1

[∫
∂�i

s

Ja(x) d�

]
μ̂a

1(τ )

= −
∫
�i

sN

Ñ(x, τ ) d�, (50)

in which M̃(x, τ ) represent the prescribed bending moments

on �i
sM, Ñ(x, τ ) is the prescribed traction vector on �i

sN and

Cn(x) = (n1, n2)

(
C1 0

0 C2

)
= (C1n1,C2n2) .

Equations (48)–(50) are considered on the subdomains

adjacent to the interior nodes xi. For the source point xi

located on the global boundary � the boundary of the

subdomain ∂�i
s is decomposed into Li

s and �i
sM (part of the

global boundary with the prescribed bending moment) or �i
sN

with the prescribed traction vector.

If the MEE layer is used as a sensor, then the laminated

plate is under a mechanical load. Then, the system of the LIE

(48)–(50) has to be supplemented by equations (26) and (27)

representing vanishing electrical displacement and magnetic

induction on the top surface of the plate.

It should be noted here that there are neither Lagrange

multipliers nor penalty parameters introduced into the

local weak-forms (32)–(34) because the essential boundary

conditions on �i
sw (part of the global boundary with prescribed

rotations or displacements) and �i
su (part of the global

boundary with prescribed in-plane displacements) can be

imposed directly, using the interpolation approximation (42)

n∑
a=1

φa(xi)ûa(τ ) = ũ(xi, τ ) for xi ∈ �i
sw or �i

su,

(51)

where ũ(xi, τ ) is the prescribed value on the boundary �i
sw

and �i
su. For a clamped plate the rotations and deflection

are vanishing on the fixed edge, and equation (51) is used

at all the boundary nodes in such a case. However, for

a simply supported plate only the deflection w̃3(xi, τ ), the

bending moment and normal stress are prescribed, while the

rotations and in-plane displacements are unknown. Then, the

approximation formulas (44) and (47) are applied to the nodes

lying on the global boundary.

M̃(xi, τ ) = N1

n∑
a=1

Ba
1(x

i)w∗a(τ )

+ N1

n∑
a=1

Ba
2(x

i)u
∗a
0 (τ )+

n∑
a=1

Fa(xi)ψ̂a
1 (τ )

+
n∑

a=1

Ka(xi)μ̂a
1(τ ), for xi ∈ �i

sM (52)

7
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Ñ(xi, τ ) = N1

n∑
a=1

Ga(xi)w∗a(τ )

+ N1

n∑
a=1

Pa(xi)u
∗a
0 (τ )+

n∑
a=1

Sa(xi)ψ̂a
1 (τ )

+
n∑

a=1

Ja(xi)μ̂a
1(τ ), for xi ∈ �i

sN . (53)

If the MEE layer in the laminated plate is used as an actuator,

then the electric and magnetic potentials are prescribed on

the top of the plate. Both potentials can be expressed through

the mechanical quantities given by equations (30) and (31).

Then, the total unknowns are reduced to 5 unknown quantities

(w1,w2,w3, u0, v0) and the local integral equations have the

following form

n∑
a=1

[∫
∂�i

s

N1(x)Ba
1(x) d� −

∫
�i

s

C(x)φa(x) d�

]
w∗a(τ )

−
n∑

a=1

IMαẅ∗a(τ )

(∫
�i

s

φa(x) d�

)

+
n∑

a=1

[∫
∂�i

s

N1(x)Ba
2(x) d�

]
u∗a

0 (τ )

+
∫
∂�i

s

ψ̃(x, τ )F(x) d�

−
n∑

a=1

[∫
∂�i

s

Fa
act(x) d�

]
w∗a(τ )

+
∫
∂�i

s

μ̃(x, τ )K(x) d�

−
n∑

a=1

[∫
∂�i

s

Ka
act(x) d�

]
w∗a(τ )

−
n∑

a=1

ŵa
3(τ )

(∫
�i

s

C(x)Ka(x) d�

)

= −
∫
�i

sM

M̃(x, τ ) d�, (54)

n∑
a=1

(∫
∂�i

s

Cn(x)φa(x) d�

)
w∗a(τ )

+
n∑

a=1

ŵa
3(τ )

(∫
∂�i

s

Cn(x)Ka(x) d�

)

= − IQ

n∑
a=1

¨̂wa
3(τ )

(∫
�i

s

φa(x) d�

)

= −
∫
�i

s

q(x, τ ) d�, (55)

n∑
a=1

[∫
∂�i

s

N1(x)Ga(x) d�

]
w∗a(τ )

−
n∑

a=1

IQü∗a
0 (τ )

(∫
�i

s

φa(x) d�

)

+
n∑

a=1

[∫
∂�i

s

N1(x)Pa(x) d�

]
u∗a

0 (τ )

+
∫
∂�i

s

ψ̃(x, τ )S(x) d�

−
n∑

a=1

[∫
∂�i

s

Sa
act(x) d�

]
w∗a(τ )

+
∫
∂�i

s

μ̃(x, τ )J(x) d�

−
n∑

a=1

[∫
∂�i

s

Ja
act(x) d�

]
w∗a(τ )

= −
∫
�i

sN

Ñ(x, τ ) d�, (56)

where

F(x) =
[

F11n1

F21n2

]
, K(x) =

[
K11n1

K21n2

]
,

S(x) =
[

S11n1

S21n2

]
, J(x) =

[
J11n1

J21n2

]
,

Fa
act(x)

= h2
2

2(α33α33 − γ33h33)

×
[

F11n1(α33d31 − e31γ33)φ
a
,1 F11n1(α33d32 − e32γ33)φ

a
,2

F21n2(α33d31 − e31γ33)φ
a
,1 F21n2(α33d32 − e32γ33)φ

a
,2

]
,

Ka
act(x)

= h2
2

2(α33α33 − γ33h33)

×
[

K11n1(α33e31 − d31h33)φ
a
,1 K11n1(α33e32 − d32h33)φ

a
,2

K21n2(α33e31 − d31h33)φ
a
,1 K21n2(α33e32 − d32h33)φ

a
,2

]
,

Sa
act(x)

= h2
2

2(α33α33 − γ33h33)

×
[

S11n1(α33d31 − e31γ33)φ
a
,1 S11n1(α33d32 − e32γ33)φ

a
,2

S21n2(α33d31 − e31γ33)φ
a
,1 S21n2(α33d32 − e32γ33)φ

a
,2

]
,

Ja
act(x)

= h2
2

2(α33α33 − γ33h33)

×
[

J11n1(α33e31 − d31h33)φ
a
,1 J11n1(α33e32 − d32h33)φ

a
,2

J21n2(α33e31 − d31h33)φ
a
,1 J21n2(α33e32 − d32h33)φ

a
,2

]
.

Collecting the discretized local boundary-domain integral

equations together with the discretized boundary conditions

for the generalized displacements, bending moment and

traction vector, one obtains a complete system of ordinary

differential equations, which can be rearranged in such a way

that all known quantities are on the rhs. Thus, in matrix form

the system becomes

Aẍ + Cx = Y. (57)

8
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The system of ordinary differential equations is solved by the

Houbolt method [32]. The acceleration ẍ is expressed as

ẍτ+�τ = 2xτ+�τ − 5xτ + 4xτ−�τ − xτ−2�τ

�τ 2
, (58)

where �τ is the time step.

Substituting equation (58) into (57), we obtain the

following system of algebraic equations for the unknowns

xτ+�τ[
2

�τ 2
A + C

]
xτ+�τ = 1

�τ 2
5Axτ

+ A
1

�τ 2
{−4xτ−�τ + xτ−2�τ } + Y. (59)

4. Numerical examples

A two-layered square plate with a side length a = 0.254 m

is analyzed to verify the proposed computational method.

The total thickness of the plate is h = 0.012 m. To test the

proposed computational method, homogeneous properties are

considered in the first step for the elastic layer. The elastic

layer #1 has the plate thickness h1 = 3h/4. Two different

materials are used for the layer #1: (1) In the first case the

material is denoted as #B and its material coefficients are

considered as:

c(1B)
11 = 10.989 × 1010 N m−2,

c(1B)
12 = 3.297 × 1010 N m−2,

c(1B)
22 = 10.989 × 1010 N m−2,

c(1B)
66 = 3.846 × 1010 N m−2,

c(1B)
44 = c(1B)

55 = 3.846 × 1010 N m−2.

(2) To analyze the influence of the stiffness matrix of the

elastic layer on the deflection and the induced electric and

magnetic potentials in the MEE layer, we have considered also

an elastic layer with lower stiffness parameters. This material

is denoted as #T , and its parameters are given by

c(1T)
ij = c(1B)

ij

/
2.

The second layer with thickness h2 = h/4 has the MEE

properties and the material parameters correspond to

BaTiO3–CoFe2O4 [41]:

c(2)11 = c(2)22 = 22.6 × 1010 N m−2,

c(2)12 = 12.4 × 1010 N m−2,

c(2)33 = 21.6 × 1010 N m−2,

c(2)66 = 5.1 × 1010 N m−2,

c(2)44 = c(2)55 = 4.3 × 1010 N m−2,

e(2)31 = e(2)32 = −2.2 C m−2, e(2)15 = 5.8 C m−2,

h(2)33 = 6.35 × 10−9 C (V m)−1,

h(2)11 = 5.64 × 10−9 C (V m)−1,

d(2)31 = d(2)32 = 290.2 N A−1 m−1,

Figure 2. Variation of the deflection with the x1-coordinate for the
clamped plate.

d(2)33 = 350 N A−1 m−1, d(2)15 = 275 N A−1 m−1,

α
(2)
11 = 5.367 × 10−12 N s (V C)−1,

α
(2)
33 = 2737.5 × 10−12 N s (V C)−1,

γ
(2)
11 = 297 × 10−6 Wb (A m)−1,

γ
(2)
33 = 83.5 × 10−6 Wb (A m)−1, ρ = 7500 kg m−3.

A uniform load with intensity q = 2.0×106 N m−2 is applied

on the top surface of the layered plate. A vanishing electric

displacement and magnetic induction are prescribed on the

top surface. In our numerical calculations, 441 nodes with a

regular distribution were used for the approximation of the

rotations, the deflection, in-plane displacements, electric and

magnetic potentials in the neutral plane. The origin of the

coordinate system is located at the center of the plate.

First, clamped boundary conditions have been consid-

ered. The variation of the deflection with the x1-coordinate at

x2 = 0 of the plate is presented in figure 2. The numerical

results are compared with the results obtained by the

COMSOL code as 3D analysis with 3364 quadratic elements

for a quarter of the plate. Our numerical results are in a very

good agreement with those obtained by the FEM. The relative

error of the maximal deflection is 0.32% for material #T and

0.65% for material #B by our MLPG if COMSOL results with

a very fine mesh are considered as the correct ones. One can

observe that the deflection value is reduced for the elastic plate

corresponding to material #B with respect to material #T .

The induced electric potential ψ on the top surface of the

plate is presented in figure 3. It is observed that there is a

quite good agreement between the MLPG and FEM results.

The relative error of the maximal electric potential is 0.7% for

material #T and 1.5% for material #B. Similarly, the relative

error of the maximal magnetic potential is 1.7% for material

#T and 1.8% for material #B. One can see that material

parameters of the elastic layer have a small influence on the

induced potential. At the material #T the maximal deflection

is reduced about 54%, however, the electric potential is

reduced only 10%. A similar conclusion can be done for the

9



Smart Mater. Struct. 22 (2013) 035003 J Sladek et al

Figure 3. Variation of the electric potential with the x1-coordinate
for the clamped plate.

Figure 4. Variation of the magnetic potential with the x1-coordinate
for the clamped plate.

magnetic potential presented in figure 4. The variations of

both potentials with x1-coordinate are very similar. It is given

by the ratio of piezomagnetic and piezoelectric coefficients,

since B3/D3 = d31/e31. Then, it is valid that

H3

E3
= B3

D3

h33

γ33
= d31h33

γ33e31
. (60)

The variation of the electric potential with x3-coordinate is

given in figure 5. We have obtained a good agreement between

the MLPG and FEM results for the quadratic approximation

of the electric potential along x3. If we use only a linear

approximation we get a discrepancy on the top surface of

about 37%. For a very thin MEE layer we expect a smaller

discrepancy even for a linear approximation.

Then, a simply supported plate with the same material

properties, geometry and loading is analyzed. The variation

of the deflection with the x1-coordinate at x2 = 0 of the plate

is presented in figure 6. The maximal deflection is reduced

about 54% for the layered plate if the stiffness parameters in

the elastic layer are doubled. The reduction is similar to the

Figure 5. Variation of the electric potential along the thickness of
the MEE layer for the clamped plate.

Figure 6. Variation of the deflection with the x1-coordinate for the
simply supported plate.

case of the clamped plate. The variations of the electric and

magnetic potentials with the x1-coordinate are presented in

figures 7 and 8. The relative errors of the maximal deflection,

electric potential and magnetic potential are, respectively,

1.8%, 1.6% and 1.5% for material #T . The induced potentials

for the simply supported plate are significantly larger than for

the clamped plate. It is due to larger deformations for the

simply supported plate. Since the gradient of the deflection

is monotonically growing with x1-coordinate for the simply

supported plate, the electric potential on the whole interval x1

is negative. It is not valid for the clamped plate. Again the

shapes of both curves of potentials are very similar and the

quantities are proportional to the ratio given by (60).
We now analyze the influence of the material gradation

on the deflection and the electric and magnetic potentials,

if functionally graded material properties are considered

for the elastic plate described by equation (20). On the

top surface of the elastic plate (layer #1) (x3 = h1) the

material properties correspond to material #T from the

previous analysis. On the bottom surface of the plate the

material properties correspond to material #B. It is obvious

10
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Figure 7. Variation of the electric potential with the x1-coordinate
for the simply supported plate.

Figure 8. Variation of the magnetic potential with the x1-coordinate
for the simply supported plate.

that if exponent n = 0, we have homogeneous properties

in the plate corresponding to material #T , and that if

the exponent approaches infinity, the material properties

are almost homogeneous, corresponding to material #B.

Variations of the deflection with the x1-coordinate for the

clamped plate are presented in figure 9. One can observe that

deflection for the FGM plate with exponent n = 1 is close to

the homogeneous plate corresponding to material #B. It is due

to the fact that material properties far from the neutral plane

can have a strong influence on the deflection value.

The variations of the electric and magnetic potentials

with the x1-coordinate are presented in figures 10 and 11.

The potentials for the FGM plate lie between the two

potentials corresponding to the extreme cases given by

material properties on the top and bottom of the elastic case.

We have seen that the elastic material parameters have only

a slight influence on the induced potentials for homogeneous

plates.

The simply supported plate with functionally graded

material properties for the elastic plate is analyzed too. The

Figure 9. The influence of the material gradation on the deflection
of the clamped plate.

Figure 10. The influence of the material gradation on the electric
potential of the clamped plate.

Figure 11. The influence of the material gradation on the magnetic
potential of the clamped plate.

plate deflections are given in figure 12. We can make a similar

conclusion on the influence of material gradation in this case

as has been done for the clamped plate. The variations of the

11
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Figure 12. The influence of the material gradation on the deflection
of the simply supported plate.

Figure 13. The influence of the material gradation on the electric
potential of the simply supported plate.

electric and magnetic potentials are presented in figures 13

and 14.

We assume now that the MEE layer on the top surface is

used as an actuator. Then, the electric potential is prescribed

on the top surface, ψ̃ = 1000 V. The magnetic potential is

vanishing. Geometrical and material parameters are the same

as in the previous example. The variation of the deflection

along x1 for the simply supported layered plate is presented

in figure 15. In this case the deflection for the FGM plate

is closer to the homogeneous plate with material properties

corresponding to material #2 (lower stiffness). An opposite

phenomenon is observed for the plate under a mechanical

load. For a larger stiffness there is a tendency to decrease the

gradients of rotations occurring in equations (30) and (31).

Then, the values ψ1 and μ1 become larger. Therefore, the

decrease of the deflection is eliminated by the increase of the

efficient load.

In the previous example we have considered a pure

electrical load. It is interesting to investigate also a combined

electromagnetic load. For this purpose we introduce a

Figure 14. The influence of the material gradation on the magnetic
potential of the simply supported plate.

Figure 15. Variation of the deflection with the x1-coordinate for the
simply supported plate with prescribed electric potential.

non-dimensional parameter

β = d31μ̃

e31ψ̃
(61)

where β = 0 corresponds to a pure electrical load, and

for β = 1 we have μ̃ = e31ψ̃/d31 representing a ratio

between the electric and magnetic effects. The influence of the

combined electromagnetic load on the deflection is presented

in figure 16.

Stationary conditions have been considered in the

previous numerical example. If a finite velocity of elastic

waves is considered, the acceleration term is included into

the governing equations (23)–(25). The mass density ρ =
7500 kg m−3 is considered to be same for both elastic and

MEE materials. Numerical calculations are carried out for a

time step �τ = 0.2 × 10−4 s. The central plate deflection

is normalized by the static deflection corresponding to the

elastic material #B,wstat
3 = 0.1771 × 10−5 m (see figure 15).

The time variations of the normalized central deflections are

12
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Figure 16. Variation of the deflection with the x1-coordinate for the
simply supported plate with combined electromagnetic load.

Figure 17. Time variation of the deflection at the center of a simply
supported plate subjected to a suddenly applied electric potential.

given in figure 17. One can observe a shift of the peak

value for the stiffer material to shorter instants due to higher

elastic wave velocities than in the material with lower stiffness

(material #T). The peak value grows as the stiffness of the

plate decreases.

The same plate with simply supported boundary

conditions under an impact mechanical load with Heaviside

time variation is analyzed too. The time variation of the central

deflection is presented in figure 18. Deflections are normalized

by the static deflection corresponding to material #B,wstat
3 =

0.1634×10−2 m. The peak value of the deflection for material

#T (lower stiffness) is significantly large than for the plate

with large stiffness. The deflection for the FGM plate is close

to the value corresponding to the material #B. It is similar to a

static case.

Finally, a clamped laminated square plate under a

uniform impact load is analyzed, as shown in figure 19. The

deflection values are normalized by the corresponding static

central deflection wstat
3 = 0.519 × 10−3 m (corresponding

to material #B). The peaks of the deflection amplitudes are

Figure 18. Time variation of the deflection at the center of a simply
supported square plate subjected to a suddenly applied mechanical
load.

Figure 19. Time variation of the deflection at the center of a
clamped laminated plate subjected to a suddenly applied load.

shifted to shorter time instants for the laminated plate with

a larger flexural rigidity. Since the mass density is the same

for both elastic materials, the wave velocity is higher for the

elastic plate with higher Young’s moduli. The peak values

are reached in shorter time instants for the clamped than for

simply supported plate.

5. Conclusions

The meshless local Petrov–Galerkin method is developed

for bending analyses of FGM plates with integrated MEE

sensor and actuator layer. The formulation based on the shear

deformation plate theory can be applied also for moderately

thick plates. A polynomial variation of material properties

along the FGM plate thickness is applied in numerical

examples. However, the present computational method can be

used for a general spatial variation of material properties. The

13
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electric and magnetic intensity vectors are assumed only in

the plate thickness direction due to the assumption of a thin

MEE layer. The Reissner–Mindlin theory reduces the original

three-dimensional (3D) thick-plate problem to a 2D problem.

Nodal points are randomly distributed over the mean surface

of the considered plate. Each node is the center of a circle

surrounding this node. The weak-form on small subdomains

with a Heaviside step function as the test functions is

applied to derive local integral equations. After performing the

spatial MLS approximation, a system of ordinary differential

equations for certain nodal unknowns is obtained. Then,

the system of second-order ordinary differential equations

resulting from the equations of motion is solved by the

Houbolt finite-difference scheme as a time-stepping method.

Stationary and impact boundary conditions are consid-

ered in the numerical analyses. The influence of the material

gradation on the plate deflection or on the induced potentials

is shown. For instance, the induced potential for the simply

supported plate is approximately twice as large as that for

the clamped plate. This and other numerical results in the

paper should be important for suitable design of a sensor or

actuator using the MEE layer for efficient active control. The

influence of both material gradation and mechanical boundary

conditions on the design should be considered.

It is demonstrated numerically that the results obtained

by the proposed MLPG method are reliable. Numerical results

for homogeneous materials are compared with those obtained

by the 3D FEM analyses. The agreement of our numerical

results with those obtained by the COMSOL computer code

is also very good. However, the 3D FEM analysis needs

significantly more degrees of freedom than that based on the

present in-plane formulation.
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Appendix A. Detailed expressions for Mij, Nij and
Qi (i, j = 1, 2)

M11(x, τ ) =
2∑

k=1

∫ zk+1

zk

{c(k)11 [(z − z011)w1,1 + u0,1]

+ c(k)12 [(z − z022)w2,2 + v0,2]
− e(k)31 E3 − d(k)31 H3}(z − z011) dz

= D11w1,1 + G11u0,1 + D12w2,2 + G12v0,2

+ F11ψ1 + F12w1,1 + F13w2,2 + K11μ1,

M22(x, τ ) =
2∑

k=1

∫ zk+1

zk

{c(k)12 [(z − z011)w1,1 + u0,1]

+ c(k)22 [(z − z022)w2,2 + v0,2]
− e(k)32 E3 − d(k)32 H3}(z − z022) dz

= D12w1,1 + G21u0,1 + D22w2,2 + G22v0,2

+ F21ψ1 + F22w1,1 + F23w2,2 + K21μ1,

M12(x, τ ) =
2∑

k=1

∫ zk+1

zk

{c(k)66 [(z − z012)(w1,2 + w2,1)

+ u0,2 + v0,1]}(z − z012) dz

= �11(w1,2 + w2,1)+ �11(u0,2 + v0,1),

Q1(x, τ ) = κ

2∑
k=1

∫ zk+1

zk

c(k)55 (w1 + w3,1) dz

= C1(w1 + w3,1),

Q2(x, τ ) = κ

2∑
k=1

∫ zk+1

zk

c(k)44 (w2 + w3,2) dz

= C2(w2 + w3,2),

N11(x, τ ) =
2∑

k=1

∫ zk+1

zk

{c(k)11 [(z − z011)w1,1 + u0,1]

+ c(k)12 [(z − z022)w2,2 + v0,2] − e(k)31 E3 − d(k)31 H3} dz

= G11w1,1 + P11u0,1 + G21w2,2 + P12v0,2

+ S11ψ1 + S12w1,1 + S13w2,2 + J11μ1,

N22(x, τ ) =
2∑

k=1

∫ zk+1

zk

{c(k)12 [(z − z011)w1,1 + u0,1]

+ c(k)22 [(z − z022)w2,2 + v0,2] − e(k)32 E3 − d(k)32 H3} dz

= G12w1,1 + P12u0,1 + G22w2,2 + P22v0,2

+ S21ψ1 + S23w1,1 + S22w2,2 + J21μ1,

N12(x, τ ) =
2∑

k=1

∫ zk+1

zk

{c(k)66 [(z − z012)(w1,2 + w2,1)

+ u0,2 + v0,1]} dz
= �11(w1,2 + w2,1)+ �21(u0,2 + v0,1),

(A.1)

where

D11 =
2∑

k=1

c(k)11b[ 1
3 (z

3
k+1 − z3

k)

− z011(z
2
k+1 − z2

k)+ z2
011(zk+1 − zk)]

+ (c(1)11t − c(1)11b)

(
h3

1

4
− 2z011

h2
1

3
− z2

011

h1

2

)
,

D22 =
2∑

k=1

c(k)22b[ 1
3 (z

3
k+1 − z3

k)

− z022(z
2
k+1 − z2

k)+ z2
022(zk+1 − zk)]

+ (c(1)22t − c(1)22b)

(
h3

1

4
− 2z022

h2
1

3
− z2

022

h1

2

)
,
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D12 =
2∑

k=1

c(k)12b[ 1
3 (z

3
k+1 − z3

k)− (z011 + z022)
1
2 (z

2
k+1 − z2

k)

+ z011z022(zk+1 − zk)]

+ (c(1)12t − c(1)12b)

(
h3

1

4
− (z011 + z022)

h2
1

3
− z011z022

h1

2

)
,

�11 =
2∑

k=1

c(k)66b[ 1
3 (z

3
k+1 − z3

k)

− z012(z
2
k+1 − z2

k)+ z2
012(zk+1 − zk)]

+ (c(1)66t − c(1)66b)

(
h3

1

4
− 2z012

h2
1

3
− z2

012

h1

2

)
,

G11 =
2∑

k=1

c(k)11b[ 1
2 (z

2
k+1 − z2

k)− z011(zk+1 − zk)]

+ (c(1)11b − c(1)11b)

(
h2

1

3
− z011

h1

2

)
,

G12 =
2∑

k=1

c(k)12b[ 1
2 (z

2
k+1 − z2

k)− z011(zk+1 − zk)]

+ (c(1)12b − c(1)12b)

(
h2

1

3
− z011

h1

2

)
,

G21 =
2∑

k=1

c(k)12b[ 1
2 (z

2
k+1 − z2

k)− z022(zk+1 − zk)]

+ (c(1)12b − c(1)12b)

(
h2

1

3
− z022

h1

2

)
,

G22 =
2∑

k=1

c(k)22b[ 1
2 (z

2
k+1 − z2

k)− z022(zk+1 − zk)]

+ (c(1)22b − c(1)22b)

(
h2

1

3
− z022

h1

2

)
,

�11 =
2∑

k=1

c(k)66b[ 1
2 (z

2
k+1 − z2

k)− z012(zk+1 − zk)]

+ (c(1)66b − c(1)66b)

(
h2

1

3
− z012

h1

2

)
,

�21 =
2∑

k=1

c(k)66b(zk+1 − zk)+ (c(1)66t − c(1)66b)
h1

2
,

F11 =
N∑

k=1

e(k)31

1

zk+1 − zk

[
1

2
(z2

k+1 − z2
k)− z011(zk+1 − zk)

]
,

F12 = e31(α33d31 − e31γ33)+ d31 (e31α33 − d31h33)

(α33α33 − γ33h33)

×
[

h3 − h3
1

3
− (z011 + z2)

h2 − h2
1

2
+ z011z2h2

]
,

F13 = e31(α33d32 − e32γ33)+ d31 (e32α33 − d32h33)

(α33α33 − γ33h33)

×
[

h3 − h3
1

3
− (z011 + z2)

h2 − h2
1

2
+ z011z2h2

]
,

F21 =
N∑

k=1

e(k)32

1

zk+1 − zk

[
1

2
(z2

k+1 − z2
k)− z022(zk+1 − zk)

]
,

F22 = e32(α33d31 − e31γ33)+ d32 (e31α33 − d31h33)

(α33α33 − γ33h33)

×
[

h3 − h3
1

3
− (z022 + z2)

h2 − h2
1

2
+ z022z2h2

]
,

F23 = e32 (α33d32 − e32γ33)+ d32 (e32α33 − d32h33)

(α33α33 − γ33h33)

×
[

h3 − h3
1

3
− (z022 + z2)

h2 − h2
1

2
+ z022z2h2

]
,

C1 = κ

[
c(1)55bh1 + (c(1)55t − c(1)55b)

h1

2
+ c(2)55 h2

]
,

C2 = κ

[
c(1)44bh1 + (c(1)44t − c(1)44b)

h1

2
+ c(2)44 h2

]
,

P11 = c(1)11bh1 + c(2)11 h2 + (c(1)11t − c(1)11b)
h1

2
,

P12 = c(1)12bh1 + c(2)12 h2 + (c(1)12t − c(1)12b)
h1

2
,

P22 = c(1)22bh1 + c(2)22 h2 + (c(1)22t − c(1)22b)
h1

2
,

S11 =
2∑

k=1

e(k)31 , S21 =
2∑

k=1

e(k)32 ,

J11 =
2∑

k=1

d(k)31 , J21 =
2∑

k=1

d(k)32 ,

S12 = e31(α33d31 − e31γ33)+ d31(e31α33 − d31h33)

(α33α33 − γ33h33)

×
[

h2 − h2
1

2
+ z2h2

]
,

S13 = e31(α33d32 − e32γ33)+ d31 (e32α33 − d32h33)

(α33α33 − γ33h33)

×
[

h2 − h2
1

2
+ z2h2

]
,

S23 = e32(α33d31 − e31γ33)+ d32 (e31α33 − d31h33)

(α33α33 − γ33h33)

×
[

h2 − h2
1

2
+ z2h2

]
,

S22 = e32(α33d32 − e32γ33)+ d32(e32α33 − d32h33)

(α33α33 − γ33h33)

×
[

h2 − h2
1

2
+ z2h2

]
.

(A.2)
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Appendix B. List of notations

Bi Magnetic induction

c(i)αβ Corresponding material parameters for ith layer

c(i)αβb Corresponding to material parameters on the
bottom surfaces for ith layer

c(i)αβt Corresponding to material parameters on top
surfaces for ith layer

cijkl Elasticity coefficients
Di Electrical displacement vector
dijk Piezomagnetic coefficients
eijk Piezoelectric coefficients
Ei Electric field vector
f,i Partial derivative of the function f
ḟ Time derivative of the function f
f̃ Prescribed value of the function f
h Total thickness of plate
h1 Thickness of the FGM plate
h2 Thickness of MEE layer
hij Dielectric permittivities
Hi Magnetic intensity vector
IM, IQ Global inertial characteristics of the laminate

plate
Mαβ Bending moments
nα Unit outward normal vector to the boundary

∂�i
s

Nαβ Normal stresses
q, (qα) (in-plane) transversal load
Qα Shear forces

uh Field variable
ûa Fictitious parameters for the approximated field

variable
u0, v0 In-plane displacement
ui Displacement vector
wa Weight function
wi Rotations around xi

w∗
αβ,w∗ Weight or test functions

z2 Position of interference between FGM and MEE
layers

z3 Position of top surface of plate
z0ij Position of neutral plane
αij Magnetoelectric coefficients
γij Magnetic permeabilities
�i

sM Boundary with prescribed bending moments
�i

sN Boundary with prescribed traction vector
�i

sw Boundary with prescribed rotations or
displacements

�i
su Boundary with prescribed in-plane

displacements
εij Strain tensor
κ Coefficient for Reissner plate theory
μ Magnetic potential
σij Stress tensor
τ Time
�τ Time step
φa Shape function
ψ Electric potential
� Global domain
�s Local subdomain
∂�i

s Boundary of the local subdomain
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