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a b s t r a c t

Two nonlinear fracture models, i.e., the electric and magnetic polarization saturation (EMPS) and electric
and magnetic breakdown (EMBD) models for penny shaped cracks in three-dimensional magnetoelectro-
elastic media are studied via the extended displacement discontinuity integral equation method. In the
EMPS model, the electric displacement and magnetic induction are constant respectively in the planar
electric yielding zone and magnetic yielding zone on the original crack plane, whilst in the EMBD model,
the electric and magnetic strengths are constant respectively in their planar yielding zones. Under the
electrically and magnetically impermeable conditions and uniformly applied mechanical–electric–mag-
netic loadings on the faces of the penny shaped crack, analytical solutions are derived for the sizes of elec-
tric and magnetic yielding zones and the field intensity factors. It is demonstrated that the fracture
behaviors can be predicted equivalently by both EMPS and EMBD models even though they are built
on two different physical grounds.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Defects in materials, such as cracks, avoids, etc., can greatly
influence the safety and life of structures and systems. Analysis
of cracks is one of the main tasks in fracture mechanics. Various
nonlinear models have been proposed in dealing with nonlinear
behaviors of cracks in elastic–plastic materials and structures.
Among these models, the Dugdale model (Dugdale, 1960) is one
of the most famous ones in nonlinear fractures.

In 1960, Dugdale proposed a model to analyze yielding of steel
sheets containing slits, in which the stress at the crack tip should not
be infinite, thus the coefficient of the singular term must vanish. The
strip yielding zone size was also determined from the non-singularity
condition. Up to now, Dugdale model has been receiving intensive
study and it is now widely utilized in fracture mechanics. For example,
Janson (1977) analyzed the influence of continuous damage on the
stress ahead of the crack and on the plastic zone length using the Dug-
dale model. Wu et al. (1992) established a model for fracture crack
growth based on the Dugdale model along with the damage accumu-
lation concept introduced by Budiansky and Hutchinson (1978). Mou
and Han (1994) derived the size of the damage zone via the Dugdale
model by considering the interaction between the macrocracks and

microcracks. Collins and Cartwright (2001) derived an analytical solu-
tion for two equal-length collinear strip-yield cracks based on the Dug-
dale model. Crapps and Daniewicz (2010) derived the weight function,
also based on the Dugdale model for mixed-mode crack problems with
arbitrary crack surface tractions. Xu and Wu (2012) derived the weight
functions to analyze three collinear cracks with the strip-yield model.
Chang and Kotousov (2012) studied analytically and numerically the
strip yield model for two collinear cracks.

The nonlinear fracture behaviors of multiferroic materials are
attracting more and more attentions. Gao and Barnett (1996) and
Gao et al. (1997) extended the classical Dugdale model and pro-
posed a strip polarization saturation (PS) model in piezoelectricity
by assuming that the electric displacement is constant on a strip
adjacent to a crack tip. The PS model treats piezoelectric ceramics
as mechanically brittle and electrically ductile, and takes advantage
of the fact that the constitutive relations between electric displace-
ment and electric field strength are similar to that between stress
and strain in the Dugdale model. Prediction of the piezoelectric
fields and fracture features based on the PS model are in general
agreement with experimental observations. Based on the complete
constitutive equation and the PS model, extended analysis was con-
ducted by Ru and Mao (1999), Ru (1999), Wang (2000), Zhang et al.
(2002), Jeong et al. (2004), Beom et al. (2006a,b), and Loboda et al.
(2008). Li (2003) re-examined the saturation-strip model for a pie-
zoelectric crack in a permeable environment. Lapusta and Loboda
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(2009) and Loboda et al. (2010) considered a plane problem for a
limited (or semi-) permeable crack in a thin interlayer between
two piezoelectric semi-infinite spaces. Very recently, Fan et al.
(2012) derived a semi-analytical solution for a semi-permeable
crack in a 2D piezoelectric medium based on the PS model.

McMeeking (2001) reconsidered the relation among the electric
displacement, electric field and the polarization, and their effect on
the fracture mechanics of the brittle piezoelectric material. It was
found that the PS model corresponds to a mechanical Dugdale
(1960) model in which the strain remains a constant value as the
stress increases. For this reason, Zhang and Gao (2004), Zhang
(2004) and Zhang et al. (2005) proposed the strip dielectric break-
down (DB) model, which is exactly analogous to the classical Dug-
dale model from the energy point of view. The electric field
strength on a strip adjacent to a crack tip is taken to be the dielec-
tric breakdown strength. Except for the slight difference between
the values of the J-integrals derived from the PS and DB models,
these two models are qualitatively consistent in the predication
of the effect of electric fields on the fracture behavior. Later, Gao
et al. (2006) extended the DB model to a conductive crack. Fan
et al. (2009) developed a non-linear hybrid extended displacement
discontinuity-fundamental solution (NLHEDD-FS) method for the
numerical analysis of 2D finite piezoelectric cracks based on both
the PS and DB models where the crack surface is under imperme-
able and semi-permeable electric boundary conditions. Zhang and
Gao (2012) studied the strip DB model for a conductive crack in an
infinite electrostrictive material by means of the complex variable
method.

Based on the similarities between the electric and magnetic
quantities, the existing electric yielding models (e.g., the PS
and DB model) and the magnetic yielding models, Zhao and
Fan (2008) proposed the strip electric–magnetic breakdown
(EMBD) model to study the non-linear fracture behaviors of an
electrically and magnetically impermeable crack in magnetoelec-
troelastic (MEE) materials. In the strip EMBD model, the electric
field in the strip of the electric breakdown zone ahead of the
crack tip is equal to the electric breakdown strength, while the
magnetic field in the strip of the magnetic breakdown zone is
equal to the magnetic breakdown strength. Fan and Zhao
(2011) developed a strip electric–magnetic polarization satura-
tion (EMPS) model to study the electric and magnetic yielding
effects on a crack in an infinite or finite MEE medium. The ana-
lytical solution of this strip EMPS model for a crack in the infi-
nite MEE medium was obtained using an integral equation
approach. The equivalence between the proposed strip EMPS
model and the existing strip EMBD model was demonstrated.
The NLHEDD-FS method was extended to analyze the nonlinear
fracture problem in the finite MEE medium. Recently, Bhargava
and Gupta (2012) developed a magnetic, electric and mechanical
yield model for a cracked piezoelectromagnetic ceramic narrow
strip subjected to anti-plane mechanical and in-plane electric
and magnetic loads.

For the 3D elastic–plastic problems, Danyluck et al. (1995) esti-
mated the plastic zone for a penny-shaped crack in a thick trans-
versely isotropic layer due to a radial shear employing the
Dugdale hypothesis. Chaiyat et al. (2008) used analytical and
numerical approaches to solve an axisymmetric crack problem
with a refined Barenblatt–Dugdale approach, where the original
Dugdale’s condition, Tresca yield condition and von Mises criterion
were imposed. Li et al. (2012) studied the penny-shaped Dugdale
crack embedded in a power-law graded elastic infinite medium.
The validity of the solutions was examined both analytically and
numerically. Zhao et al. (1999) used the displacement discontinu-
ity boundary integral equation method to study the PS model of a
penny-shaped crack in a 3D transversely isotropic piezoelectric
medium.

So far, however, the two nonlinear fracture models are still lim-
ited to 2D MEE materials. Would be the corresponding 3D nonlin-
ear fracture behaviors different than those based on the 2D model?
What are the difference and similarity between the EMPS and
EMBD models in 3D? Answering these questions is important for
fracture analysis in 3D MEE materials. Motivated by this, in this pa-
per, we study a penny shaped crack in 3D MEE media based on
both the EMPS and EMBD models via the extended displacement
discontinuity integral equation method we introduced previously.
The paper is organized as follows: In Section 2, we discuss the
EMPS model; In Section 3, the EMBD model is presented. Both
models are also discussed and compared to each other. Conclusions
are drawn in Section 4.

2. Electric and magnetic polarization saturation model for a
penny shaped crack in a 3D magnetoelectroelastic medium

Consider a penny shaped crack S of radius a in the oxy plane
centered at the origin o in a 3D MEE medium where the oxy plane
coincides with the plane of isotropy and the polarization direction
is along the z-direction, as schematically shown in Fig. 1. Uniformly
distributed mechanical, electric and magnetic loadings are applied
on the crack faces S � 0 � r � a; 0 � h � 2pf g and they have the
same value but opposite directions on the upper (S+) and lower
(S�) crack face (see Fig. 2a), which read

pðrÞ � �rzðr;0þÞ ¼ p0;

xðrÞ � �Dzðr;0þÞ ¼ x0; 0 � r � a;

cðrÞ � �Bzðr;0þÞ ¼ c0;

ð1Þ

where rzðr; 0þÞ, Dzðr;0þÞ and Bzðr;0þÞ are the components of stress,
electric displacement and magnetic induction in the z-direction,
respectively.

It is observed that due to the given material and crack orienta-
tions and the applied loads, the problem to be solved is obviously
axisymmetric. Based on the EMPS model for MEE media (Fan and
Zhao, 2011), we assume that the piezoelectric displacement and
the magnetic induction reach their saturated values Ds and Bs,
respectively, in the annular electric polarization saturation region
a � r � c; 0 � h � 2pf g and magnetic induction saturation region
a � r � b; 0 � h � 2pf g in front of the crack tip on the crack plane

(Fig. 2). Thus, the electric loadings on the equivalent electric crack
Sc � 0 � r � c; 0 � h � 2pf g can be rewritten as
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Fig. 1. A penny-shaped crack in the isotropic plane of an infinite solid of a
transversely isotropic MEE material.
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xðrÞ ¼
x0; 0 � r � a;

�Ds; a < r � c;

�
ð2Þ

and the magnetic loading on the equivalent magnetic crack
Sb � 0 � r � b; 0 � h � 2pf g are

cðrÞ ¼
c0; 0 � r � a;

�Bs; a < r � b:

�
ð3Þ

By using the extended displacement discontinuity Green’s function
and the extended Somigliana relation, the integral equations that
govern the extended displacement discontinuities are derived as
(Zhao et al., 2007)Z

S
L31 wk k 1

R3 dSðn;gÞ þ
Z

Sc

L32 uk k 1
R3 dSðn;gÞ þ

Z
Sb

L33 wk k 1
R3 dSðn;gÞ

¼ �pðx; yÞ; ðx; yÞ 2 S; ð4Þ

Z
S

L41 wk k 1
R3 dSðn;gÞ þ

Z
Sc

L42 uk k 1
R3 dSðn;gÞ þ

Z
Sb

L43 wk k 1
R3 dSðn;gÞ

¼ �xðx; yÞ; ðx; yÞ 2 Sc ð5Þ

Z
S

L51 wk k 1
R3 dSðn;gÞ þ

Z
Sc

L52 uk k 1
R3 dSðn;gÞ þ

Z
Sb

L53 wk k 1
R3 dSðn;gÞ

¼ �cðx; yÞ; ðx; yÞ 2 Sb; ð6Þ

where the material-related constants Lij are given in Appendix A.
The extended displacement discontinuities are the elastic displace-
ment discontinuity in the z-direction, the electric potential and the
magnetic potential discontinuities across the crack faces, namely

wðrÞk k ¼ wðr;0þÞ �wðr;0�Þ;
uðrÞk k ¼ uðr;0þÞ �uðr;0�Þ;
wðrÞk k ¼ wðr;0þÞ � wðr;0�Þ;

ð7Þ

and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� nÞ2 þ ðy� gÞ2

q
: ð8Þ

Depending upon the relation between b and c, we solve the EMPS
model for the following two different cases.

2.1. Case 1: b P c

Equation (6) can be rewritten as the Abel type integral equation
(Chen and Tang, 1997; Zhao et al., 1999)

4
Z r

0

t2

ðr2 þ t2Þ3=2

Z b

t

qðL51 wk k þ L52 uk k þ L53 wk kÞ
ðq2 � t2Þ3=2 dq

" #
dt

¼ cðrÞ; 0 � r � b; ð9Þ

with its solution being found as (Chen and Tang, 1997; Zhao et al.,
1999)

L51 wk k þ L52 uk k þ L53 wk k ¼ L53fwðrÞ; 0 � r � b; ð10Þ

where

L53fwðrÞ ¼
1
p2

Z b

r

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2
p

Z t

0

qcðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � q2

q dq

2
64

3
75dt

¼ 1
p2 c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

q
� ðc0 þ BsÞ

Z b

max ðr;aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

t2 � r2

s
dt

2
4

3
5: ð11Þ

From the EMPS model, we have

wk k ¼ 0; for a � r � c; ð12Þ

wk k ¼ 0; uk k ¼ 0 for c � r � b; ð13Þ

Then, we obtain

L52 uk k þ L53 wk k ¼ L53fwðrÞ; a � r � c; ð14Þ

wk k ¼ fwðrÞ; c � r � b; ð15Þ

Introducing the dimensionless parameters

x ¼ r
a
; x1 ¼

b
a
; y1 ¼

c0

Bs
; ð16Þ

Iðx; x1; y1Þ ¼
1
p2 y1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 � x2
q

� ðy1 þ 1ÞI0ðx; x1Þ
� �

; ð17Þ

I0ðx; x1Þ ¼
Z x1

max ðx;1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1
n2 � x2

s
dn: ð18Þ

Eq. (11) can be rewritten as

L53fwðxÞ ¼ aBsIðx; x1; y1Þ: ð19Þ

Based on the expression for the magnetic induction intensity factor
(Zhao et al., 2007)

KB
I ¼

ffiffiffiffiffiffiffi
2p
p

plim
r!b
½L51 wk k þ L52 uk k þ L53 wk k�=

ffiffiffiffiffiffiffiffiffiffiffi
b� r
p

; ð20Þ
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Fig. 2. (a) The EMPS model of a penny shaped crack under applied loadings on its
surface where b P c P a. (b) The EMPS model of a penny shaped crack with the
annular yielding zones on the crack plane.
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and the condition that the magnetic induction intensity factor at
r ¼ b should be zero, we obtain the magnetic yielding zone size as

x1 ¼
1þ y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y1

p : ð21Þ

Equation (21) indicates that the magnetic yielding zone size is only
dependent on the applied magnetic loading and the magnetic yield-
ing property.

Now, we combine Eqs. (5) and (6) to yieldZ
S

L�41 wk k 1
R3 dSþ

Z
Sc

L�42 uk k 1
R3 dS ¼ �xðrÞ þ ðL43=L53ÞcðrÞ;

0 � r � c; ð22Þ

where

L�4i ¼ L4i � ðL43=L53ÞL5i; i ¼ 1;2; ð23Þ

and the extended loading is

xðrÞ � ðL43=L53ÞcðrÞ ¼
x0 � ðL43=L53Þc0; 0 � r � a;

�Ds þ ðL43=L53ÞBs; a � r � c:

�
ð24Þ

Following the similar procedure above, we obtain

L�41 wk kþL�42 uk k¼ Ds�ðL43=L53ÞBsð ÞaIðx;x2;y2Þ; 0� r� c; ð25Þ

where the dimensionless parameters are defined as

x2 ¼ c=a; y2 ¼ x0 � ðL43=L53Þc0ð Þ= Ds � ðL43=L53ÞBsð Þ: ð26Þ

From Eq. (12), we have

L�42 uk k ¼ Ds � ðL43=L53ÞBsð ÞaIðx; x2; y2Þ; a � r � c: ð27Þ

It can be proven that function fw(x) in Eq. (14) induces no singular-
ity at x = x2. Then from Eq. (14), we have

wk k � wck k � � L52

L53
uk k; r ! c; ð28Þ

where wck k ¼ wðcÞk k.
Based on the electric displacement intensity factor expressed in

terms of the extended displacement discontinuities (Zhao et al.,
2007)

KD
I ¼

ffiffiffiffiffiffiffi
2p
p

plim
r!c
½L41 wk k þ L42 uk k þ L43ð wk k � wck kÞ�=

ffiffiffiffiffiffiffiffiffiffiffi
c � r
p

; ð29Þ

and the condition that KD
I ¼ 0 at r ¼ c, we obtain the size of the elec-

tric yielding zone as

x2 ¼
1þ y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y2

p : ð30Þ

Equation (30) shows that the size of the electric polarization zone
depends on both the electric and magnetic loadings as well as on
the electric and magnetic saturated properties.

Finally, substituting Eq. (6) into Eq. (4) yieldsZ
S

L�31 wk k 1
R3 dSþ

Z
Sc

L�32 uk k 1
R3 dS

¼ �pðrÞ þ ðL33=L53ÞcðrÞ; 0 � r � a; ð31Þ

where

L�3i ¼ L3i � ðL33=L53ÞL5i i ¼ 1;2; ð32Þ

From Eq. (22), we haveZ
S

L�41 wk k 1
R3 dSþ

Z
Sc

L�42 uk k 1
R3 dS

¼ �xðrÞ þ ðL43=L53ÞcðrÞ; 0 � r � a; ð33Þ

From Eqs. (31) and (33), we have

Z
S

wk k
R3 dS ¼ �L�42pðrÞ þ L�32xðrÞ þ ½L

�
42ðL33=L53Þ � L�32ðL43=L53Þ�cðrÞ

L�31L�42 � L�32L�41
;

0 � r � a; ð34Þ

Thus, we obtain

wk k ¼ L�42p0 � L�32x0 � ½L�42ðL33=L53Þ � L�32ðL43=L53Þ�c0

L�31L�42 � L�32L�41

a
p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

; 0 � x � 1: ð35Þ

It can be proven that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2 � x2
q

and I0ðx; x2Þ induce no singularity at
x ¼ 1. Then from Eq. (25), we have

uk k � uak k � � L�41

L�42
wk k; x! 1; ð36Þ

where uak k ¼ uðaÞk k.It can also be proven that function fwðxÞ in Eq.
(10) induces no singularity at x ¼ 1. Substituting Eq. (36) into Eq.
(10) leads to

wk k � wak k � � L51 � L52
L�41

L�42

� �
wk k=L53; x! 1; ð37Þ

where wak k ¼ wðaÞk k.
Substituting Eqs. (35)–(37) into the expression of the stress

intensity factor at the mechanical crack tip (Zhao et al., 2007)

KF
I ¼

ffiffiffiffiffiffiffi
2p
p

plim
r!a
½L31jjwjj þ L32ðjjujj � jjuajjÞ þ L33ðjjwjj � jjwajjÞ�

ffiffiffiffiffiffiffiffiffiffi
a� r
p

;

ð38Þ

gives the local stress intensity factor

KF
I ¼ 2

ffiffiffiffi
a
p

r
ðp0 þ LF2x0 þ LF3c0Þ; ð39Þ

where the constants are

LF2 ¼ �
L�32

L�42
; LF3 ¼

L32L43 � L33L42

L42L53 � L43L52
: ð40Þ

This result demonstrates that the local stress intensity factor at the
crack tip is related to the applied mechanical, electric and magnetic
loadings, but independent of the electric and magnetic yielding
zones, similar to the corresponding 2D results (Ru, 1999). Further-
more, the electric displacement and magnetic induction intensity
factors are zero.

2.2. Case 2: c P b

Based on the similar solution procedure for Case 1, we
obtain the dimensionless sizes of the electric and magnetic
yielding zones

x2 ¼
1þ y3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y3

p ; ð41Þ

x1 ¼
1þ y4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y4

p ; ð42Þ

where

x2 ¼ c=a; y3 ¼ x0=Ds; ð43Þ

x1 ¼ b=a; y4 ¼ x0 � ðL42=L52Þc0ð Þ= Ds � ðL42=L52ÞBsð Þ: ð44Þ

In this case, the electric yielding zone is dependent only on the elec-
tric loading, while magnetic yielding zone is dependent both on the
electric and magnetic loadings. Furthermore, it is interesting to find
that the local intensity factor at the mechanical crack tip is still gi-
ven by Eq. (39).
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3. Electric and magnetic breakdown model for a penny shaped
crack in a 3D magnetoelectroelastic medium

In the electric and magnetic breakdown model of the penny
shaped crack (Zhao and Fan, 2008), the electric breakdown region
is also annular denoted by a � r � c and the annular magnetic
breakdown region denoted by a � r � b, in which

Ez ¼ Eb; a < r < c; ð45Þ

Hz ¼ Hb; a < r < b; ð46Þ

where Eb and Hb are the electric and magnetic breakdown strengths,
respectively. By using the extended displacement discontinuity
Green’s functions (Zhao et al., 2007), the extended displacement
discontinuity boundary integral equations are derivedZ

S
L31 wk k 1

R3 dSþ
Z

Sc

L32 uk k 1
R3 dSþ

Z
Sb

L33 wk k 1
R3 dS ¼ �p0;

0 � r � a; ð47Þ

Z
S

L41 wk k 1
R3 dSþ

Z
Sc

L42 uk k 1
R3 dSþ

Z
Sb

L43 wk k 1
R3 dS ¼ �x0;

0 � r � a; ; ð48Þ

Z
S

L51 wk k 1
R3 dSþ

Z
Sc

L52 uk k 1
R3 dSþ

Z
Sb

L53 wk k 1
R3 dS ¼ �c0;

0 � r � a; ð49Þ

Z
S

K41 wk k 1
R3 dSþ

Z
Sc

K42 uk k 1
R3 dSþ

Z
Sb

K43 wk k 1
R3 dS ¼ Eb;

a � r � c; ð50Þ

Z
S

K51 wk k 1
R3 dSþ

Z
Sc

K52 uk k 1
R3 dSþ

Z
Sb

K53 wk k 1
R3 dS ¼ Hb;

a � r � b; ð51Þ

where

K4j ¼ �
X4

i¼1

#ijBisi; K5j ¼ �
X4

i¼1

#ijCisi; j ¼ 1;2;3; ð52Þ

with si;Bi;Ci and #ij being all material-related constants given in
Zhao et al. (2007).

Solving Eqs. (47)–(49) gives

where

D ¼
L31 L32 L33

L41 L42 L43

L51 L52 L53

�������
�������: ð54Þ

Making use of Eq. (53), we obtain the following dual boundary
equations from Eqs. (50) and (51)

Z
S

K41 wk k 1
R3 dSþ

Z
Sc

K42 uk k 1
R3 dSþ

Z
Sb

K43 wk k 1
R3 dS ¼ �E0;

0 � r � a ; ð55Þ

Z
S

K51 wk k 1
R3 dSþ

Z
Sc

K52 uk k 1
R3 dSþ

Z
Sb

K53 wk k 1
R3 dS ¼ �H0;

0 � r � a; ð56Þ

where

E0 ¼ �ðK41P þ K42Q þ K43TÞ;
H0 ¼ �ðK51P þ K52Q þ K53TÞ:

ð57Þ

Similar to the EMPS model in Section 2, we discuss the following
two cases for the EMBD model.

3.1. Case 1: b P c

Form Eqs. (51) and (56), we obtain

K51 wk k þ K52 uk k þ K53 wk k ¼ K53gwðrÞ; 0 � r � b; ð58Þ

where

K53gwðxÞ ¼ aHbIðx; x1; y5Þ; ð59Þ

y5 ¼ H0=Hb: ð60Þ

Then we have

K52 uk k þ K53 wk k ¼ K53gwðrÞ; a � r � c; ð61Þ

wk k ¼ gwðrÞ; c � r � b; ð62Þ

Applying the condition KH
I ¼ 0 at r ¼ b to the above equation gives

x1 ¼
1þ y5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y5

p : ð63Þ

Since the loading H0 is dependent on p0;x0; c0, the magnetic yield-
ing zone size is dependent on the applied mechanical, electrical and
magnetic loadings and the magnetic yielding property.

We now combine Eqs. (50), (51), (55), and (56) to obtainZ
Sc

ðK�41 wk kþK�42 uk kÞ 1
R3 dS¼�EðrÞþðK43=K53ÞHðrÞ; 0� r� c; ð64Þ

where

K�4i ¼ K4i � ðK43=K53ÞK5i; i ¼ 1;2; ð65aÞ

EðrÞ ¼
E0; 0 � r � a;

�Eb; a < r � c;

�
HðrÞ ¼

H0; 0 � r � a;

�Hb; a < r � b:

�
ð65bÞ

Following the similar procedure as above, we obtain

K�41 wk k þ K�42 uk k ¼ ðEb � ðK43=K53ÞHbÞaIðx; x2; y6Þ; 0 � r

� c; ð66Þ
where the dimensionless parameters are defined as

y6 ¼ ðE0 � ðK43=K53ÞH0Þ=ðEb � ðK43=K53ÞHbÞ: ð67Þ

Then, we have

K�42 uk k ¼ ðEb � ðK43=K53ÞHbÞaIðx; x2; y6Þ; a � r � c: ð68Þ

It can be proven that function gwðxÞ in Eq. (61) induces no singular-
ity at x ¼ x2. Then from Eq. (61), we have

Z
S

wk k 1
R3 dS ¼ �ðL42L53 � L43L52Þp0 þ ðL32L53 � L33L52Þx0 � ðL32L43 � L33L42Þc0

D
¼ P;Z

Se

uk k 1
R3 dS ¼ ðL41L53 � L43L51Þp0 � ðL31L53 � L33L51Þx0 þ ðL31L43 � L33L41Þc0

D
¼ Q ;Z

Sb

wk k 1
R3 dS ¼ �ðL41L52 � L42L51Þp0 þ ðL31L52 � L32L51Þx0 � ðL31L42 � L32L41Þc0

D
¼ T; 0 < r < a

ð53Þ
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wk k � wck k � �K52

K53
uk k; r ! c: ð69Þ

Based on the electric field intensity factor expressed in terms of the
extended displacement discontinuities

KE
I ¼

ffiffiffiffiffiffiffi
2p
p

plim
r!c
ðK41 wk k þ K42 uk k þ K43ð wk k � wck kÞÞ=

ffiffiffiffiffiffiffiffiffiffiffi
c � r
p

;

ð70Þ

and the condition that KE
I ¼ 0, the size of the electric yielding zone

is derived as

x2 ¼
1þ y6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y6

p : ð71Þ

From Eq. (53), we obtain

wk k ¼
L�42p0 � L�32x0 � L�42ðL33=L53Þ � L�32ðL43=L53Þ

	 

c0

L�31L�42 � L�32L�41

a
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

;

0 � r � a: ð72Þ

The displacement discontinuity wk k is the same as that predicted
based on the EMPS model as given in Eq. (35). It can be proven thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
2 � x2

q
and I0ðx; x2Þ induce no singularity at x ¼ 1. Then from Eq.

(66), we have

uk k � uak k � �K�41

K�42
wk k; x! 1; ð73Þ

Similarly, from Eq. (58), we have

wk k � wak k � � K51 � K52
K�41

K�42

� �
wk k=K53; x! 1; ð74Þ

Finally, the local extended factors at the mechanical crack tip are
derived as

KF
I ¼ 2

ffiffiffiffi
a
p

r
ðGF1p0 þ GF2x0 þ GF3c0Þ; ð75aÞ

KD
I ¼ 2

ffiffiffiffi
a
p

r
ðGD1p0 þ GD2x0 þ GD3c0Þ; ð75bÞ

KB
I ¼ 2

ffiffiffiffi
a
p

r
ðGB1p0 þ GB2x0 þ GB3c0Þ; ð75cÞ

where the constants are

GF1 ¼ L�42
ðL�31L�42�L�32L�41ÞK53K�42

K53ðL31K�42� L32K�41Þ� L33ðK51K�42�K52K�41Þ
	 


;

GF2 ¼� L�32
L�42

GF1;

GF3 ¼� 1
L53
ðL33� L43

L�32
L�42
ÞGF1;

ð76Þ

GD1 ¼ L�42
ðL�31L�42�L�32L�41ÞK53K�42

½K53ðL41K�42� L42K�41Þ� L43ðK51K�42�K52K�41Þ�;

GD2 ¼� L�32
L�42

GD1;

GD3 ¼� 1
L53

L33� L43
L�32
L�42

� �
GD1;

ð77Þ

GB1 ¼ L�42
ðL�31L�42�L�32L�41ÞK53K�42

K53ðL51K�42� L52K�41Þ� L53ðK51K�42�K52K�41Þ
	 


;

GB2 ¼� L�32
L�42

GB1;

GB3 ¼� 1
L53

L33� L43
L�32
L�42

� �
GB1:

ð78Þ

It can be observed clearly from Eqs. (75)–(78) that the field intensity
factors depend only on the material properties and the applied

loads, and are independent of size of the yielding zone. This feature
is similar to that based on the 3D EMPS model as presented above
and to that using the corresponding 2D EMBD model (Zhao and
Fan, 2008).

We also point out that even though the expression for the stress
intensity factor given by Eq. (39) based on the EMPS model looks
different than that given by Eq. (75a) based on the EMBD model,
we would suspect they should be very close to each other based
on the existing 2D analyses (e.g. Zhang et al., 2005; Fan et al.,
2009). To numerically verify this point, we take the MEE medium
as an example, which is made of the composite BaTiO3–CoFe2O4

with CoFe2O4 as matrix and BaTiO3 as inhomogeneity, with the vol-
ume fraction of the inhomogeneity being Vi ¼ 0:5 (Zhao et al.,
2007). For this MEE material, we have

LF2 ¼ 8:71989� 108; LF3 ¼ 9:22607� 105; GF1 ¼ 0:981534;

GF2 ¼ 8:55887� 108; GF3 ¼ 9:05570� 105: ð79Þ

Substituting these parameters into Eq. (39) and Eq. (75a) gives the
stress intensity factor

KF
I ¼ 2

ffiffiffi
a
p

p
p0 þ 8:71989� 108x0 þ 9:22607� 105c0

� �
;

KF
I ¼ 2

ffiffiffi
a
p

p
0:981534p0 þ 8:55887� 108x0 þ 9:05770� 105c0

� �
:

ð80Þ

As we can see obviously that they are very close to each other.
Also for this MEE composite, we find that the other constants in

Eqs. (77) and (78) are

GD1 ¼ 1:92514� 10�11; GD2 ¼ 0:016787; GD3

¼ 0:0000177615; GB1 ¼ 1:82033� 10�9; GB2

¼ 1:58731; GB3 ¼ 0:00167945: ð81Þ

Substituting the obtained extended intensity factors into the local J-
integral (Zhao and Fan, 2008), it is found that the local J-integral is
dominated by the stress intensity factor KF

I and the contribution of
the electric and magnetic intensity factors to the local J-integral can
be neglected. In this sense, the EMPS model and the EMBD model
are equivalent to each other in the analysis of fracture behaviors
in MEE materials.

3.2. Case 2: c P b

In this case, the dimensionless size of the electric yielding zone
is given by

x2 ¼
1þ y7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y7

p ; ð82Þ

where

x2 ¼
c
a
; y7 ¼

E0

Eb
: ð83Þ

The dimensionless size of the magnetic yielding zone is given by

x1 ¼
1þ y8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y8

p ; ð84Þ

in which

x1 ¼ b=a; y8 ¼ E0 � ðK42=K52ÞH0ð Þ= Eb � ðK42=K52ÞHbð Þ: ð85Þ

4. Conclusions

Analytical solutions are derived for the fracture problem of a
penny shaped crack in 3D MEE media based on the nonlinear EMPS
and EMBD models and using the extended displacement disconti-
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nuity method. Based on our solutions, the following conclusions
can be drawn.

(1) The sizes of the electric and magnetic yielding zones are dif-
ferent based on the two nonlinear models. They depend on
the applied mechanical–electric–magnetic loadings, as well
as on the polarization saturations and breakdown strengths.

(2) The local extended intensity factors along the crack front
based on EMPS or EMBD model are equal whether if the
electric yielding zone is larger than the magnetic yielding
one, and are independent of the electric and magnetic yield-
ing zones and the yielding properties of the MEE materials.
Furthermore, the stress intensity factor based on the EMBD
model is very close to that based on the EMPS model.

(3) Since the local J-integral can be calculated from the field
intensity factors, the J-integral criterion JðlÞ ¼ Jc can be used
to predict the fracture behavior of MEE materials under
applied mechanical–electric–magnetic loadings. Based on
the two nonlinear models, our analytical solutions show that
the local J-integral is dominated by the stress intensity factor
KF

I . Thus, the K-criterion is equivalent to the J-criterion. Fur-
thermore, since the stress intensity factor based on the EMPS
model is very close to the one based on the EMBD model, the
two nonlinear models are equivalent to each other in the
analysis of fracture behaviors in MEE materials.
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Appendix A. Material related constants

The material-related constants in Eqs. (4)–(6) are given by

L31 ¼ �
X4

i¼1

#i1½�c13Di þ ðc33Ai � e33Bi � f33CiÞsi�;

L32 ¼ �
X4

i¼1

#i1½�e31Di þ ðe33Ai þ e33Bi þ g33CiÞsi�;

L33 ¼ �
X4

i¼1

#i1½�f31Di þ ðf33Ai þ g33Bi þ l33CiÞsi�;

ðA1Þ

L41 ¼ �
X4

i¼1

#i2½�c13Di þ ðc33Ai � e33Bi � f33CiÞsi�;

L42 ¼ �
X4

i¼1

#i2½�e31Di þ ðe33Ai þ e33Bi þ g33CiÞsi�;

L43 ¼ �
X4

i¼1

#i2½�f31Di þ ðf33Ai þ g33Bi þ l33CiÞsi�;

ðA2Þ

L51 ¼ �
X4

i¼1

#i3½�c13Di þ ðc33Ai � e33Bi � f33CiÞsi�;

L52 ¼ �
X4

i¼1

#i3½�e31Di þ ðe33Ai þ e33Bi þ g33CiÞsi�;

L53 ¼ �
X4

i¼1

#i3½�f31Di þ ðf33Ai þ g33Bi þ l33CiÞsi�:

ðA3Þ

where si are the roots of the material characteristic equation, #ij, Ai,
Bi, Ci and Di are all material-related constants given in Zhao et al.
(2007).

References

Beom, H.G., Kim, Y.H., Cho, C., Kim, C.B., 2006a. A crack with an electric
displacement saturation zone in an electrostrictive material. Arch. Appl.
Mech. 76, 19–31.

Beom, H.G., Kim, Y.H., Cho, C., Kim, C.B., 2006b. Asymptotic analysis of an
impermeable crack in an electrostrictive material subjected to electric
loading. Int. J. Solids Struct. 43, 6869–6886.

Bhargava, R.R., Gupta, S., 2012. Mathematical model for crack arrest of a
transversely cracked piezoelectromagnetic strip – Part I. Appl. Math. Modell.
36, 3502–3512.

Budiansky, B., Hutchinson, J.W., 1978. Analysis of closure in fatigue crack growth. J.
Appl. Mech. 45, 267–275.

Chaiyat, S., Jin, X., Keer, L.M., Kiattikomol, K., 2008. Analytical and numerical
evaluation of crack-tip plasticity of an axisymmetrically loaded penny-shaped
crack. C. R. Mecanique 336, 54–68.

Chang, D.H., Kotousov, A., 2012. A strip yield model for two collinear cracks. Eng.
Fract. Mech. 90, 121–128.

Chen, M.C., Tang, R.J., 1997. A closed type solution of hyper-singular integral
equation for a penny crack subjected to uniform pressure in an infinite
homogeneous elastic solid. Shanghai J. Mech. (in Chinese) 18, 248–251.

Collins, R.A., Cartwright, D.J., 2001. An analytical solution for two equal-length
collinear strip yield cracks. Eng. Fract. Mech. 68, 915–924.

Crapps, J., Daniewicz, S.R., 2010. Weight function based Dugdale model for mixed-
mode crackproblems with arbitrary crack surface tractions. Eng. Fract. Mech.
77, 793–802.

Danyluck, H.T., Singh, B.M., Vrbik, J., 1995. A Dugdale-type estimation of the plastic
zone for a penny-shaped crack in a thick transversely isotropic layer due to
radial shear. Eng. Fract. Mech. 51 (5), 735–740.

Dugdale, D.S., 1960. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8,
100–104.

Fan, C.Y., Zhao, M.H., 2011. Nonlinear fracture of 2D magnetoelectroelastic media:
analytical and numerical solutions. Int. J. Solids Struct. 48, 2383–2392.

Fan, C.Y., Zhao, M.H., Zhou, Y.H., 2009. Numerical solution of polarization
saturation/dielectric breakdown model in 2D finite piezoelectric media. J.
Mech. Phys. Solids 57, 1527–1544.

Fan, C.Y., Zhao, Y.F., Zhao, M.H., Pan, E., 2012. Analytical solution of a semi-
permeable crack in a 2D piezoelectric medium based on the PS model. Mech.
Res. Commun. 40, 34–40.

Gao, C.F., Noda, N., Zhang, T.Y., 2006. Dielectric breakdown model for a conductive
crack and electrode in piezoelectric materials. Int. J. Eng. Sci. 44 (3–4), 256–272.

Gao, H.J., Barnett, D.M., 1996. An invariance property of local energy release rates in
a strip saturation model of piezoelectric fracture. Int. J. Fract. 79, R25–R29.

Gao, H.J., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an
electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45,
491–510.

Janson, J., 1977. Dugdale-crack in a material with continuous damage formation.
Eng. Fract. Mech. 9, 890–899.

Jeong, K.M., Kim, I.O., Beom, H.G., 2004. Effect of electric displacement saturation on
the stress intensity factor for a crack in a ferroelectric ceramic. Mech. Res.
Commun. 31, 373–382.

Lapusta, Y., Loboda, V., 2009. Electro-mechanical yielding for a limited permeable
crack in an interlayer between piezoelectric materials. Mech. Res. Commun. 36,
183–192.

Li, S., 2003. On saturation-strip model of a permeable crack in a piezoelectric
ceramic. Acta Mech. 165, 47–71.

Li, X., Chen, W., Wang, H., Wang, G., 2012. Crack tip plasticity of a penny-shaped
Dugdale crack in a power-law graded elastic infinite medium. Eng. Fract. Mech.
88, 1–14.

Loboda, V., Lapusta, Y., Govorukha, V., 2008. Mechanical and electrical yielding for
an electrically insulated crack in an interlayer between piezoelectric materials.
Int. J. Eng. Sci. 46, 260–272.

Loboda, V., Lapusta, Y., Sheveleva, A., 2010. Limited permeable crack in an interlayer
between piezoelectric materials with different zones of electric saturation and
mechanical yielding. Int. J. Solids Struct. 47, 1796–1806.

McMeeking, R.M., 2001. Towards a fracture mechanics for brittle piezoelectric and
dielectric materials. Int. J. Fract. 108, 25–41.

Mou, Y., Han, R.P., 1994. Damage zones based on Dugdale model for materials. Int. J.
Fract. 68, 245–259.

Ru, C.Q., Mao, X., 1999. Conducting crack in a piezoelectric ceramics of limited
electrical polarization. J. Mech. Phys. Solids 47, 2125–2146.

Ru, C.Q., 1999. Effect of electrical polarization saturation on stress intensity factors
in a piezoelectric ceramic. Int. J. Solids Struct. 36, 869–883.

Wang, T.C., 2000. Analysis of strip electric saturation model of crack problem in
piezoelectric materials. Int. J. Solids Struct. 37, 6031–6049.

Wu, S.X., Mai, Y.W., Cotterell, B., 1992. A model of fatigue crack growth based on
Dugdale model and damage accumulation. Int. J. Fract. 57, 253–267.

M. Zhao et al. / International Journal of Solids and Structures 50 (2013) 1747–1754 1753



Author's personal copy

Xu, W., Wu, X.R., 2012. Weight functions and strip-yield model analysis for three
collinear cracks. Eng. Fract. Mech. 85, 73–87.

Zhang, N., Gao, C.F., 2012. Effects of electrical breakdown on a conducting crack or
electrode in electrostrictive solids. Eur. J. Mech. A/Solids 32, 62–68.

Zhang, T.Y., Gao, C.F., 2004. Fracture behaviors of piezoelectric materials. Theor.
Appl. Fract. Mech. 41, 339–379.

Zhang, T.Y., 2004. Dielectric breakdown model for an electrical impermeable crack
in a piezoelectric material. Comput. Mater. Con. 1, 107–115.

Zhang, T.Y., Zhao, M.H., Gao, C.F., 2005. The strip dielectric breakdown model. Int. J.
Fract. 132, 311–327.

Zhang, T.Y., Zhao, M.H., Tong, P., 2002. Fracture of piezoelectric ceramics. Adv. Appl.
Mech. 38, 147–289.

Zhao, M.H., Fan, C.Y., 2008. Strip electric–magnetic breakdown model in a
magnetoelectroelastic medium. J. Mech. Phys. Solids 56 (12), 3441–3458.

Zhao, M.H., Fan, C.Y., Yang, F., Liu, T., 2007. Analysis method of planar cracks of
arbitrary shape in the isotropic plane of a three-dimensional transversely
isotropic magnetoelectroelastic medium. Int. J. Solids Struct. 44, 4505–4523.

Zhao, M.H., Shen, Y.P., Liu, G.N., Liu, Y.J., 1999. Dugdale model solutions for a penny-
shaped crack in three-dimensional transversely isotropic piezoelectric media by
boundary-integral equation method. Eng. Anal. Bound. Elem. 23, 573–576.

1754 M. Zhao et al. / International Journal of Solids and Structures 50 (2013) 1747–1754


