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Abstract In this paper, we analyze an arbitrarily oriented
crack in a finite two-dimensional piezoelectric medium with
the polarization saturation model near the crack tip. We first
derive the extended Green’s functions corresponding to the
extended point-displacement discontinuities of an arbitrarily
oriented crack based on the Green’s functions of the extended
point forces and the Somigliana identity. Then, the extended
field intensity factors and the local J-integral near the crack tip
are expressed in terms of the extended displacement discon-
tinuity on crack faces. Finally, the nonlinear hybrid extended
displacement discontinuity-fundamental solution method is
proposed to analyze an electrically nonlinear crack in a finite
piezoelectric medium. Numerical examples are carried out
for both linear and nonlinear fracture models of the crack
under electrically impermeable boundary conditions. The
influence of the crack orientation and geometric size on the
fracture behaviors of the crack is investigated.

Keywords Piezoelectric medium · Arbitrarily oriented
crack · NLHEDD-FS method · PS model · Extended field
intensity factor · Local J-integral

1 Introduction

Along with the wide use of piezoelectric ceramics in smart
structures, research in fracture of these materials has been
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receiving a great deal of attention [1–4]. Previous studies
were mostly limited to cracks lying in the plane of isotropy
in transversely isotropic piezoelectric media. In reality, how-
ever, the cracks distributed in the structure could be in any ori-
entation. As such, the corresponding problem where a crack
is oriented arbitrarily is of theoretical significance and appli-
cation value.

Research of an arbitrarily oriented crack in elastic media
can be traced back to 1974 when the problem of a crack arbi-
trarily oriented with respect to the interface of a bimaterial
plane was solved by Erdogan and Aksogan [5]. Later, Erdo-
gan and Arin [6] solved the problem of a crack arbitrarily
oriented with respect to the interface of a strip and half-plane
materials. For piezoelectric media, Tian and Chau [7] stud-
ied an arbitrarily oriented crack near the interface of piezo-
electric bimaterials, and the stress intensity factors and the
electric displacement intensity factor at the crack tips were
evaluated by the dislocation density function method. Using
a dielectric crack model, Wang et al. [8] studied the effects
of the crack orientation and the applied loads upon the frac-
ture behavior of the crack in piezoelectric materials. Chue
and Weng [9] found that a negative electric field impeded
the crack growth whereas a positive electric field enhanced
it and that the driving force and the crack propagation angle
were significantly influenced by the polarization direction.
Ang and Athanasius [10] studied the dynamic problem of
multiple arbitrarily oriented planar cracks in a piezoelectric
space under a transient load. The fracture behavior of a crack
in a piezoelectric medium could be nonlinear, yet, there are
only very few reports on this issue.

As is well known, the extension of the current fundamen-
tal fracture concepts or criteria in pure elasticity to piezo-
electricity is not straightforward since the coupling between
the mechanical and electric fields is complicated [1,3]. Gao
et al. [11] extended the classical Dugdale model [12] to a
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strip polarization saturation (PS) model in piezoelectricity
by assuming that the electric displacement is constant in a
strip adjacent to a crack tip. Zhang et al. [13] proposed a strip
dielectric breakdown (DB) model assuming that the electric
field strength be constant in a strip adjacent to a crack tip. It
is found that the DB model gives the same results as the PS
model in predicting the effect of an applied electric field on
the fracture of piezoelectric media [13]. Later, piezoelectric
fracture analyses based on the PS and DB models were also
conducted by Ru and Mao [14], Beom et al. [15], Gao et al.
[16], Loboda et al. [17], among others.

Analytical solutions are usually difficult to obtain, espe-
cially for the nonlinear fracture problem in a finite domain.
Recently, in order to study the effect of the electric boundary
condition on the field quantities, Fan et al. [18] and Zhao et al.
[19] developed a numerical method, the nonlinear hybrid
extended displacement discontinuity-fundamental solution
(NLHEDD-FS) method, where both the PS and DB models
can be considered. This method was also used to study the
linear and nonlinear fracture of magnetoelectroelastic media
[20,21]. In this method, the extended point-force fundamen-
tal solutions and the extended Crouch fundamental solutions
with extended displacement discontinuities play an impor-
tant role. Therefore, in order to study an arbitrarily oriented
crack in a finite piezoelectric plane, we first, in this paper,
derive the extended point-displacement discontinuity funda-
mental solution for an arbitrarily oriented crack by using
the Green’s functions of the extended point forces and the
Somigliana identity. Then the extended Crouch fundamen-
tal solutions are obtained. Furthermore, the extended field
intensity factors near the crack tip and local J-integral are
expressed in terms of the extended displacement disconti-
nuity on crack faces. Finally the NLHEDD-FS method with
an iterative approach is developed to study the piezoelectric
fracture behavior of an arbitrarily oriented crack.

2 Basic equations

For a two-dimensional (2D) piezoelectric medium in the
coordinate system oyz, in the absence of the body force and
electric charge, the equilibrium equations, kinematic equa-
tions and constitutive equations are given by

σi j, j = 0, Di,i = 0, (1)

εi j = 1

2

(
ui, j + u j,i

)
, Ei = −ϕ,i , (2)

σi j = Ci jklεkl − eki j Ek, (3a)

Di = eiklεkl + κik Ek, (3b)

where σi j , εi j , Di and Ei denote the stress, strain, elec-
tric displacement and electric field strength, respectively;
ui ((u1, u2) = (v,w)) and ϕ are the elastic displacements and

electric potential, respectively; and Ci jkl(≡ ci j ), ei jk(≡ ei j )

and κi j stand for the elastic, piezoelectric and the dielectric
constants, respectively.

3 Boundary integral expressions

We assume that there is a straight line crack S lying in the
oyz plane, as shown in Fig. 1. The poling direction of the
piezoelectric material is along the z-direction. The crack is
oriented arbitrarily with respect to the y-axis by angle β. The
upper and lower faces of the crack S are denoted by S+ and
S−, respectively. The outer normal vectors of S+ and S−are
respectively given by

{ni }+ = {sin β,− cos β}, {ni }− = {− sin β, cos β}. (4)

Making use of the extended point-force Green’s functions
[22] and the Somigliana identity for piezoelectric media, the
elastic displacements and the electric potential at any point
(y, z) can be expressed by the following integrals

ui (y, z) = −
∫

S+

[
PF

i j

∥∥u j
∥∥ + �F

i ‖ϕ‖
]

d S,

ω,p

β

2c
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l 

-cl

cr
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( η,ζ) 
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Fig. 1 An arbitrarily oriented straight line crack S in a piezoelectric
rectangle and one of the elements along it. While 2c is the crack length,
2d represents one of the elements along the crack surface, S+ and S−
denote the upper and lower faces of crack S
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−ϕ(y, z) = −
∫

S+

[
PD

j

∥∥u j
∥∥ + �D ‖ϕ‖

]
d S, (5)

where PF
i j and �F

i , are, respectively, the induced tractions
and electric displacements on the crack surfaces when a unit
point force is applied in the i th direction; PD

j and �D are
those corresponding to a unit point electric charge. In Eq.
(5),

∥∥u j
∥∥ and ‖ϕ‖ denote, respectively, the elastic displace-

ment and electric potential discontinuities across the crack
face, defined as

‖ui‖ = ui (S+) − ui (S−),

‖ϕ‖ = ϕ(S+) − ϕ(S−), (6)

which are called the extended displacement discontinuities.
Inserting the extended point-force Green’s functions [22]

into Eq. (5) yields the following explicit expressions for the
elastic displacement and electric potential

v =
∫

S+

{

‖v‖
(

3∑

i=1

ωi1 Di
−2(ςi − zi ) cos β

(η − y)2 + (ςi − zi )2

+ (c11 − c12 − ξi )Di
2(η − y) sin β

(η − y)2 + (ςi − zi )2

)

+ ‖w‖
(

3∑

i=1

ϑi1 Di
2(η − y) cos β

(η − y)2 + (ςi − zi )2

+ωi1 Di
2(ςi − zi ) sin β

(η − y)2 + (ςi − zi )2

)

+ ‖ϕ‖
(

3∑

i=1

ϑi2 Di
2(η − y) cos β

(η − y)2 + (ςi − zi )2

+ωi2 Di
2(ςi − zi ) sin β

(η − y)2 + (ςi − zi )2

)}
d S(η, ςi ), (7a)

w =
∫

S+

{

‖v‖
(

3∑

i=1

(c11 − c12 − ξi )

×Ai
2(ςi − zi ) sin β

(η − y)2 + (ςi − zi )2

+ ωi1 Ai
2(η − y) cos β

(η − y)2 + (ςi − zi )2

)

+ ‖w‖
(

3∑

i=1

ϑi1 Ai
2(ςi − zi ) cos β

(η − y)2 + (ςi − zi )2

+ωi1 Ai
−2(η − y) sin β

(η − y)2 + (ςi − zi )2

)

+ ‖ϕ‖
(

3∑

i=1

ϑi2 Ai
2(ςi − zi ) cos β

(η − y)2 + (ςi − zi )2

+ωi2 Ai
−2(η − y) sin β

(η − y)2 + (ςi − zi )2

)}
d S(η, ςi ), (7b)

−ϕ =
∫

S+

{

‖v‖
(

3∑

i=1

(c11 − c12 − ξi )

×Bi
2(ςi − zi ) sin β

(η − y)2 + (ςi − zi )2

+ωi1 Bi
2(η − y) cos β

(η − y)2 + (ςi − zi )2

)

+ ‖w‖
(

3∑

i=1

ϑi1 Bi
2(ςi − zi ) cos β

(η − y)2 + (ςi − zi )2

+ωi1 Bi
−2(η − y) sin β

(η − y)2 + (ςi − zi )2

)

+ ‖ϕ‖
(

3∑

i=1

ϑi2 Bi
2(ςi − zi ) cos β

(η − y)2 + (ςi − zi )2

+ωi2 Bi
−2(η − y) sin β

(η − y)2 + (ςi − zi )2

)}
d S(η, ςi ). (7c)

Equation (7) indicates that the extended displacements at
any point (y, z) can be expressed in terms of the extended
displacement discontinuities across the surface of the crack,
where

zi = si z, ςi = siς, (i = 1, 2, 3, 4), (8)

and si are the roots of the material characteristic equation,
whilst ωi j , ξi , Ai , Bi and Di in Eq. (7) are material-related
constants given in [18]. It is noted that constants Di are differ-
ent to the electric displacements defined in Eqs. (1) and (3b).

4 Green’s functions and the extended Crouch
fundamental solution for extended displacement
discontinuities

We assume that the length of the straight line crack S is 2c
centered at the origin of the coordinate system, as shown
in Fig. 1. When the size of the crack approaches zero,
the Green’s functions or the fundamental solutions corre-
sponding to a unit extended point displacement discontinu-
ity is obtained. Therefore, such displacement discontinuity
Green’s functions should satisfy the governing equations of
piezoelectric media subjected to the following conditions,
respectively

lim
a→0

∫

S

{‖v‖ , ‖w‖ , ‖ϕ‖}d S = {1, 0, 0}, (9a)

lim
a→0

∫

S

{‖v‖ , ‖w‖ , ‖ϕ‖}d S = {0, 1, 0}, (9b)

lim
a→0

∫

S

{‖v‖ , ‖w‖ , ‖ϕ‖}d S = {0, 0, 1}. (9c)
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Making use of the method in deriving the extended point-dis-
placement discontinuity Green’s functions [23], we obtain
the extended point-displacement discontinuity Green’s func-
tions satisfying Eq. (9a)

v = 2
3∑

i=1

(

ωi1 Di
zi cos β

y2 + z2
i

− (c11 − c12 − ξi )Di
y sin β

y2 + z2
i

)

, (10a)

w = −2
3∑

i=1

(

ωi1 Ai
y cos β

y2 + z2
i

+(c11 − c12 − ξi )Ai
zi sin β

y2 + z2
i

)

, (10b)

ϕ = 2
3∑

i=1

(

ωi1 Bi
y cos β

y2 + z2
i

+(c11 − c12 − ξi )Bi
zi sin β

y2 + z2
i

)

. (10c)

Similarly, the extended point-displacement discontinuity
Green’s functions satisfying Eq. (9b) can be expressed by

v = −2
3∑

i=1

(

ϑi1 Di
y cos β

y2 + z2
i

+ ωi1 Di
zi sin β

y2 + z2
i

)

, (11a)

w = −2
3∑

i=1

(

ϑi1 Ai
zi cos β

y2 + z2
i

− ωi1 Ai
y sin β

y2 + z2
i

)

, (11b)

ϕ = 2
3∑

i=1

(

ϑi1 Bi
zi cos β

y2 + z2
i

− ωi1 Bi
y sin β

y2 + z2
i

)

. (11c)

Green’s functions for unit point electric potential disconti-
nuity satisfying Eq. (9c) can be obtained simply by replacing
the material related constant ϑi1 in Eq. (11) by ϑi2. Then
substituting Eqs. (10) and (11) into the constitutive equa-
tion i.e., Eq. (3), yields the corresponding stress and electric
displacement fields.

We consider a straight line element of length 2d, inclined
with respect to the y-axis by the angle β, centered at point
(η, ς), as shown in Fig. 1. Along the element, we apply
uniformly distributed displacement discontinuities ‖ve‖ in
y-direction, ‖we‖ in z-direction and the electric potential
discontinuity ‖ϕe‖ . Integrating the extended point-displace-
ment discontinuity Green’s functions along the element gives
the extended Crouch fundamental solutions

σ e
yy = 2

3∑

i=1

{[
cos β

∥∥ve
∥∥ Li

f yy21 + sin β
∥∥we

∥∥ Li
f yy31

+ sin β
∥∥ϕe

∥∥ Li
f yy41

]
G1

+
[
sin β

∥
∥ve

∥
∥ Li

f yy22 + cos β
∥
∥we

∥
∥ Li

f yy32

+ cos β
∥∥ϕe

∥∥ Li
f yy42

]
G2

}
, (12a)

σ e
yz = 2

3∑

i=1

{[
sin β

∥∥ve
∥∥ Li

f y21 + cos β
∥∥we

∥∥ Li
f y31

+ cos β
∥∥ϕe

∥∥ Li
f y41

]
G1

+
[
cos β

∥∥ve
∥∥ Li

f y22 + sin β
∥∥we

∥∥ Li
f y32

+ sin β
∥
∥ϕe

∥
∥ Li

f y42

]
G2

}
, (12b)

σ e
zz = 2

3∑

i=1

{[
cos β

∥∥ve
∥∥ Li

f 21 + sin β
∥∥we

∥∥ Li
f 31

+ sin β
∥∥ϕe

∥∥ Li
f 41

]
G1

+
[
sin β

∥∥ve
∥∥ Li

f 22 + cos β
∥∥we

∥∥ Li
f 32

+ cos β
∥∥ϕe

∥∥ Li
f 42

]
G2

}
, (12c)

De
y = 2

3∑

i=1

{[
sin β

∥∥ve
∥∥ Li

dy21 + cos β
∥∥we

∥∥ Li
dy31

+ cos β
∥∥ϕe

∥∥ Li
dy41

]
G1

+
[
cos β

∥∥ve
∥∥ Li

dy22 + sin β
∥∥we

∥∥ Li
dy32

+ sin β
∥
∥ϕe

∥
∥ Li

dy42

]
G2

}
, (12d)

De
z = 2

3∑

i=1

{[
cos β

∥∥ve
∥∥ Li

d21 + sin β
∥∥we

∥∥ Li
d31

+ sin β
∥
∥ϕe

∥
∥ Li

d41

]
G1

+
[
sin β

∥∥ve
∥∥ Li

d22 + cos β
∥∥we

∥∥ Li
d32

+ cos β
∥∥ϕe

∥∥ Li
d42

]
G2

}
, (12e)

where Li
i jk are the material-related constants given in Appen-

dix A, and

G1 = − zi cos β + si (y − 2d cos β) sin β
[−1 + (

1 − s2
i

)
sin2 β

] [
d2

(
1 − sin2 β

(
1 − s2

i

)) + y2 + z2
i − 2d (y cos β + si zi sin β)

]

+ zi cos β + si (y + 2c cos β) sin β
[−1 + (

1 − s2
i

)
sin2 β

] [
d2

(
1 − sin2 β

(
1 − s2

i

)) + y2 + z2
i + 2d (y cos β + si zi sin β)

] , (13a)

G2 = d
[
1 − sin2 β

(
1 + s2

i

)] − y cos β + si zi sin β
[−1 + (

1 − s2
i

)
sin2 β

] [
d2

(
1 − sin2 β

(
1 − s2

i

)) + y2 + z2
i − 2d (y cos β + si zi sin β)

]

− −d
[
1 − sin2 β

(
1 + s2

i

)] − y cos β + si zi sin β
[−1 + (

1 − s2
i

)
sin2 β

] [
d2

(
1 − sin2 β

(
1 − s2

i

)) + y2 + z2
i + 2d (y cos β + si zi sin β)

] . (13b)
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5 Extended field intensity factors and local J-integral

Based on the extended displacement discontinuity Green’s
functions in Sect. 4, the extended stresses at any point (y, z)
can be expressed in terms of the integral of the extended
displacement discontinuity on the entire crack faces
σyy(y, z)

= 2
3∑

i=1

∫

S

{[
cos β ‖v‖ Li

f yy21

+ sin β ‖w‖ Li
f yy31 + sin β ‖ϕ‖ Li

f yy41

]
V1

+
[
sin β ‖v‖ Li

f yy22 + cos β ‖w‖ Li
f yy32

+ cos β ‖ϕ‖ Li
f yy42

]
V2

}
d S(η, ςi ), (14a)

σyz(y, z)

= 2
3∑

i=1

∫

S

{[
sin β ‖v‖ Li

f y21 + cos β ‖w‖ Li
f y31

+ cos β ‖ϕ‖ Li
f y41

]
V1

+
[
cos β ‖v‖ Li

f y22 + sin β ‖w‖ Li
f y32

+ sin β ‖ϕ‖ Li
f y42

]
V2

}
d S(η, ςi ), (14b)

σzz(y, z)

= 2
3∑

i=1

∫

S

{[
cos β ‖v‖ Li

f 21 + sin β ‖w‖ Li
f 31

+ sin β ‖ϕ‖ Li
f 41

]
V1

+
[
sin β ‖v‖ Li

f 22 + cos β ‖w‖ Li
f 32

+ cos β ‖ϕ‖ Li
f 42

]
V2

}
d S(η, ςi ), (14c)

Dy(y, z)

= 2
3∑

i=1

∫

S

{[
sin β ‖v‖ Li

dy21 + cos β ‖w‖ Li
dy31

+ cos β ‖ϕ‖ Li
dy41

]
V1

+
[
cos β ‖v‖ Li

dy22 + sin β ‖w‖ Li
dy32

+ sin β ‖ϕ‖ Li
dy42

]
V2

}
d S(η, ςi ), (14d)

Dz(y, z)

= 2
3∑

i=1

∫

S

{[
cos β ‖v‖ Li

d21 + sin β ‖w‖ Li
d31

+ sin β ‖ϕ‖ Li
d41

]
V1

+
[
sin β ‖v‖ Li

d22 + cos β ‖w‖ Li
d32

+ cos β ‖ϕ‖ Li
d42

]
V2

}
d S(η, ςi ), (14e)

where

V1 = 2(y − η)(zi − ςi )

[(y − η)2 + (zi − ςi )2]2 ,

V2 = (y − η)2 − (zi − ςi )
2

[(y − η)2 + (zi − ςi )2]2 . (15)

It has been proven that the extended stress field has the
classical singularity of order 1/

√
r near the crack tip in the

2D piezoelectric media. Thus, the extended displacement dis-
continuities at the neighborhood of the right crack tip (yc, zc)

on the crack line can be expressed

‖v‖ = Ay
√

δ, ‖w‖ = Az
√

δ, ‖ϕ‖ = Aϕ

√
δ, (16)

where δ is the distance from the crack tip and the coefficients
Ay, Az and Aϕ are constants to be determined.

In the local polar coordinate system (r, θ) with the origin
coinciding with the right crack tip, a point near the crack tip
can be expressed by

y − yc = r cos θ, zi − si zc = sir sin θ, r � 1. (17)

Substituting Eqs. (16) and (17) into Eq. (14) introducing
function f1i and f2i for the following integrals

2

0∫

−∞

2(cos θ − ĝ cos β)(si sin θ − si ĝ sin β)

[(cos θ − ĝ cos β)2 + (si sin θ − si ĝ sin β)2]2

×(−ĝ)
1
2 dĝ = f1i (β, θ), (18a)

2

0∫

−∞

(cos θ − ĝ cos β)2 − (si sin θ − si ĝ sin β)2

[(cos θ − ĝ cos β)2 + (si sin θ − si ĝ sin β)2]2

×(−ĝ)
1
2 dĝ = f2i (β, θ), (18b)

the extended stresses at an arbitrary point near the crack tip
can be expressed by

σyy = 1√
r

3∑

i=1

{[
cos β Ay Li

f yy21 + sin β Az Li
f yy31

+ sin β Aϕ Li
f yy41

]
f1i (β, θ)

+
[
sin β Ay Li

f yy22 + cos β Az Li
f yy32

+ cos β Aϕ Li
f yy42

]
f2i (β, θ)

}
, (19a)

σyz = 1√
r

3∑

i=1

{[
sin βLi

f y21 Ay + cos βLi
f y31 Az

+ cos βLi
f y41 Aϕ

]
f1i (β, θ)

+
[
cos βLi

f y22 Ay + sin βLi
f y32 Az

+ sin βLi
f y42 Aϕ

]
f2i (β, θ)

}
, (19b)

123

Author's personal copy



572 Comput Mech (2013) 51:567–580

σzz = 1√
r

3∑

i=1

{[
cos βLi

f 21 Ay + sin βLi
f 31 Aw

+ sin βLi
f 41 Aϕ

]
f1i (β, θ)

+
[
sin βLi

f 22 Ay + cos βLi
f 32 Aw

+ cos βLi
f 42 Aϕ

]
f2i (β, θ)

}
, (19c)

Dy = 1√
r

3∑

i=1

{[
sin βLi

dy21 Ay

+ cos βLi
dy31 Az + cos βLi

dy41 Aϕ

]
f1i (β, θ)

+
[
cos βLi

dy22 Ay + sin βLi
dy32 Az

+ sin βLi
dy42 Aϕ

]
f2i (β, θ)

}
, (19d)

Dz = 1√
r

3∑

i=1

{[
cos βLi

d21 Ay + sin βLi
d31 Az

+ sin βLi
d41 Aϕ

]
f1i (β, θ)

+
[
sin βLi

d22 Ay + cos βLi
d32 Az

+ cos βLi
d42 Aϕ

]
f2i (β, θ)

}
. (19e)

When θ = β, we define the extended intensity factors

K F
I = lim

r→0

√
2πrσ ′

I (r, 0),

K F
II = lim

r→0

√
2πrσ ′

II(r, 0), (20)

K D
I = lim

r→0

√
2πr D′

I(r, 0).

where σ ′
I , σ

′
II and D′

I stand for the extended stresses along
the crack line

σ ′
I = σyy sin2 β + σzz cos2 β − 2σyz sin β cos β,

σ ′
II = (σzz − σyy) sin β cos β + σyz cos 2β,

D′
I = −Dy sin β + Dz cos β. (21)

Inserting Eqs. (19) and (21) into Eq. (20) gives

KI = lim
r→0

√
2π√
r

[k11 ‖v‖ + k12 ‖w‖ + k13 ‖ϕ‖] , (22a)

KII = lim
r→0

√
2π√
r

[k21 ‖v‖ + k22 ‖w‖ + k23 ‖ϕ‖], (22b)

KD = lim
r→0

√
2π√
r

[k31 ‖v‖ + k32 ‖w‖ + k33 ‖ϕ‖], (22c)

where

k11 =
3∑

i=1

{[
(sin β)2 cos βLi

f yy21 + cos3 βLi
f 21

− sin 2β sin βLi
f y21

]
f1i (β, θ)

+
[
(sin β)3Li

f yy22 + cos2 β sin βLi
f 22

− sin 2β cos βLi
f y22

]
f2i (β, θ)

}
, (23a)

k12 =
3∑

i=1

{[
(sin β)3Li

f yy31 + cos2 β sin βLi
f 31

− sin 2β cos βLi
f y31

]
f1i (β, θ)

+
[
(sin β)2 cos βLi

f yy32 + cos3 βLi
f 32

− sin 2β sin βLi
f y32

]
f2i (β, θ)

}
, (23b)

k13 =
3∑

i=1

{[
(sin β)3Li

f yy41 + cos2 β sin βLi
f 41

− sin 2β cos βLi
f y41

]
f1i (β, θ)

+
[
(sin β)2 cos βLi

f yy42 + cos3 βLi
f 42

− sin 2β sin βLi
f y42

]
f2i (β, θ)

}
, (23c)

k21 =
3∑

i=1

{[
sin β cos2 β

(
Li

f 21 − Li
f yy21

)

+ cos 2β sin βLi
f y21

]
f1i (β, θ)

+
[
cos β sin2 β

(
Li

f 22 − Li
f yy22

)

+ cos 2β cos βLi
f y22

]
f2i (β, θ)

}
, (23d)

k22 =
3∑

i=1

{[
cos β sin2 β

(
Li

f 31 − Li
f yy31

)

+ cos 2β cos βLi
f y31

]
f1i (β, θ)

+
[
sin β cos2 β

(
Li

f 32 − Li
f yy32

)

+ cos 2β sin βLi
f y32

]
f2i (β, θ)

}
, (23e)

k23 =
3∑

i=1

{[
cos β sin2 β

(
Li

f 41 − Li
f yy41

)

+ cos 2β cos βLi
f y41

]
f1i (β, θ)

+
[
sin β cos2 β(Li

f 42 − Li
f yy42)

+ cos 2β sin βLi
f y42

]
f2i (β, θ)

}
, (23f)

k31 =
3∑

i=1

{[
cos2 βLi

d21

− sin2 βLi
dy21

]
f1i (β, θ)

+
[
cos β sin βLi

d22

− sin β cos βLi
dy22

]
f2i (β, θ)

}
, (23g)
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k32 =
3∑

i=1

{[
sin β cos βLi

d31

− sin β cos βLi
dy31

]
f1i (β, θ)

+
[
cos2 βLi

d32

− sin2 βLi
dy32

]
f2i (β, θ)

}
, (23h)

k33 =
3∑

i=1

{[
sin β cos βLi

d41

− sin β cos βLi
dy41

]
f1i (β, θ)

+
[
cos2 βLi

d42

− sin2 βLi
dy42

]
f2i (β, θ)

}
. (23i)

Once the extended displacement discontinuities on the crack
faces are obtained, the intensity factors can be calculated
using Eq. (22). With these, the local J-integral can also be
obtained via

J = KT H
4

K, (24)

where the matrix H can be found in Zhang et al. [3] and

K = (
KII KI 0 KD

)T
. (25)

6 NLHEDD-FS method of a crack in a finite
piezoelectric medium based on PS model

We consider a piezoelectric medium occupying a finite
domain � enclosed by the outer boundary � in a rectan-
gular coordinate system oyz as shown in Fig. 1. The polari-
zation direction of the piezoelectric medium is along z-axis.
A straight line crack S with length 2c is oriented arbitrarily
with respect to the y-axis by an angle β. Similar to the PS
model [11,18], the PS zone is a strip along the crack line,
with −cl

e and cr
e denoting the strip electric yielding zones

respectively at the left and right crack tips.
There are two kinds of boundary conditions on the outer

boundary �: mechanical and electric boundary conditions.
The mechanical boundary conditions can be expressed as

v = v̄, w = w̄, on �u, (26a)

ty ≡ σyny + τyznz = t̄y, tz ≡ τyzny + σznz = t̄z, on �t ,

(26b)

where ty and tz are the tractions along the y- or z-directions
respectively, with the overbar “-” denoting the prescribed
value on the boundary, and ni is the directional cosine of the
outward normal vector on the boundary. The electric bound-
ary conditions are

ϕ = ϕ, on �ϕ, (27c)

ω ≡ Dyny + Dznz = ω̄, on �ω, (27d)

where ω̄ is the boundary value of the electric displacement.
There are also two kinds of boundary conditions on the

crack face S in the PS model. For an electrically impermeable
crack, the mechanical boundary conditions on crack faces
are similar to those in Eq. (26b), whilst the electric boundary
condition is

Dyny + Dznz = 0. (28)

In both the left- and right-hand electric yielding zones, the
boundary conditions are given as

v(S+) = v(S−), w(S+) = w(S−), (29)

Dyny + Dznz + ωs = 0, −cl ≤ l ≤ −c, c ≤ l ≤ cr ,

where superscripts “+” and “−” are the quantities on the upper
and lower crack faces, respectively, ωs is the electric displace-
ment saturation, and l is the length coordinate of the crack.

6.1 NLHEDD-FS for the PS model

Based on the NLHEDD-FS method for piezoelectric media
[18], we use N1 collocation points on the outer bound-
ary �, with the equal number of source points N1 being
located on the virtual boundary �′, as schematically shown in
Fig. 1. The unknown extended concentrated loads Pki (k =
1, 2, . . . , N1; i = 1, 2, 3) are applied at the kth source
point, where Pk1 and Pk2 are the mechanical loads in
y- and z-directions respectively, and Pk3 is the electric point
charge. The crack surface S is divided into N2 constant
elements, and the unknown extended displacement discon-
tinuities ‖ukj‖ ≡ u+

k j − u−
k j (k = 1, 2, . . . , N2; j =

1, 2, 3) are assumed to be uniform on each element, where
‖ · ‖ denotes the discontinuity of the extended displacement
across the crack. The left and right electric yielding zones
are discretized, respectively, into Nl

3 and Nr
3 constant ele-

ments (N3 = Nl
3 + Nr

3 ), with the unknown electric potential
discontinuity ‖ϕk‖ (k = 1, 2, . . ., N3) on each element.

Using the extended point-force fundamental solutions and
the extended Crouch fundamental solutions or constant ele-
ment fundamental solutions in Sect. 4, and the method of
superposition, we can express the extended displacement and
stress fields at any field point X(≡ (y, z)) around an imper-
meable crack in the finite domain due to given mechanical
and electric loadings as

ui (X) =
N1∑

k=1

3∑

j=1

u∗
i j (X, XP)Pkj

+
N2∑

k=1

3∑

j=1

uc
k j (X, XS)

∥∥ukj
∥∥
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+
N3∑

k=1

uc
i3(X, XD) ‖ϕk‖ (i = 1, 2, 3), (30a)

σi (X) =
N1∑

k=1

3∑

j=1

σ ∗
i j (X, XP)Pkj

+
N2∑

k=1

3∑

j=1

σ c
i j (X, XS)

∥∥ukj
∥∥

+
N3∑

k=1

σ c
i3(X, XD) ‖ϕk‖ (i = 1, 2, 3, 4, 5), (30b)

whereσ1, σ2, σ3, σ4 andσ5 are the extended stressesσyy, σzz,

σyz, Dy and Dz respectively; u3 is the electric potential
ϕ; u∗

i j and σ ∗
i j are the above-mentioned fundamental solu-

tions corresponding to the extended point forces, and uc
i j and

σ c
i j are the extended Crouch fundamental solutions derived

above;XP, XS and XD denote, respectively, the source points
outside the domain, on the crack and in the electric yielding
zone (again each has two coordinates (y, z)).

Letting Eq. (30) satisfy the given boundary conditions at
the collocation points on the boundary � and on the crack
and in the yielding zones, one can obtain 3(N1 + N2) + N3

linear algebraic equations for the unknown extended loads
Pki and the unknown extended discontinuity displacements
‖ukj‖. Solving these 3(N1 + N2)+ N3 equations determines
the unknown quantities.

Furthermore, by fitting the calculated extended displace-
ment discontinuity using the corresponding values at the
(Nc − 1)th, Ncth and (Nc + 1)th elements from the crack
tip, one obtains the asymptotic behavior of the extended dis-
placement discontinuity near the crack tip

‖v‖ = η11r1/2 + η12r + η13r3/2,

‖w‖ = η21r1/2 + η22r + η23r3/2,

‖ϕ‖ = η30 + η31r1/2 + η32r + η33r3/2, (31)

where r is the relative distance of the point on the crack faces
from the crack tip, ηi j fitting coefficients, and η30 represents
the effect of the electric potential discontinuity in the electric
yielding zone. Finally, the extended stress intensity factors
and local J-integral can be calculated based on Eqs. (22) and
(24).

6.2 Iterative approach for determining the electric yielding
zone

In the method presented above, the size of the electric yield-
ing zone is unknown, albeit related to the applied loadings
and geometry of the finite piezoelectric medium. To deter-
mine the electric yielding zone, the following supplementary
conditions on the electric displacement intensity factor must
be used

K r
Ds = lim

l→cr

√
2π(l − cr )D′

I = 0, (32a)

K l
Ds = lim

l→−cl

√
2π(l + cl)D′

I = 0. (32b)

We assume that there are Nl(1)
3 and Nr(1)

3 elements on the left-
and right-hand sides of the electric yielding zones. Then, by
using the solution derived in previous subsection, we can
obtain a numerical solution of the problem. Based on the
solution, we can calculate the electric displacement intensity
factor K r

Ds(Nr(1)
3 ) at l = cr and K l

Ds(Nl(1)
3 ) at l = −cl . If

K r
Ds(Nr(1)

3 ) > 0, one element is added to the right end of
the electric yielding zone, and a new value of Nr

3 is obtained,

Nr(2)
3 = Nr(1)

3 +1. On the other hand, if K r
Ds(Nr(1)

3 ) < 0, one
element is removed from the right end of the electric yield-
ing zone, and Nr(2)

3 = Nr(1)
3 − 1; The same iterative method

is used for the left-hand side electric zone. This process is
applied iteratively until the solution satisfies

K r
Ds

(
Nr(n1−1)

3

)
· K r

Ds

(
Nr(n1)

3

)
< 0,

K l
Ds

(
Nl(n2−1)

3

)
· K l

Ds

(
Nl(n2)

3

)
< 0, (33)

where n1 and n2 are the number of iterations in the yielding
zones. Finally, one obtains the sizes of the yielding zones,

Nr
3 = Nr(n1)

3 − 1,

Rr = cr − c

c
=

(

Nr
3 + K r

Ds

(
Nr

3

)

K r
Ds

(
Nr

3

) − K r
Ds

(
Nr

3 + 1
)

)
d

c
,

(34a)

Nl
3 = Nl(n2)

3 − 1,

Rl = cl − c

c
=

(

Nl
3 + K l

Ds

(
Nl

3

)

K l
Ds

(
Nl

3

) − K l
Ds

(
Nl

3 + 1
)

)
d

c
,

(34b)

where d is the half length of one element in the yielding zone.

7 Numerical solutions

As numerical examples, we assume that there is a crack with
arbitrary angle β to the y-axis, centered at the origin of the
coordinate system, as schematically shown in Fig. 1. The
crack is further within a rectangular piezoelectric plate of
PZT-5H with the poling direction along z-axis. The problem
is analyzed by using the proposed NLHDD-FS method. Only
the mechanical load p and electrical load ω are applied. The
details on selecting the collocation and source points and the
corresponding convergence issue in the NLHDD-FS method
are described in [18,19]. In this example, the element num-
bers are N1 = 200, N2 = 100, and N3 is determined by the
electric yielding zone.
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Fig. 2 The crack sliding displacement ‖v′‖ at the middle point of the
crack versus the crack orientation β in an infinite piezoelectric medium
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Fig. 3 Crack opening displacement ‖w′‖ at the middle point of the
crack versus the crack orientation β in an infinite piezoelectric medium

7.1 Effect of the crack orientation on the elastic fracture

We first analyze a crack in an infinite plane. To simu-
late the infinite plane, we selected a very large plate with
a/c = 100 and b/a = 4 as in Fan et al. [18]. Under different
mechanical and electric loadings, Figures 2, 3 and 4 show the
crack sliding displacement ‖v′‖, the crack opening displace-
ment ‖w′‖ and the potential jump ‖ϕ‖ at the middle point of
the crack versus the crack orientation β, where

∥∥v′∥∥ = ‖v‖ cos β + ‖w‖ sin β, (35a)
∥∥w′∥∥ = −‖v‖ sin β + ‖w‖ cos β. (35b)

It can be seen that when β = 0◦, the crack sliding dis-
placement equals to zero and the crack opening displace-
ment reaches a maximum. The crack sliding displacement
increases gradually and reaches its maximum at β =
45◦, whilst the crack opening displacement decreases with
increasing angle β. Furthermore, the crack sliding displace-
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Fig. 4 Electric potential jump ‖ϕ‖ at the middle point of the crack
versus the crack orientation β in an infinite piezoelectric medium

p=10 MPa, ω=0 C/m2

β / (degree)

0 20 40 60 80 100 120 140 160 180

N
or

m
al

iz
ed

 in
te

ns
ity

 fa
ct

or
 F

I,F
II,

F
D

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FI

FII

FD / 10-4

Fig. 5 Normalized extended intensity factors versus crack orientation
β under p = 10 MPa, ω = 0 C/m2 in an infinite piezoelectric medium

ment and potential jump are anti-symmetric about β = 90◦
whilst the crack opening displacement is symmetric.

The extended intensity factors under different loadings
are shown in Figs. 5, 6, 7. Figure 5 shows the normalized
extended intensity factors versus the crack orientation β

under pure mechanical load

p = 10 MPa, ω = 0 C/m2, (36)

where the normalized extended intensity factors FI, FII and
FD are defined by

FI = KI

p
√

πc
, FII = KII

p
√

πc
, FD = KD

χp
√

πc
, (37)

where

χ = K33/e33. (38)

The crack sliding displacement leads to an intensity factor FII

which reaches its maximum value at β = 45◦. The results
also demonstrate that the intensity factor FI is symmetric,
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p=0 MPa, ω=0.1C/m2
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Fig. 6 Normalized extended intensity factors versus crack orientation
β under p = 0 MPa, ω = 0.1 C/m2 in an infinite piezoelectric medium
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Fig. 7 Normalized extended intensity factors versus crack orienta-
tion β under p = 10 MPa, ω = 0.1 C/m2 in an infinite piezoelectric
medium

while the intensity factors FII and FD are anti-symmetric
about β = 90◦. The intensity factor FD is very close to zero
under pure mechanical load.

Figure 6 shows the normalized extended intensity factors
versus the crack orientation β under pure electric load

p = 0 MPa, ω = 0.1 C/m2, (39)

where the normalized extended intensity factors FI, FII and
FD are defined by

FI = χ KI

ω
√

πc
, FII = χ KII

ω
√

πc
, FD = KD

ω
√

πc
. (40)

It can be seen that the intensity factor FD decreases with
increasing β and is further anti-symmetric about β = 90◦.
It is also interesting to observe that the stress intensity fac-
tors FI and FII are both small under pure electric load, with
FI being symmetric and FII anti-symmetric about β = 90◦.
It is further noted that FI is negative even though the crack
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Fig. 8 Normalized stress intensity factor FI versus crack length for
different crack orientations under fixed loadings p = 10 MPa, ω =
0.1 C/m2 in a finite piezoelectric medium

opening displacement
∥
∥w′∥∥ is positive, i.e., the crack is still

opening. This striking feature is due to the inverse piezoelec-
tric effect.

Figure 7 shows the normalized extended intensity fac-
tors versus the crack orientation β under both electric and
mechanical loads

p = 10 MPa, ω = 0.1 C/m2, (41)

where the normalized extended intensity factors FI, FII and
FD are defined by

FI = KI

p
√

πc
, FII = KII

p
√

πc
, FD = KD

ω
√

πc
. (42)

Under this combined loading, the extended intensity factors
FI, FII and FD show clearly the coupling effect where both
the mechanical and electric intensity factors have the same
magnitude, while still keeping their symmetric (FI) and anti-
symmetric (FII and FD) features about β = 90◦. Therefore,
in the following examples, we concentrate on the combined
mechanical-electric loading case.

The normalized extended intensity factors versus the nor-
malized crack length for the inclined crack are plotted in
Figs. 8, 9, 10. It is shown that, for a given crack orientation,
the extended intensity factors FI, FII and FD all increase with
increasing crack length, except for FII (Fig. 9) where it is zero
when the crack is horizontal (β = 0◦) or vertical (β = 90◦).

7.2 Effect of crack orientation on elastic–plastic fracture

Figure 11 shows the dependence of the electric displacement
intensity factor KDs on R, the parameter related to the elec-
tric yielding zone (or equivalently the number of elements
in the electric yielding zone). For the case studied here, the
size of the electric yielding zone on the right-hand side of the
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Fig. 9 Normalized stress intensity factor FII versus crack length for
different crack orientations under fixed loadings p = 10 MPa, ω =
0.1 C/m2 in a finite piezoelectric medium
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Fig. 10 Normalized electric displacement intensity factor FD versus
crack length for different crack orientations under fixed loadings p =
10 MPa, ω = 0.1 C/m2 in a finite piezoelectric medium
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Fig. 11 Electric displacement intensity factor KDs versus R, a param-
eter related to the electric yielding zone in PS model. Only KDs = 0
corresponds to the real size of the electric yielding zone in an infinite
piezoelectric medium
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Fig. 12 Electric yielding zone versus crack orientation β under differ-
ent electric loadings in an infinite piezoelectric medium
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Fig. 13 Normalized local J-integral versus crack orientation β under
different electric loadings in an infinite piezoelectric medium

crack tip is equivalent to that on the left-hand side, namely
R = Rr

e = Rl
e, N3 = 1

2 Nr
3 = 1

2 Nl
3. It should be pointed out

that only the special value of R for which KDs = 0 gives real
size of the electric yielding zone (as given in Eq. (32)).

Figures 12 and 13 show the real size (or length) of the
electric yielding zone R (where KDs = 0) and the local
J-integral, respectively, versus the crack orientation under
the combined mechanical/electric loads with fixed p = 10
MPa but varying ω. The electric displacement saturation is
fixed at ωs = 0.1 C/m2 and the local J-integral is normalized
by

J ∗ = c0 J (l)

cp2 , (43)

with c0 = 1.0 GPa being the apparent elastic constant. The
length of the electric yielding zone and the local J-integral all
decrease with increasing crack angleβ. The larger the electric
loading is, the longer the electric yielding zone is (Fig. 12).
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Fig. 14 Electric yielding zone versus crack orientation β under differ-
ent mechanical loadings in an infinite piezoelectric medium
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Fig. 15 Normalized local J -integral versus crack orientation β under
different mechanical loadings in an infinite piezoelectric medium

The local J-integral shows also a similar trend with respect to
the crack orientation (Fig. 13). Also one can observe clearly
from these two figures that when β = 90◦, the length of
the electric yielding zone and the local J-integral are both
become zero.

Under different mechanical loadings, the sizes of the elec-
tric yielding zone and the local J-integral versus the crack ori-
entation are displayed respectively in Figs. 14 and 15 for the
crack in an infinite piezoelectric plane. It is observed that, for
a fixed crack orientation, the local J-integral decreases with
increasing mechanical loading (Fig. 15) whilst the influence
of the mechanical loading on the electric yielding is very
small (Fig. 14) and can thus be ignored. The latter feature is
consistent with the analytical solution in Gao et al. [11].

Figures 16 and 17 plot, respectively, the size of the electric
yielding zone and the local J-integral versus the crack length
in a finite piezoelectric strip with different crack orientations
and mechanical loadings. These results demonstrate that both
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Fig. 16 Electric yielding zone versus crack length with different crack
orientations and different mechanical loadings in a finite piezoelectric
medium
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Fig. 17 Normalized local J -integral versus crack length with different
crack orientations and different mechanical loading in a finite piezoelec-
tric medium
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Fig. 18 Electric yielding zone versus crack length with different crack
orientations and different electric loadings in a finite piezoelectric
medium
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Fig. 19 Normalized local J -integral versus crack length with different
crack orientations and different electric loadings in a finite piezoelectric
medium

the geometric size and crack orientation can greatly affect
the electric yielding zone and the local J-integral, especially
when the crack angle is small. Under different electric load-
ings, Figures 18 and 19 display respectively the size of the
electric yielding zone and the local J-integral versus crack
length for different crack orientations. Similar to the differ-
ent mechanical loading case, the size of the electric yielding
zone and the local J-integral are more sensitive to the crack
length when the crack angle is small.

8 Concluding remarks

The conventional displacement discontinuity method has
been extended to analyze arbitrarily oriented electrically non-
linear crack in a finite 2D piezoelectric medium. By using
the derived extended Green’s functions corresponding to the
extended point displacement discontinuities of an arbitrarily
oriented crack, the extended field intensity factors near the
crack tip are expressed in terms of the extended displacement
discontinuity on crack faces. The NLHEDD-FS method com-
bined with an iterative approach has been used to study the
nonlinear fracture behavior in finite and infinite piezoelec-
tric media. Numerical results demonstrate that the proposed
method is efficient for the examples presented and that both
the finite size of the problem domain and the crack orienta-
tion could significantly influence the fracture features of the
inclined crack.

We point out that while the present analysis is for a homo-
geneous medium, it can be extended to the corresponding
bimaterial system to study the influence of piezoelectric
material mismatch or free surface on crack behaviors [24,25].
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Appendix A

The material related constants in Eq. (12) are given by

Li
f yy21 = ωi1 [−c11 Di + si (c13 Ai − e31 Bi )] ,

Li
f yy22 = (c11 − c12 − ξi ) [c11 Di − si (c13 Ai − e31 Bi )] ,

Li
f yy31 = ωi1 [c11 Di − si (c13 Ai − e31 Bi )] ,

Li
f yy32 = θi1 [c11 Di − si (c13 Ai − e31 Bi )] ,

Li
f yy41 = ωi2 [c11 Di − si (c13 Ai − e31 Bi )] ,

Li
f yy42 = θi2 [c11 Di − si (c13 Ai − e31 Bi )] , (A1)

Li
f y21 = (c11 − c12 − ξi ) [c44 Di si + c44 Ai − e15 Bi ] ,

Li
f y22 = ωi1 [c44 Di si + c44 Ai − e15 Bi ] ,

Li
f y31 = θi1 [c44 Di si + c44 Ai − e15 Bi ] ,

Li
f y32 = ωi1 [−c44 Di si − c44 Ai + e15 Bi ] ,

Li
f y41 = θi2 [c44 Di si + c44 Ai − e15 Bi ] ,

Li
f y42 = ωi2 [−c44 Di si − c44 Ai + e15 Bi ] , (A2)

Li
f 21 = ωi1 [−c13 Di + si (c33 Ai − e33 Bi )] ,

Li
f 22 = (c11 − c12 − ξi ) [c13 Di − si (c33 Ai − e33 Bi )] ,

Li
f 31 = ωi1 [c13 Di − si (c33 Ai − e33 Bi )] ,

Li
f 32 = θi1 [c13 Di − si (c33 Ai − e33 Bi )] ,

Li
f 41 = ωi2 [c13 Di − si (c33 Ai − e33 Bi )] ,

Li
f 42 = θi2 [c13 Di − si (c33 Ai − e33 Bi )] , (A3)

Li
dy21 = (c11 − c12 − ξi ) [e15 Di si + e15 Ai + K11 Bi ] ,

Li
dy22 = ωi1 [e15 Di si + e15 Ai + K11 Bi ] ,

Li
dy31 = θi1 [e15 Di si + e15 Ai + K11 Bi ] ,

Li
dy32 = ωi1 [−e15 Di si − e15 Ai − K11 Bi ] ,

Li
dy41 = θi2 [e15 Di si + e15 Ai + K11 Bi ] ,

Li
dy42 = ωi2 [−e15 Di si − e15 Ai − K11 Bi ] , (A4)

Li
d21 = ωi1 [−e31 Di + si (e33 Ai + K33 Bi )] ,

Li
d22 = (c11 − c12 − ξi ) [e13 Di − si (e33 Ai + K33 Bi )] ,

Li
d32 = θi1 [e31 Di − si (e33 Ai + K33 Bi )] ,

Li
d31 = ωi1 [e31 Di − si (e33 Ai + K33 Bi )] ,

Li
d42 = θi2 [e31 Di − si (e33 Ai + K33 Bi )] ,

Li
d41 = ωi2 [e31 Di − si (e33 Ai + K33 Bi )] . (A5)
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