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a b s t r a c t

In this article, we analyze the coupled elastic, electric and magnetic fields produced by an
arbitrary three-dimensional dislocation loop in general anisotropic magneto-electro-elas-
tic materials. We first extend the anisotropic elastic formulae of dislocations to the corre-
sponding magneto-electro-elastic material system, including a general line-integration
solution and the solution of a straight-line segment of dislocation. We then develop a
new line-integral solution for the extended displacement field as well as the extended
stress field. Furthermore, we derive analytical expressions for some useful parametric dis-
location curves, such as the elliptic arc and straight line. Our solutions contain the piezo-
electric, piezomagnetic, and purely anisotropic elastic solutions as special cases. As
numerical examples, the fields produced by elliptic, hexagonal and cardioid shape disloca-
tion loops in both piezoelectric crystals and magneto-electro-elastic materials are calcu-
lated. The efficiency and accuracy of different integral solutions of dislocation loops are
compared and discussed. More important, the coupling magneto-electro-elastic effect is
illustrated. It is shown that, due to the coupling among the elastic, electric and magnetic
fields, an elastic dislocation, an electric potential discontinuity, or a magnetic potential dis-
continuity can induce all the elastic, electric and magnetic fields and that the coupling
effect could be very strong near the dislocation loop line.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The piezoelectric material, which possesses the cou-
pling effect between mechanical and electric fields, is
now being widely applied to different engineering technol-
ogies. This stimulates various theoretical studies on such
coupling materials. One of the studies is on the dislocations
and their movements since they play an important role in
the physical behaviors of materials. While fracture
mechanics problems in piezoelectric materials have been
well investigated for both two-dimensional and three-
dimensional problems (e.g., Suo et al., 1992; Zhang et al.,

2002), the corresponding dislocation problems were
mostly investigated for two-dimensional domains only
(e.g., Pak, 1990; Liu et al., 1999; Chen et al., 2004; Wang
and Sudak, 2007) where the dislocations were taken to
be infinite straight line. In reality, however, dislocations
usually form three-dimensional loops which are more dif-
ficult to analyze. Although Minagawa and Shintani (1985),
Minagawa (2003) studied the stress and electric fields pro-
duced by dislocation loops, the procedure and solution
were complicated and only the elastic displacement dislo-
cation was considered. Nowacki and Alshits (2007) ex-
tended the dislocation-field expression to piezoelectricity
but no numerical example was given. Dislocations in pie-
zoelectric and magneto-electro-elastic (MEE) materials
could show some interesting features and deserve further
investigation. For instance, due to the coupling between
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the mechanical and electric fields, a moving dislocation in
piezoelectric crystal could induce certain interesting cou-
pling features (Soh et al., 2005). Further due to the cou-
pling, the dislocation mobility (Li and Gupta, 2004) and
energetics of a partial dislocation (Belabbas et al., 2006)
could be different than those in the purely elastic domain.
Other important and potential applications of the disloca-
tion solution in piezoelectric materials include the induced
polarization feature in such materials (Shi et al., 1999).
Since most technically important materials would be also
ferroelectric, the dislocation solution could be further
applied to study the dislocation-induced polarization vari-
ation and distributions (Zheng et al., 2006), their effect on
ferroelectric phase stability, domain morphology (Hu et al.,
2003) and possible degradation of ferroelectric properties
(Alpay et al., 2004). Composites made of piezoelectric/
piezomagnetic materials exhibit magnetoelectric coupling
effect that is not present in the single-phase piezoelectric
or piezomagnetic material. In the past decade, much atten-
tion has been paid to predict the effective properties of
MEE composites according to the theories of microme-
chanics. But for dislocation problems in MEE, relatively lit-
tle work has been done. Until now, only one-dimensional
dislocations in such coupling materials were studied (Hao
and Liu, 2006; Ma and Lee, 2007; Lee and Ma, 2010).

Motivated by the important applications of the MEE
material and the potential influence of dislocations on
such a material, we derive, in this paper, the extended
stress fields induced by the extended dislocation loops
by utilizing the extended Green’s functions and their
derivatives in MEE materials. We present three forms of
the solutions: a line integral form for smooth dislocation
loops which can be evaluated by a standard numerical
integration method, an analytical expression which is
for the loops made of piecewise straight lines, and the
analytical solution for some parametric curve loops, such
as elliptic arcs. Numerical examples are presented for
elliptic, hexagonal and cardioid dislocation loops in piezo-
electric materials GaAs and AlN and in MEE composites
made of BaTiO3–CoFe2O4. Our results show clearly the
important coupling features among mechanical, electric
and magnetic fields.

2. Basic equations

With the extended notation (Barnett and Lothe, 1975),
the equilibrium equations (including the electric and mag-
netic balance equations) and the constitutive relations for
the coupled MEE media can be expressed as (Pan, 2002):

riJ;i þ fJ ¼ 0; riJ ¼ CiJKlcKl ð1Þ
The summation over repeated lowercase (uppercase) sub-
scripts is from 1 to 3 (1–5), and a subscript comma denotes
the partial differentiation with respect to the coordinates.
The extended displacement, body force, strain and stresses
are defined as

uI ¼
ui; I ¼ i ¼ 1;2;3
/; I ¼ 4
w; I ¼ 5

8><
>: ð2aÞ

fJ ¼
fj; J ¼ j ¼ 1;2;3
�fe; J ¼ 4
�fm; J ¼ 5

8><
>: ð2bÞ

cIj ¼
cij ¼ 0:5ðui;j þ uj;iÞ; I ¼ i ¼ 1;2;3
�Ej ¼ /;j; I ¼ 4
�Hj ¼ w;j; I ¼ 5

8><
>: ð2cÞ

riJ ¼
rij; J ¼ j ¼ 1;2;3
Di; J ¼ 4
Bi; J ¼ 5

8><
>: ð2dÞ

and the extended elastic coefficient matrix has the follow-
ing components

CiJKl ¼

Cijkl; J;K ¼ j; k ¼ 1;2;3
elij; J ¼ j ¼ 1;2;3; K ¼ 4
eikl; J ¼ 4; K ¼ k ¼ 1;2;3
qlij; J ¼ j ¼ 1;2;3; K ¼ 5
qikl; J ¼ 5; K ¼ k ¼ 1;2;3
�ail; J ¼ 4; K ¼ 5 or J ¼ 5;K ¼ 4
�eil; J ¼ K ¼ 4
�lil; J ¼ K ¼ 5

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3Þ

In Eqs. (1), (2a), (2b), (2c), (2d), (3), ui, / and w are the elas-
tic displacement, electric potential and magnetic potential;
fi, fe and fm are the body force, electric charge and electric
current; cij, Ei and Hi are the strain, electric field and mag-
netic field; rij, Di and Bi are the stress, electric displacement
and magnetic induction, respectively; Cijlm, eij, and lij are
the elastic, dielectric and magnetic permeability tensors,
eijk, qijk and aij are the piezoelectric, piezomagnetic, and
magnetoelectric coefficients, respectively. The material
constants satisfy the following symmetry relations:

Cijkl ¼ Cijlk ¼ Cjikl ¼ Cklij; eij ¼ eji;lij ¼ lji

ekij ¼ ekji; qkij ¼ qkji;aij ¼ aji

ð4Þ

It is noted that we assumed that the magnetoelectric coef-
ficient matrix aij is symmetric and that we have

CiJKl ¼ ClKJi but CiJKl–CiJlK–CJiKl–CKliJ ð5Þ
The extended Green’s functions (5 � 5 tensor) GKM(y;x) are
defined as the extended displacement component uK(x) at
a field point x due to an extended unit point force in
M-direction at the source point y. They satisfy the equilib-
rium equation

½CiJKlðxÞGKM;xl ðy; xÞ�;xi þ dJMdðy; xÞ ¼ 0 ð6Þ
with f;xi ¼ @f=@xi, dJM being the fifth-rank Kronecker delta,
and d(y;x) the Dirac-delta function which is zero every-
where except at point x = y. The solutions of the extended
Green’s functions and their derivatives are given in Appen-
dix A.

Consider a region V in the 3D space which is bounded
by the surface S. If x is inside the region, then multiplying
Eq. (6) by uJ and integrating through the region, we have

uMðyÞ ¼ �
Z
V
½CiJKlðxÞGKM;xl ðy; xÞ�;xiuJðxÞdVðxÞ ð7Þ
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Making use of the divergence theorem and the equilib-
rium equations and constitutive relation (1), we obtain

uMðyÞ ¼
Z
@V
½GJMðy; xÞriJðxÞ

� CiJKlðxÞGKM;xl ðy; xÞuJðxÞ�niðxÞdSðxÞ

þ
Z
V
GJMðy; xÞfJðxÞdVðxÞ ð8Þ

With @V being the surface of V including all inner surfaces,
and n being the unit normal to @V . Eq. (8) is an integral
expression of the extended displacement in terms of the
extended point-force Green’s functions.

3. Fields produced by a dislocation loop

We now consider the elastic, electric and magnetic
fields produced by an arbitrary shaped extended
dislocation loop in an infinite anisotropic MEE medium.
The extended dislocation loop L is defined as the bound-
ary of a surface S where the elastic displacement has a
jump b, the electric potential a jump D/, and the mag-
netic potential a jump Dw. In other words, across S, we
have

½ui� ¼ bi; ½/� ¼ D/; ½w� ¼ Dw ð9Þ
where [f] denotes the discontinuity of f across S. It is noted
that the displacement jump is the traditional elastic dislo-
cation, i.e., the Burgers vector. The electric potential jump
D/ corresponds to an electric dipole layer along the sur-
face S (Barnett and Lothe, 1975), and hence is called the
electric potential dislocation (Pak, 1990). Dw is called the
magnetic potential dislocation (Kirchner and Alshits,
1996). The strength of the extended dislocation is ex-
pressed by the extended Burgers vector b = [b1,b2,b3, D/,
Dw]T. On the dislocation surface S, we assume that there
is no force, no electric charge and no electric current. Thus
the elastic traction, the normal components of the electric
displacement and magnetic induction are continuous
across the surface, i.e.

½rjinj� ¼ 0; ½Djnj� ¼ 0; ½Bjnj� ¼ 0 ð10Þ
The conditions Eqs. (9) and (10) on the dislocation surface
S can be expressed by the extended components as

½uJ� ¼ bJ ; ½riJni� ¼ 0; J ¼ 1 � 5 ð11Þ
For the problem of an extended dislocation loop in an
anisotropic MEE medium, we further assume that the ex-
tended body force is zero (fJ = 0). Then, substituting Eq.
(11) into Eq. (8), we find that the extended displacement
field produced by an extended dislocation loop can be ex-
pressed as

uMðyÞ ¼
Z
S
CiJKlðxÞGKM;xl ðy; xÞbJðxÞniðxÞdSðxÞ ð12Þ

with S being the surface surrounded by the dislocation
loop L.

The extended displacement gradient is

uM;pðyÞ ¼
Z
S
CiJKlðxÞGKM;xlyp ðy; xÞbJðxÞniðxÞdSðxÞ ð13Þ

3.1. Line-integral solution along the dislocation loop

For an infinite homogeneous space, noticing that
GKM;xlyp ðy; xÞ ¼ �GKM;xlxp ðx� yÞ and making use of the Stokes
theorem, we can convert Eq. (13) into

uM;pðyÞ ¼ �
Z
S
CiJKlðxÞGKM;xlxi ðy; xÞbJðxÞnpðxÞdSðxÞ

� eiph
Z
L
CiJKlðxÞGKM;xl ðy; xÞbMðxÞmhðxÞdLðxÞ ð14Þ

where eijk is the permutation tensor and m is the unit tan-
gent vector of the loop line along the boundary of the dis-
location surface S. Assuming that the source point y is not
on the dislocation surface, then the first term (integral on
the surface of the dislocation) vanishes since the point-
force Green’s function satisfies the homogeneous equilib-
rium equation. Thus, the extended displacement gradient
field is expressed as a line integral along the dislocation
loop L of the dislocation surface

uM;pðyÞ ¼ �eiph
Z
L
CiJKlðxÞGKM;xl ðy; xÞbMðxÞmhðxÞdLðxÞ ð15Þ

Eq. (15) can be written in a compact form as

uI;jðyÞ ¼
Z
L
bjIhðy; xÞdLhðxÞ ð16aÞ

with

bjIhðy; xÞ ¼ enjhbMCnMKlGKI;xl ðx� yÞ ð16bÞ
The extended stress field produced by the dislocation can
be expressed as

riJðyÞ ¼
Z
L
SiJhðy; xÞdLhðxÞ ð17aÞ

with

SiJhðy; xÞ ¼ CiJKlenlhbMCnMPqGKP;xq ðx� yÞ ð17bÞ
The kernel SiJhðy; xÞ can be considered as the iJ-component
of the extended stress at y produced by a line element of
dislocation with extended Burgers vector b lying in the
xh-direction at x, whilst biJhðy; xÞ in Eq. (16) can be consid-
ered as the corresponding displacement gradient. By set-
ting the appropriate coefficients to zero, the integral
solutions (16) and (17) can be reduced to the correspond-
ing solutions for the pure elasticity and piezoelectricity
(Mura, 1987; Nowacki and Alshits, 2007) .

3.2. Analytical expressions of the fields produced by piecewise
straight dislocation lines

The displacement gradient and stress fields produced
by a dislocation loop can be obtained by direct numerical
integration employing the line integration expressions.
(16) and (17). Since the kernels, i.e., the generalized
Green’s functions (their derivatives), are involved in these
integrals, which have no analytical solutions for the gen-
eral anisotropic medium, methods based on the numerical
evaluation of these integration expressions require sub-
stantial computation time. Thus it would be very appealing
to obtain analytical integral expression due to dislocations,
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even for some special dislocation lines, say a straight dislo-
cation line. Furthermore, the solution for the straight dislo-
cation segment is fundamental for any shape of dislocation
loop, since an arbitrary dislocation loop can be approxi-
mated by summing a finite number of small straight dislo-
cation lines (or the segments). We thus provide such an
analytical integration below.

Substituting, first, the Green’s function expression (A2)
in Appendix A into Eq. (16), we have

uI;jðyÞ ¼ �i

ð2pÞ3 enjhbMCnMKl

Z
L
dLhðxÞ

Z Z Z 1

�1
nl

� AKIðnÞ
DðnÞ eiðy�xÞ�ndn1n2n3 ð18Þ

Now let us consider a general straight dislocation segment
from point p to point q as shown in Fig. 1. Then, an arbi-
trary point x on it can be expressed by

x ¼ pþ tðq� pÞ; 0 � t � 1 ð19Þ
Substituting Eq. (19) into Eq. (18), the displacement
gradient produced by this straight dislocation segment is
reduced to

uI;jðyÞ ¼ �i

ð2pÞ3
enjhbMCnMKl

ðbh�ah Þ
Z 1

0
dt �

Z Z Z 1

�1
nl

� AKIðnÞ
DðnÞ ei½y�p�tðq�pÞ��ndn1n2n3 ð20Þ

Following the integration procedure in elasticity (Willis,
1970; Mura, 1987), the gradient field produced by this
straight dislocation segment is obtained as

uI;jðyÞ ¼ 1
8p2 enjhbMCnMKlmhr�1½IlKIðmb;nÞ
� IlKIðma;nÞ� ð21aÞ

with

IlKIðm;nÞ ¼
Z 2p

0
d/

ðml cos/þ nl sin/ÞAKIðm cos/þ n sin/Þ
cos/Dðm cos/þ n sin/Þ

ð21bÞ
In Eq. (21), m is again the unit tangent vector along the
straight line with components mh ¼ ðqh � phÞ=jq� pj; r is

the distance from the field point y to the straight line q –
p. Three unit vectors mp, mq and n are introduced, as
shown in Fig. 1, where n = m � (y – p)/|m � (y – p)| is normal
to the plane containing points y, p and q; mp is orthogonal
to n and p – y; and mq is orthogonal to n and q – y.

Compared with Eq. (16), it can be seen that the follow-
ing expression

1
8p2 r

�1½IlKIðmq;nÞ � IlKIðmp;nÞ�

corresponds to the term GKI;xl ðx� yÞ in Eq. (16b). Thus, this
term can be considered as the derivative of the extended
Green’s function displacements produced by the straight
dislocation segment.

For the special case of an infinite long straight disloca-
tion, mp = �mq with mq being simply denoted by m, which
is further normal to the dislocation line. Then we have
IlKIðmp;nÞ ¼ �IlKIðm;nÞ, and thus the displacement gradient
field produced by the infinite straight dislocation is re-
duced to

uI;jðyÞ ¼ 1

ð2pÞ2
enjhbMCnMKlmhr�1IlKIðm;nÞ ð22Þ

with n ¼ m �m.
We point out that the analytical expression (21a) is for

the derivative of the extended displacement field induced
by a dislocation of straight-line segment. Thus this ap-
proach can only provide the extended strain and stresses
fields analytically; the extended displacement field re-
mains unsolvable analytically. Furthermore, the solution
is for the straight-line segment dislocation, even though
a general dislocation curve could be approximated by a fi-
nite number of piece-wise straight-line segments. The
solution provided in the next section, however, can not
only be applied to various curved segments of dislocation
directly, but also provides analytical expressions for the
extended displacement field.

3.3. Analytical expression of the fields produced by parametric
dislocation curves

Dislocations are often complex in shapes, and thus
parametric description of these curves has certain advanta-
ges (Ghoniem et al., 2000). However, the fields produced
by these parametric dislocation loops are not easy to calcu-
late, especially for anisotropic materials. If the fields pro-
duced by some useful parametric dislocation curves, such
as elliptic arc and conic curves, can be analytically inte-
grated out, it would provide us with great computational
efficiency and accuracy, and thus makes dislocation
dynamics simulation in an anisotropic material feasible.

We start from the surface integral expressions (12) and
(13) of the dislocation field and assume that the dislocation
surface is located on a flat plane. Thus, if the material prop-
erties are constants on the dislocation plane, we can write
Eqs. (12) and (13) as

uMðyÞ ¼ bJniCiJKl

Z
S
GKM;xl ðy; xÞdSðxÞ ð23Þ

uM;pðyÞ ¼ bJniCiJKl

Z
S
GKM;xlyp ðy; xÞdSðxÞ ð24Þ

q 

p 

mq

y 
r n 

ν

mp

Fig. 1. Schematic of a straight-line segment pq of the dislocation where y
is the field point of the dislocation, n is the normal of the triangle plane
qpy, pointing away from the paper.
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From these equations it can be seen that, in order to find
the dislocation-induced field, one needs to carry out the
surface integration over the dislocation surface of the
derivatives of the point-force Green’s functions. We will
then focus on these integrations. Substituting the Green’s
function solutions (A8) and (A9) in Appendix A, we have
the surface integrations as

Z
S
Gðy;xÞ;xldSðxÞ¼

�1
2p2

R p
0
�A½RSðGð1Þ

u Þ;xldSðxÞ��ATdh; x3 > y3
1

2p2

R p
0 A½RSðGð2Þ

u Þ;xldSðxÞ�A
Tdh; x3 < y3

(

ð25Þ
withR

SðGð1Þ
u Þij;xldSðxÞ ¼ �dijhlð�piÞ

R
S

dSðxÞ
½hðh;�piÞ:ðx�yÞ�2 ; x3 > y3R

SðGð2Þ
u Þij;xldSðxÞ ¼ �dijhlðpiÞ

R
S

dSðxÞ
½hðh;piÞ:ðx�yÞ�2 ; x3 < y3

8<
:

ð26Þ

hðh;piÞ ¼ ½cos h; sin h;pi�T ; hðh; �piÞ
¼ ½cos h; sin h; �pi�T ð27Þ

and

Z
S
G;xlyp ðy;xÞdSðxÞ¼

�1
2p2

R p
0
�A½RSðGð1Þ

u Þ;xlypdSðxÞ��ATdh; x3 > y3
1

2p2

R p
0 A½RSðGð2Þ

u Þ;xlypdSðxÞ�A
Tdh; x3 < y3

8<
:

ð28Þ
withR

SðGð1Þ
u Þij;xlypdSðxÞ¼�2dijhlð�piÞhpð�piÞ

R
S

dSðxÞ
½hðh;�piÞ�ðx�yÞ�3 ; x3 > y3R

SðGð2Þ
u Þij;xlypdSðxÞ¼�2dijhlðpiÞhpðpiÞ

R
S

dSðxÞ
½hðh;piÞ�ðx�yÞ�3 ; x3 < y3

8<
:

ð29Þ
From Eqs. (26) and (29), it can be seen that the key prob-
lem is to carry out the following kind of integration over
the dislocation loop surface:

Fnðy; h;pÞ ¼
Z
S

dSðxÞ
½hðh; pÞ � ðx� yÞ�n n ¼ 2;3 ð30Þ

where p can be assigned to different eigenvalues, according
to the requirements in Eqs. (26) and (29). In order to carry
out the surface integration in Eq. (30) over a dislocation
loop surface, we first transform the global coordinate sys-
tem (O: x1,x2,x3) to a local coordinate system (x0:
n1,n2,n3), with the base vectors n01 and n02 being on the dis-
location plane, and n03 normal to such a plane. Therefore, a
point x on the dislocation plane is transformed to n by the
coordinate transformation

½x� x0� ¼ ½D�½n� ð31Þ
where Dij ¼ x0

i � n0j and x0 being the origin of the local coor-
dinates. Then, the integration in Eq. (30) becomes

Fnðy; h;pÞ ¼
Z
S

dn1dn2
½f1ðy; hÞn1 þ f2ðy; hÞn2 þ f3ðy; hÞ�n

n

¼ 2;3 ð32Þ
with

faðy; h;pÞ ¼ Dkahkðh;pÞ; a ¼ 1;2 ð33Þ

and f3ðy; h; pÞ ¼ ðx0k � ykÞhkðh; pÞ.
By introducing (Tan and Sun, 2006; Chu et al. 2012)

Lnðn1; n2Þ ¼
Z n2

�1

dn2
ðf1n1 þ f2n2 þ f3Þn

n ¼ 2;3 ð34Þ

one has

@Lnðn1; n2Þ
@n2

¼ 1
ðf1n1 þ f2n2 þ f3Þn

n ¼ 2;3 ð35Þ

Substituting Eq. (34) to Eq. (32), one gets

Fn ¼
Z
S

@Lnðn1; n2Þ
@n2

dn1dn2 ¼
Z
L
Lnðn1; n2Þdn1 n

¼ 2;3 ð36Þ
Thus, the surface integral over the dislocation plane is
transformed into the line integral along the dislocation
loop line L.

By definition (33), Ln can be integrated analytically as

L2ðn1; n2Þ ¼ � 1
f2

1
f1n1 þ f2n2 þ f3

; L3ðn1; n2Þ

¼ � 1
2f 2

1

ðf1n1 þ f2n2 þ f3Þ2
ð37Þ

Now, let us assume that the dislocation loop or dislocation
segment can be described by some kind of parametric
forms (Ghoniem et al., 2000), in the local (n1,n2)-plane, as

nðtÞ ¼ NiðtÞqi ð38Þ
where qi is a set of generalized coordinates, t is a parame-
ter, and Ni(t) are the shape functions.

Based on the parametric expression, Eq. (35) becomes

Fn ¼
Z
l
Lnðn1; n2Þdn1

¼
Z t2

t1

Ln½NiðtÞqi1;NiðtÞqi2�Ni;tðtÞqi1dt n ¼ 2;3 ð39Þ

For some parametric curves of dislocations, one can obtain
analytically the integration in Eq. (38). Presented below are
the analytical results for two common dislocation seg-
ments, a straight line segment and an elliptic arc segment.

3.3.1. A straight line segment
For the special case of a straight line segment, in the lo-

cal (n1,n2)-plane it can be described by

nðtÞ ¼ ð1� tÞP1 þ tP2; 0 � t � 1 ð40Þ
where P1 and P2 are the position vectors of the start and
end points of the straight line segment. Substituting Eq.
(39) into (36) and then (38), the integration of (38) can
be obtained as

Fseg
2 ¼ � 1

f2

P21 � P11

f1ðP21 � P11Þ þ f2ðP22 � P12Þ In
f1P21 þ f2P22 þ f3
f1P11 þ f2P12 þ f3

ð40aÞ

Fseg
3 ¼ 1

2f 2

P21 � P11

f1ðP21 � P11Þ þ f2ðP22 � P12Þ
1

f1P21 þ f2P22 þ f3
� 1
f1P11 þ f2P12 þ f3

� �
ð40bÞ
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3.3.2. An elliptic arc segment
For the case of a dislocation curve described by an ellip-

tic arc segment, in the local (n1,n2)-plane, we first express
the ellipse in terms of the parameter t as,

nðtÞ ¼ q1 cos t þ q2 sin t þ q0; �p � t � p ð41Þ
with q0, q1 and q2 being the vectors used to describe the el-
lipse, see Fig. 2(a).

Then, the denominator in Eq. (36) can be expressed as

f1n1 þ f2n2 þ f3 ¼ faq1a cos t þ faq2a sin t þ faq0a þ f3

¼ c1 cos t þ c2 sin t þ c3 ð42Þ
where summation is taken on the repeated index a from 1
to 2. One also notes that

dn1 ¼ ð�q11 sin t þ q21 cos tÞdt
¼ ðc4 cos t þ c5 sin tÞdt ð43Þ

Substituting Eqs. (42) and (43) into Eqs. (36) and (38), the
integration of Eq. (38) along the elliptic arc t1 � t � t2 can
be obtained as

Farc
2 ¼� 1

f2

Z t2

t1

c4 costþc5 sint
c1 costþc2 sintþ c3

dt

¼� 1
f2

1
c21þ c22

½ðc1c4þc2c5Þðt�c3I1Þþðc2c4�c1c5Þ
� lnðc1 costþ c2 sin tþc3Þ�jt2t1 ð44aÞ

Farc
3 ¼� 1

2f 2

Z t2

t1

c4 costþc5 sint

ðc1 costþ c2 sintþ c3Þ2
dt

¼� 1
2f 2

1
c21þc22� c23

�
ðc1c4þ c2c5ÞI1

þc1c5� c2c4þ c3c5 cost�c3c4 sint
c1 costþ c2 sintþ c3

�����
t2

t1

ð44bÞ

where

I1ðtÞ ¼ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23 � c21 � c22

q arctan
ðc1 � c3Þ tan t

2 � c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23 � c21 � c22

q

The elliptic arc solution would be a powerful tool in
describing and simulating the dislocation curve. Although
the elliptic arc parameter range t can be chosen freely, for
convenience, we will use only one quarter of the elliptic
arc with 0 � t � p=2 to describe a curved dislocation loop.
Assume that we have a curved but smooth dislocation
segment, with P1 and P2 being the position vectors of
the start and end points of the curve, and T1 and T2 being
the tangential vectors at these two points, see Fig. 2(b). In

q0 

q1 

q2 P2 

T2 

T1 

P1 q0 

q2 q1

(b) 
(a) ξ1

ξ2ξ1

ξ2

Fig. 2. (a) Schematic of an elliptic loop where q0 is the center vector of the ellipse, q1 the relative start vector at the parameter t = 0 (relative to the center
q0), and q2 the relative vector at t = p/2. It is noted that the position vectors q1 and q2 are not necessarily normal to each other. (b) Schematic of representing
a smooth dislocation curve segment via a couple of elliptic arcs with t = 0 � p/2.

x1 [1 1 0]

a2

x2 [1 1 2]

x3 [1 1 1]

a1

Fig. 3. Geometry of an elliptic dislocation loop in a cubic material which
is located in the close-packed-ð�1 �11Þ plane. In the analysis, this close-
packed plane is on the (x1,x2)-plane, and the major semi-axis length of the
ellipse is a1 along x1-axis, and the minor semi-axis length is a2 along x2-
axis.
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Table 1a
Stress field (�108 Pa b/a1) at point (x1,x2, x3)/a1 = (1, 2, 3) due to the elliptic dislocation with a2/a1 = 0.712.

b r11 r22 r33 r23 r31 r12

b [100] �0.1463536 1.17260190 2.3282018 1.8072880 �0.47679743 0.6170828
Ref �0.1464 1.1726 2.3282 1.8073 �0.4768 0.6171
Elastic �0.14978 1.16418 2.32381 1.80504 �0.47658 0.61514

b[010] �0.5924890 0.4148779 5.5483323 2.7604305 1.8072880 0.9336515
Ref �0.5925 0.4149 5.5483 2.7604 1.8073 0.9337
Elastic �0.58558 0.41347 5.53346 2.75277 1.80504 0.93437

b[001] �0.9986909 2.6647172 1.5138506 5.5483323 2.3282018 1.9058421
Ref �0.9987 2.6647 1.5138 5.5483 2.3282 1.9058
Elastic �0.99046 2.65060 1.49739 5.53346 2.32381 1.9058

Ref: Results by Minagawa (2003).

Table 1b
Electric field (�106 b/a1 �V/m) at point (x1,x2, x3)/a1 = (1,2, 3) due to the elliptic dislocation with a2/a1 = 0.712.

b E1 E1 (Ref) E2 E2 (Ref) E3 E3 (Ref)

b[100] 0.7321277 0.7321 �3.1087848 �3.1088 1.0174471 1.0174
b[010] �1.3759902 �1.3760 �7.9399963 �7.9400 4.9293209 4.9293
b[001] �0.7766583 �0.7767 �14.0025322 �14.0030 7.2078685 7.2079

Ref: Results by Minagawa (2003), should be in unit 106V/m.
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order to describe the curve by a quarter elliptic arc, we
first draw at point P1 a straight line which is parallel to
T2. At point P2 we draw another line parallel to T1. The
intersection point of the two lines is the center q0 of
the ellipse. We set q1 ¼ P1 � q0; q2 ¼ P2 � q0, and then

we can use the quarter elliptic arc nðtÞ ¼ q1 cos t þ q2

sin t þ q0ð0 � t � p=2Þ to represent the dislocation curve.
In this way, the elliptic arc and the dislocation curve will

a

[1000]

x1 [1120]
x2 

Fig. 5. Geometry of a hexagonal dislocation loop with side length a
located in the global (x1,x2)-plane.
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Fig. 7. Schematic of a cardioid dislocation loop lying on the global (x1,x2)-
plane.

X. Han, E. Pan /Mechanics of Materials 59 (2013) 110–125 117



have the same tangent at the start and end points.
Making use of this kind of elliptic arcs continuously, the
continuity of the tangent of the dislocation curve will be
kept, and the loop will be smooth.

Wemention that analytical integration of the dislocation
solution can also be obtained formany other types of curves
in parametric forms, one of the other examples is the conic
curve, for which an analytical integration can be also found.

Table 2a
Displacement field (�10�3 b), electric potential / (�106 b V/m) and magnetic potential w (�103 b A/m) at point (x1,x2, x3)/a = (1,2,3) due to a cardioid
dislocation with b = b(1,0,0,0,0).

Methods Segments u1 u2 u3 / w

Straight line Eq. (39) 20 �5.76616 �0.97513 �2.20788 �0.77808 �1.05305
200 �5.9818016 �0.9659598 �2.2061220 �0.7786773 �1.0547746

1000 �5.9839352 �0.9658665 �2.2060976 �0.7786805 �1.0547878

Parametric elliptic arc Eq. (42) 20 �5.95498 �0.96739 �2.20691 �0.77878 �1.05479
200 �5.9831489 �0.9658766 �2.2061003 �0.7786802 �1.0547864

1000 �5.9812148 �0.9658632 �2.2060967 �0.7786806 �1.0547883

Table 2b
Stress field (�108 Pa b/a) at point (x1,x2, x3)/a = (1, 2, 3) due to a cardioid dislocation with b = b(1, 0, 0, 0, 0).

Methods Segments r11 r22 r33 r23 r31 r12

Straight line Eqs. (21) or (40) 20 �0.40754 0.49500 1.60037 0.95275 �4.36251 �1.72935
200 �0.4020991 0.4858708 1.6039867 0.9424102 �4.4809286 �1.7596709

1000 �0.4020444 0.4857799 1.6040166 0.9423052 �4.4820791 �1.7599577

Parametric elliptic arc Eq. (44) 20 �0.40287 0.48716 1.60390 0.94397 �4.46634 �1.75600
200 �0.4020503 0.4857898 1.6040134 0.9423166 �4.4819548 �1.7599267

1000 �0.4020424 0.4857767 1.6040177 0.9423015 �4.4821201 �1.7599679

Num. Integ. Eq. (17) 160 Gauss points �0.4020421 0.4857762 1.6040178 0.9423008 �4.4821270 �1.7599696

Table 2c
Electric field E (�106 b/a � V/m) and magnetic field H (�103 b/a �A/m) at point (x1,x2, x3)/a = (1, 2, 3) due to a cardioid dislocation with b= b(1, 0, 0, 0, 0).

Methods Segments E1 E2 E3 H1 H2 H3

Straight line Eqs. (21) and (40) 20 4.18427 �0.70696 �0.25522 5.51235 �1.20986 �0.16849
200 4.3105460 �0.6991563 �0.2593337 5.6762831 �1.1955773 �0.1772010

1000 4.3117781 �0.6990771 �0.2593729 5.6778790 �1.1954326 �0.1772852

Parametric elliptic arcs Eq. (44) 20 4.29493 �0.70032 �0.25885 5.65601 �1.19769 �0.17608
200 4.3116450 �0.6990857 �0.2593687 5.6777066 �1.1954482 �0.1772761

1000 4.3118220 �0.6990742 �0.2593743 5.6779359 �1.1954274 �0.1772882

Line Integral Eq. (17) 160 Gauss points 4.3118294 �0.6990738 ��0.2593745 5.6779454 �1.1954265 �0.1772887

Table 3a
Elastic displacements (�10�3 m), electric potential / (�106 V), and magnetic potential w (�103 A) at point (x1,x2, x3)/a = (1, 2, 3) due to a cardioid dislocation
with b = b(0, 1, 0, 0, 0), b(0, 0, 1, 0, 0), (0, 0, 0, D/,0), and (0, 0, 0, 0, Dw). The extended displacements in the second, third, fourth, and fifth rows are further
normalized, respectively, by b/m, b/m, D//V, and Dw/A.

b u1 u2 u3 / w

b(0,1, 0, 0, 0) �0.9660745 �17.5405689 �24.7623214 �8.3047326 �10.8032097
b(0, 0, 1, 0, 0) �1.6339115 �18.1852151 �43.4819849 �15.9888860 �22.3323875
(0, 0, 0, D/,0) �0.5389647 �5.8311939 �12.3458347 �262.4805324 0.8063630
(0, 0, 0, 0, Dw) �26.2826030 �308.4147293 �294.2080133 �415.7494406 �96621.18859

Table 3b
Stress components (�108 Pa) at point (x1,x2, x3)/a = (1, 2, 3) due to a cardioid dislocation with b = b(0,1, 0, 0, 0), b(0, 0, 1, 0, 0), (0, 0, 0, D/,0), and (0, 0, 0, 0,
Dw). The results in the second, third, fourth, and fifth rows are further normalized, respectively, by b/a, b/a, D//a � m/V, and Dw/a � m/A.

b r11 r22 r33 r23 r31 r12

b(0,1, 0, 0, 0) �0.7573445 2.5277051 16.9367799 6.4102858 0.9423008 0.3898098
b(0,0, 1, 0, 0) �4.6591357 7.4104605 14.4744986 16.9367799 1.6040178 1.0454428
(0, 0 ,0, D/,0) �4.2609289 0.9324061 10.7339201 12.20010 1.1394653 0.4506775
(0, 0, 0, 0, Dw) �124.1184048 �24.6916913 191.9138012 194.3473273 16.7180673 8.0629309
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4. Numerical examples

4.1. Case 1: An elliptic dislocation loop in a piezoelectric space
made of cubic GaAs

Weconsider a dislocation loop in an infinitepiezoelectric
space made of gallium arsenide (GaAs) crystal. This cubic
crystal GaAs has an fcc structure and its material constants
are listed in Appendix B (Minagawa and Shintani, 1985).

We assume that the elliptic dislocation loop lies on the
close-packed (�1 �11) - plane, and we attach the x1-, x2- and

x3-axes of the global coordinates along, respectively, the
[�110]-, [�1 �1 �2]- and [�1 �11]-directions of the crystal. The ma-
jor axis of the elliptical loop is along x1-axis with semi-axis
length of a1, and its minor axis is along x2-axis with semi-
axis length of a2 (see Fig. 3). In our calculation, the ratio a2/
a1 is fixed at 0.712, and a1 is used as the unit length of the
coordinates.

As a validation, we first calculate the stress and electric
fields at the field point (x1, x2, x3) = (1,2,3)a1 produced by
this elliptic loop with its Burgers vector (the elastic dislo-
cation part) along different directions. It shows that the

Table 3c
Electric field (�106 V/m) and magnetic field H (�103 A/m) at point (x1,x2,x3)/a = (1,2,3) due to a cardioid dislocation with b = b(0,1,0,0,0), b(0,0,1,0,v),
(0,0,0,D/,0), and (0,0,0,0,Dw). The results in the second, third, fourth, and fifth rows are further normalized, respectively, by b/a, b/a, D//a � m/V, and Dw/
a � m/A.

b E1 E2 E3 H1 H2 H3

b(0,1,0,0,0) �0.7004319 �3.5785148 �2.0687722 �1.1966802 �7.7730422 �0.2751957
b(0,0,1,0,0) �1.5073361 �15.6291039 �0.7333146 �2.6132255 �27.0040043 2.0950967
(0,0,0,D/ ,0) �10.8287132 �119.8065533 �91.9075071 �0.8703930 �8.5800570 5.5001202
(0,0,0,0,Dw) �17.7295045 �201.0272276 �133.467933 �1302.36062 �15347.9542 �52725.0705
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results by the direct numerical line integration of Eq. (17)
(using 160 Gauss quadrature points) and those by the ana-
lytical line segment method of Eq. (21) (using 1000 straight
line segments) are the same, and that both further agree
well with those by Minagawa (2003), see Table 1. When
the electric effect is ignored, the pure elastic results are
also given which are exactly the same as those by the sur-
face integration method (Han and Ghoniem, 2005).

The fields (nonzero components) on the loop plane
along x1-axis produced by the elliptic dislocation loop with
b = b(1,0, 0, 0, 0) and (0, 0, 0, D/,0) are shown in Fig. 4a
and b, respectively. In Fig. 4a, the stresses are normalized
by (1010 Pa � b/a1), and the electric fields are normalized
by (108 V/m � b/a1). In Fig. 4b, the stresses are normalized
by (1010 Pa � D//a1 �m/V), and the electric fields are nor-
malized by (108 � D//a1).

From Fig. 4a and b, it is observed that the induced stress
and electric fields by either an elastic or an electric disloca-
tion are singular near the dislocation loop. Under the elas-
tic dislocation b = b(1,0, 0, 0, 0), the induced electric field

E will be mainly along the dislocation direction b. For this
case, the induced nonzero electric component is E1, which
has a similar shape as r12 and is in the range of 107 V/
m � b/a1. The electric dislocation D/ would induce mainly
normal stresses and the electric field normal to the disloca-
tion plane. For this case, the induced nonzero electric com-
ponent is E3, which has a very similar variation as r33, and
is in the range of 109 � D//a1.

4.2. Case 2: A hexagonal dislocation loop in a piezoelectric
space made of hexagonal AlN

We now consider a hexagonal dislocation loop which
lies on the {0001} plane of an hcp-packed crystal made
of piezoelectric aluminum nitrides (AlN) (Fig. 5). This hex-
agonal loop is located in the global (x1,x2)-plane with a side
length a. The material properties of AlN are listed in
Appendix B (Singh, 1993; Pan and Yang, 2003).

Since the hexagonal dislocation is made of six straight
line segments, both straight line dislocation solutions, i.e.
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Eqs. (21) and (40) can be applied. It was shown that both
solutions (for the induced extended strain and stress fields)
predict exactly the same results. However, Eq. (40) in-
cludes also the analytical solutions of the extended dis-
placement. Thus, the results presented below are based
on the solution of Eq. (40). It needs to mention that, though
the two methods give the same results for a closed disloca-
tion loop, but for a separate finite dislocation segment, the
results by the two methods are generally different. When a
dislocation line tends to an infinite straight dislocation
line, the two methods give the same results again. Since
different segment solutions may come from different solu-
tions of a closed loop, they are only physically meaningful
for a closed loop or an infinite long dislocation.

Figs. 6a–6d show the displacement and stress fields
produced by the hexagonal dislocation loop on the
{0001}-plane. While Figs. 6a and 6b are those due to the
elastic dislocation along the crystal direction h11 �20i or
along x1-axis, Figs. 6c and 6d are those due to an electric
potential dislocation D/. From these figures, we can see

the strong coupling effect between elastic and electric near
the dislocation line, i.e. an elastic dislocation can induce
strong electric field, and vice versa. In general, for the given
hexagonal material with the special orientation of the dis-
location loop, an elastic dislocation can induce an electric
field E in the same direction of the elastic Burgers vector
b, and an electric potential dislocation can induce mainly
normal stress fields as well as an electric field E normal
to the dislocation plane.

4.3. Case 3: A cardioid dislocation loop in an MEE space

The shapes of dislocations in materials usually are com-
plex than regular ones. Cardioid-shaped dislocations are
common in materials when dislocations are pinned by de-
fects during their expansion or multiplication process.
Fig. 7 shows a cardioid dislocation loop on the plane
x3 = 0 in a BaTiO3–CoFe2O4 MEE composite. While the
MEE material is based on the 50% BaTiO3 and 50% CoFe2O4
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with its properties listed in Appendix B, the parametric
expression of the loop is described by

x1ðtÞ ¼ a cosðtÞ½1þ cosðtÞ�;
x2ðtÞ ¼ a sinðtÞ½1þ cosðtÞ�; 0 � t � 2p

with a being the shape parameter of the cardioid.
We first calculate the fields at point (x1,x2,x3) = (1,2,

3)a. For b = b(1, 0 ,0, 0, 0), the field results are listed in Ta-
ble 2, using different methods, including the direct numer-
ical line integration method Eq. (17) (using 160 Gauss
points), two straight line segment methods Eqs. (21) and
(40), and the parametric elliptic arc method Eq. (44). From
this tables, we can see that the results calculated by the
four methods agree well with each other if enough Gauss
integration points and dislocation line segments are used.
When 20, 200 and 1000 parametric elliptic arcs are used,
the results will be accurate to 3, 5 and 7 digital numbers,

respectively. When 20, 200 and 1000 straight segments
are used, the results will be accurate to 2, 4 and 6 digital
numbers, which are less accurate than those by the elliptic
arc methods. Thus, if a dislocation loop has less curvature,
the straight line segment methods Eqs. (21) or (40) are
suitable, with the latter further giving the extended dis-
placement field with the same accuracy. When a disloca-
tion loop has a complex curved shape, then the
parametric curve method, such as the analytical elliptic
arc method, is more suitable. The direct numerical line
integration method Eq. (17) can be used, if the shape of a
dislocation loop can be mathematically described well,
which is usually not easier for a moving dislocation in dis-
location dynamics simulation. Thus, for a dislocation loop
with complex shape and with rapid changing shape, a
parametric curve description and analysis has more advan-
tage. Furthermore, the parametric method can also predict
the extended displacement fields if needed.
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For the dislocation with different kinds of Burger’s vec-
tors, including the electric and magnetic ones, the field re-
sults at point (x1,x2,x3) = (1,2,3)a are given in Table 3. From
this tables, we can observe clearly the coupling effect
among the elastic, electric and magnetic fields.

The fields along x1-axis are shown in Figs. 8–12, from
which we can see the strong field coupling effect near
the dislocation loop line. From these figures, we observe
that besides the induced stress fields, a displacement dislo-
cation b can also induce the electric and magnetic fields
due to the coupling effect. Furthermore, these induced
fields are singular near the dislocation line, with E and H
mainly along the direction of the dislocation vector b. On
the other hand, an electric potential dislocation D/ or
magnetic potential dislocation Dw can induce the electric
field E and the magnetic fields H, which are singular near
the dislocation core and are normal to the dislocation
plane, and the singular stress fields (mainly normal com-
ponents) near the dislocation core due to the coupling
effects.

5. Conclusions and discussion

First we extend the anisotropic dislocations formulae in
elasticity to those in magneto-electro-elastic materials,
including a line integration expression and an analytical
solution of the straight line dislocation. Then we develop
a new line integration solution of dislocation fields and de-
rive the analytical expressions for some useful parametric
dislocation curves, such as elliptic arc, straight line, et al.
The piezoelectric, piezomagnetic, and purely anisotropic
elastic solutions are all included by the present solutions
by setting the appropriate material coefficients to zero.
The present solution is an extension to the anisotropic
elastic theory of dislocations (Hirth and Lothe, 1982).

Different numerical and analytical solutions are com-
pared in this paper. For a dislocation loop with less curva-
ture, straight line segment methods are suitable; for a
complex curved dislocation loop, an integrable parametric
dislocation solution is more appealing. For a dislocation
loop with a complex and rapid changing shape, a
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parametric curve description and the corresponding ana-
lytical integration expression are more advantageous than
the straight-line segment solution. Furthermore, the ex-
tended displacement fields can be also obtained via the
parametric dislocation solution method.

Three typical dislocation loops are chosen as examples,
including an elliptic loop in piezoelectric GaAs, a hexagonal
loop in piezoelectric AlN, and a cardioid loop in BaTiO3–
CoFe2O4magneto-electro-elasticmaterials. These examples
show clearly the coupling effect among the elastic, electric
andmagneto fields. For instance, besides the induced stress
fields, an elastic dislocation can also induce the electric and
magnetic fields due to the coupling effect, and also these in-
duced fields are singular near the dislocation line.

For piezoelectric and magneto-electro-elastic materials,
we only considered the coupling fields induced by disloca-
tions. Some dislocation related problems, such as disloca-
tion charge phenomena, dislocation scattering effect to
electron or photon, dislocation movement, etc., are yet to
be investigated. Due to the elastic strain and coupling ef-
fect, a dislocation could induce polarization electric field
and polarization charges. In addition, due to the defects
in crystal structure of dislocation core and the singularity
in coupling field, external charged impurities are often
accumulated on the dislocation core, and the dislocation
may become a negatively or positively charged dislocation.
In order to neutralize the dislocation core charges, a
charged dislocation is likely to be screened by charges of
opposite sign in its surrounding area. The movement of
charged and screened dislocations need more energy and
therefore will be more difficult to move. Consequently,
these materials are more likely to be brittle than plastic.
Moreover, the charged dislocation can induce the scatter-
ing effect when electrons or photons pass through the core
area. There are many related problems need further inves-
tigation in these materials.
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Appendix A. Extended Green’s functions and their
derivatives

The extended point-force Green’s functions and their
derivatives in a generalized anisotropic MEE infinite space
can be obtained by the Fourier transform method. For in-
stance, based on the three-dimensional Fourier transfor-
mation, we have (Han, 2009)

GKMðx� yÞ ¼ 1

ð2pÞ3
ZZZ 1

�1

AKMðnÞ
DðnÞ e�iðx�yÞ�ndn1n2n3 ðA1Þ

GKM;xl ðx� yÞ ¼ �i

ð2pÞ3
ZZZ 1

�1

AKMðnÞ
DðnÞ e�iðx�yÞ�ndn1n2n3 ðA2Þ

where AKM(n) and D(n) are, respectively, the adjoint matrix
and determinant of CiJKlninl.

Making use of the delta function property and carrying
out the infinite integral, the Green’s functions can be ex-
pressed as (Han, 2009)

GKMðx� yÞ ¼ 1
8p2jx� yj

I
Cn

AKMðnÞ
DðnÞ dX ðA3Þ

The integral is now taken around the unit circle Cn on the
plane normal to x–y.

The first derivative of the Green’s functions can be ex-
pressed as

GKM;iðx� yÞ ¼ 1

8p2jx� yj2
I
Cn

f�xiðnnÞ�1
KM þ ni½ðxnÞLN

þ ðnxÞLN�ðnnÞ�1
KL ðnnÞ�1

NMgdX ðA4Þ

with the notion (AB)JK = CiJKlAiAl being used.
The Green’s functions and their derivatives in a homo-

geneous 3D full space have the following symmetric
properties

GKMðx; x0Þ ¼ GKMðx� x0Þ ¼ GMKðx� x0Þ ¼ GKMðx0 � xÞ;
GKM;iðx� x0Þ ¼ �GKM;iðx0 � xÞ ¼ �GKM;i0 ðx� x0Þ ðA5Þ

It is noted that the line-integral in Eqs. (A3) and (A4) can be
evaluated by a numerical integral method, or by the Cau-
chy’s residue theorem.

The extended Green’s functions can also be solved via
the two-dimensional Fourier transformation and the ex-
tended Stroh eigenequation method (Pan, 2002) as

Gðy; xÞ ¼ � 1
2p2

R p
0
�AGð1Þ

u
�ATdh; x3 > y3

þ 1
2p2

R p
0 AGð2Þ

u ATdh; x3 < y3

(
ðA6Þ

where

ðGð1Þ
u ÞIJ ¼

dIJ
hðh; �pIÞ � ðx� yÞ ; ðGð2Þ

u ÞIJ ¼
dIJ

hðh;pIÞ � ðx� yÞ
hðh; pÞ ¼ ½cos h; sin h;p�T ;A ¼ ½a1; a2; a3; a4; a5�

ðA7Þ

and pi, and ai (i = 1–5) are the eigenvalues and the associ-
ated eigenvectors of the extended eigenequation:

½Q þ pðR þ RTÞ þ p2T�a ¼ 0 ðA8Þ

where

QJK ¼ CiJKsnins; RJK ¼ CiJK3ni;

TJK ¼ C3JK3; n ¼ ½cos h; sin h;0�T ðA9Þ

and the eigenvalues and eigenvectors are selected such
that

ImðpiÞ > 0; piþ5 ¼ �pi; �aiþ5 ¼ �ai; ði ¼ 1 � 5Þ ðA10Þ

The derivatives of the extended Green’s functions are

Gðy; xÞ;xl ¼
�1
2p2

R p
0
�AðGð1Þ

u Þ;xl �ATdh; x3 > y3
1

2p2

R p
0 AðGð2Þ

u Þ;xlA
Tdh; x3 < y3

(
ðA11Þ

with
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ðGð1Þ
u Þij;xl ¼

�dijhlð�piÞ
½hð�piÞ � ðx� yÞ�2

; ðGð2Þ
u Þij;xl

¼ �dijhlðpiÞ
½hðpiÞ � ðx� yÞ�2

ðA12Þ

The second derivatives of the Green’s functions are

Gðy; xÞ;xlyp ¼
�1
2p2

R p
0
�AðGð1Þ

u Þ;xlyp �ATdh; x3 > y3
1

2p2

R p
0 AðGð2Þ

u Þ;xlypA
Tdh; x3 < y3

8<
: ðA13Þ

with

ðGð1Þ
u Þij;xlyp ¼

�2dijhlðh; �piÞhpðh; �piÞ
½hðh; �piÞ � ðx� yÞ�3

ðGð2Þ
u Þij;xlyp ¼

�2dijhlðh; piÞhpðh;piÞ
½hðh;piÞ � ðx� yÞ�3

ðA14Þ

Appendix B. Material properties

Elastic constants Cij are in GPa (�109 N/m2), piezoelec-
tric constants eij in C/m2, piezomagnetic constants qij in
N/Am, dielectric constant (or permittivity) eij in 10�9 F/m
(or 10�9 C/(Vm) or 10�9 C2/Nm2), magnetic constants lij

in 10�4 H/m (or in 10�4 Ns2/C2).
(1) Piezoelectric (cubic) crystal properties of GaAs

C11 C12 C44 e14 = e25 = e36 e11 = e22 = e33

118.1 53.2 59.4 �0.16 0.1108

(1) Piezoelectric (transversely isotropic) crystal proper-
ties of AlN

C11 C12 C13 C33 C44

396 137 108 373 116
e31 = e32 e33 e24 = e15 e11 = e22 e33

�0.58 1.55 �0.48 0.0797 0.0974

(1) 50%MEE BaTiO3–CoFe2O4 composite properties

C11 C12 C13 C33 C44

225 125 124 216 44
e31 = e32 e33 e24 = e15 e11 = e22 e33

�2.2 9.3 5.8 5.64 6.35
q31 = q32 q33 q24 = q15 l11 = l22 l33

290.2 350 275 2.97 0.835
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