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Abstract In this paper, we derive the analytical solutions
in a three-dimensional anisotropic magnetoelectroelastic bi-
material space subject to uniform extended dislocations and
tractions within a horizontal circular area. By virtue of the
Stroh formalism and Fourier transformation, the nal expres-
sion of solutions in the physical domain contains only line
integrals over [0, 2π] rather than in nite integrals. As the
reduced cases, the half-space and homogeneous full-space
solutions can be directly derived from the present solutions.
Also, in terms of material domains, the present solutions
can be reduced to the piezoelectric, piezomagnetic, purely
elastic materials with different symmetries of material prop-
erty. To carry out numerical calculations, Gauss quadrature
is adopted. In the numerical examples, the effect of different
loading locations on the response at the interface is analyzed.
It is shown that, when the magnetic traction or electric dislo-
cation is applied, the physical quantities on the interface may
not decrease monotonically as the loading area moves away
from the interface. The distributions of different in-plane
physical quantities on the upper and lower interfaces under
various extended horizontal loadings are compared and the
differences are discussed. The work presented in this paper
can serve as benchmarks for future numerical studies in re-
lated research elds.
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1 Introduction

Magnetoelectroelastic (MEE) materials and composites be-
long to the smart or intelligent material systems. Due to
their full coupling properties among magnetic, electric, and
elastic elds, MEE materials can convert energies from one
form to the other (among the mechanical, electric and mag-
netic ones), and thus they have potential applications, say,
in energy harvest, among others [1, 2]. MEE materials and
composites are also good candidates for manufacturing var-
ious sensors and actuators with applications in hi-tech ar-
eas such as ultrasonic and microwave elds [2, 3]. Besides,
MEE composites offer engineers great opportunities to make
structures capable of producing the desired internal or envi-
ronment changes [4]. As such, MEE materials and compos-
ites are continuously receiving attentions from researchers in
various elds.

MEE materials could contain various defects (such as
cracks, inclusions and inhomogeneities) arising from the
manufacturing process, even be damaged under service en-
vironments, which has motivated some recent studies. Li [4]
studied the multiple inclusions and inhomogeneities embed-
ded in an in nite three-dimensional (3D) MEE matrix and
developed a numerical method for evaluating the MEE Es-
helby tensors in the general material case with ellipsoidal
inclusion shape. Liu et al. [5] derived the Green’s func-
tion for an in nite two-dimensional (2D) anisotropic MEE
medium containing an elliptical cavity using the extended
Stroh formalism combined with the conformal mapping and
the Laurent series expansion. The 2D polygonal and general-
shaped inclusion problems in anisotropic MEE full-plane,
half-plane, and bimaterial-plane were also solved [6–8].
Gao [8] investigated the fracture problem for an elliptical
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cavity in a MEE solid and obtained the closed-form solu-
tion for a mode III crack. Qin [9] considered various defects
embedded in an in nite MEE matrix induced by a line tem-
perature discontinuity and a line heat source and obtained
the Green’s functions using the Stroh formalism, conformal
mapping and perturbation technique. Zhao et al. [10] de-
rived the extended displacement discontinuity Green’s func-
tions for 3D transversely isotropic MEE media using the in-
tegral equation method and studied two coplanar and parallel
rectangular cracks. Wang and Pan [11] derive the solutions
for 2D and (quasi-static) time-dependent Green’s functions
in anisotropic MEE multiferroic bimaterials with a viscous
interface subject to extended line force and dislocation by
virtue of the uni ed Stroh formalism. To the authors’ knowl-
edge, however, no solution is available to the case where the
extended dislocations and tractions are applied over a circu-
lar area within a general anisotropic MEE bimaterial space.
This motivates the present study.

In this paper, we solve analytically the MEE elds
in a 3D general anisotropic MEE bimaterial space subject
to uniform extended dislocations and tractions applied to
a horizontal circular area. We rst derive the solutions in
the Fourier-transformed domain using the Stroh formalism.
The solutions are comprised of two parts: An in nite-space
or Kelvin-type solution, and the complementary term or
Mindlin-type solution. Making use of the integral proper-
ties of the Bessel functions, we derive the nal solutions in
the physical domain in an explicit and elegant form, which
contains only the line integral over [0, 2π]. It is worth to
note that our solutions are very general and contain the so-
lutions of the piezoelectric, piezomagnetic or magnetoelec-
tric material cases and the half-space or full-space domains
as the special cases. In numerical examples, the responses
on the interface between two material half spaces under dif-
ferent loadings are studied and some interesting features are
observed. The effect of the circular loading distance to the
interface on the response is also analyzed. It is shown that
the displacement on the interface does not always decrease
monotonically as the loading circle moves away from the in-
terface.

2 Mathematical model

2.1 The governing equations

For MEE materials, the extended equilibrium equations in
terms of the extended stresses σiJ can be expressed as

σiJ,i + fJ = 0, (1)

where fJ is the extended body force, and repeated lowercase
(uppercase) indices take the summation from 1 to 3 (1 to 5).
An index following the subprime “i” indicates the derivative
with respect to the coordinate xi.

The generalized and fully coupled constitutive equa-
tions in terms of the extended material coefficients ciJKl have
the following form

σiJ = ciJKluK, l. (2)

Substituting Eq. (2) into Eq. (1), we obtain the gov-
erning equations in terms of the extended displacements uK

as

ciJKluK, li + fJ = 0. (3)

It should be noted that the governing equations for
the fully coupled MEE systems (3) are exactly the same
in the mathematical form as its purely elastic counterpart,
except for the difference in the dimension of the involved
quantities. This implies that the solution method devel-
oped in anisotropic elasticity can be directly applied to the
anisotropic MEE case. Furthermore, once we nd the gen-
eral solution to the 3D fully coupled MEE system (3), we
can reduce our solution to the 3D piezoelectric, piezomag-
netic, and purely elastic cases by setting the corresponding
material constants to be zero. For example, reducing the up-
percase index from 5 to 4 (as its upper limit) will give the so-
lutions to either the piezoelectric or piezomagnetic case. For
the piezomagnetic case, the piezoelectric quantities associ-
ated with index 4 need to be replaced by the piezomagnetic
quantities associated with index 5. For the anisotropic elastic
case, all the indices are limited to 3.

2.2 MEE bimaterial system

We now consider the bimaterial system of general linear
anisotropic MEE materials, as shown in Fig. 1. The upper
(x3 > 0 or z > 0) and lower (x3 < 0 or z < 0) half spaces are
assigned as Materials 1 and 2, respectively. Within a hori-
zontal circular area of radius R in Material 1 at x3 = h, either
the extended dislocation vector or extended traction vector
is applied. The goal of this article is to derive the solutions
of the elastic, electric, and magnetic elds in response to the
uniform “extended” dislocation and traction given in the cir-
cular area.

Fig. 1 Sketch of an anisotropic MEE bimaterial space subject to
a uniform traction or dislocation within a circular area of radius R
which is centered at (x, y, z)= (0, 0, h)

In order to nd the solution to this problem, the bima-
terial full-space is divided into three subdomains: x3 < 0,
0 < x3 < h, and x3 > h. Since there is no body source in
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these subdomains, we have fJ = 0 in Eq. (3). However, the
solutions should satisfy the following conditions: the solu-
tion in subdomains x3 < 0 and 0 < x3 < h should satisfy
the continuity conditions on the extended displacement and
traction across the interface x3 = 0; the solution in subdo-
mains 0 < x3 < h and x3 > h should satisfy the suitable
discontinuity conditions at x3 = h; the solutions in the upper
and lower half spaces should approach zero when the eld

variable |x| =
√

x2
1 + x2

2 + x2
3 approaches in nity. These con-

ditions are addressed below in terms of their corresponding
equations.

The interface of the two half spaces is assumed to
be perfect; namely the extended displacement vector uuu =
(u1, u2, u3, u4, u5)T ≡ (u1, u2, u3, ϕ, ψ)T and the extended
traction vector ttt = (t1, t2, t3, t4, t5)T = (t1, t2, t3, D3, B3)T

are required to satisfy the following continuity conditions
across the interface x3 = 0,

uuu(x1, x2,+0) − uuu(x1, x2,−0) = 000,

ttt(x1, x2,+0) − ttt(x1, x2,−0) = 000.
(4)

On the horizontal plane x3 = h between the subdomains
0 < x3 < h and x3 > h within the same material domain, the
extended displacement and traction vectors should be contin-
uous outside the loading circle r > R. However, within the
circle r � R, the following discontinuity conditions should
be satis ed.

For the case of applied extended dislocations, the con-
tinuity conditions at x3 = h are

uJ(x1, x2, h + 0) − uJ(x1, x2, h − 0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dJ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

bj, J = j = 1, 2, 3,

Δϕ, J = 4,

Δψ, J = 5,

0 � r � R,

0, r > R,

tJ(x1, x2, h + 0) − tJ(x1, x2, h − 0) = 0, 0 < r < ∞,

(5)

where the extended dislocations dJ are the given constants
which include the elastic, electric and magnetic dislocations
applied over the circular area r � R.

For the case of applied extended tractions, we have

uJ(x1, x2, h + 0) − uJ(x1, x2, h − 0) = 0, 0 < r < ∞,
tJ(x1, x2, h + 0) − tJ(x1, x2, h − 0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

TJ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T j, J = j = 1, 2, 3,

D3, J = 4,

B3, J = 5,

0 � r � R,

0, r > R,

(6)

where the extended tractions TJ are the given constants
which include the elastic, electric and magnetic tractions ap-

plied over the circular area r � R.

In addition, since the extended displacements and
stresses at in nity should be zero, we have

lim
|x|→∞

|uJ | = 0,

lim
|x|→∞ |σiJ | = 0.

(7)

Thus, the boundary value problem is to solve the gov-
erning equation (3) (with fJ = 0) in the three subdomains
subject to conditions (5)–(7).

3 General solution

3.1 General solution in the Fourier-transformed domain

The two-dimensional Fourier transform of a function F(x1,
x2, x3) is introduced as

F̃(k1, k2, x3) =

+∞∫
−∞

+∞∫
−∞

F(x1, x2, x3)e
i(k1x1+k2x2)dx1dx2, (8)

where i =
√−1 is the unit of the imaginary number. The

transformed variables can be expressed in terms of polar co-
ordinates in the Fourier-transformed domain as

k1 = η cos θ, k2 = η sin θ,

where η and θ are, respectively, the radial and circumferen-
tial coordinates.

The governing equation (1) for each subdomain in the
Fourier-transformed domain becomes (with fJ = 0)

C3JK3ũK,33 − i(CαJK3 +C3JKα)kαũK,3

−CαJKβkαkβũK = 0, α, β = 1, 2, (9)

where the repeated Greek indices α and β take the summa-
tion from 1 to 2. In terms of the Stroh formalism, the general
solution to Eq. (9) can be written as

ũuu(k1, k2, x3) = iη−1ĀAA〈e−ip̄∗ηx3〉q̄qq + iη−1AAA〈e−ip∗ηx3〉qqq′, (10)

where the overbar denotes the complex conjugate, q̄qq and qqq′
are two unknown complex vectors, and the matrices 〈e−ip∗ηx3〉
and AAA are

〈e−ip∗ηx3〉 = diag[e−ip1ηx3 , e−ip2ηx3 , e−ip3ηx3 ,

e−ip4ηx3 , e−ip5ηx3 ],

AAA = [aaa1,aaa2,aaa3,aaa4,aaa5].

(11)

The eigenvalue pm and associated eigenvector aaam are
calculated from the following eigenequation

[QQQ + pm(RRR +RRRT) + p2
mTTT ]aaam = 000, m = 1, 2, · · · , 10, (12)

where the involved real matrices are de ned as
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(QQQ)IK = C1IK1 cos2 θ + C2IK2 sin2 θ

+(C1IK2 + C2IK1) cos θ sin θ,

(RRR)IK = C1IK3 cos θ +C2IK3 sin θ,

(TTT )IK = C3IK3.

There are ve pairs of complex conjugate eigenvalues
and associated eigenvectors from Eq. (12). We order the
rst ve with Im (pJ) > 0 and aaaJ , and the remaining ve as

pJ+5 = p̄J , aaaJ+5 = āaaJ (J = 1–5).
The extended stresses on the x3 = constant plane are

divided into two parts: the extended traction vector

ttt = (σ31, σ32, σ33, σ34, σ35)
T = (σ31, σ32, σ33,D3, B3)

T ,

and the extended in-plane stress vector

sss = (σ11, σ12, σ22, σ14, σ24, σ15, σ25)
T

≡ (σ11, σ12, σ22,D1,D2, B1, B2)
T ,

whose general solutions in the Fourier-transformed domain
can be written as

t̃tt(k1, k2, x3) = B̄BB〈e−ip̄∗ηx3〉q̄qq + BBB〈e−ip∗ηx3〉qqq′,
s̃ss(k1, k2, x3) = C̄CC〈e−ip̄∗ηx3〉q̄qq +CCC〈e−ip∗ηx3〉qqq′.

(13)

For convenience, we introduce the following real ma-
trices

UUU = HHH1 cos θ +HHH2 sin θ,

VVV = HHH3,

where the real matrices HHHi of dimensions 7× 5 are de ned
as

HHHi = (HHHi)sK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cs1Ki, s = 1,

C(s−1)2Ki, s = 2, 3,

C(s−3)4Ki, s = 4, 5,

C(s−5)5Ki, s = 6, 7,

i = 1, 2, 3.

As a result, the matrices B and C in Eq. (13) can be
expressed as

BBB = RRRTAAA + TAPTAPTAP,

CCC = UAUAUA +VAPVAPVAP,

PPP = diag[p1, p2, p3, p4, p5].

(14)

It should be noted that the matrices A, B and C, the vec-
tors q̄qq and qqq′, and the eigenvalues pJ in solutions (10) and
(13) are all functions of the circumferential polar coordinate
θ.

3.2 The general Fourier-domain solution in the three subdo-
mains

In the Fourier transformed domain, the continuity conditions
(4) on the interface x3 = 0 becomes

ũuu|x3=+0 − ũuu|x3=−0 = 000,

t̃tt
∣∣∣
x3=+0

− t̃tt
∣∣∣
x3=−0 = 000.

(15)

On the loading level x3 = h, the discontinuity conditions (5)
and (6) in the Fourier domain are

ũuu|x3=h+0 − ũuu|x3=h−0 =

⎧⎪⎪⎨⎪⎪⎩
d̃dd(η, θ), for dislocation,

000, for traction,

t̃tt
∣∣∣
x3=h+0

− t̃tt
∣∣∣
x3=h−0 =

⎧⎪⎪⎨⎪⎪⎩
000, for dislocation,

T̃TT (η, θ), for traction,

(16)

where d̃dd(η, θ) and T̃TT (η, θ) are, respectively, the Fourier trans-
formation of the given uniform dislocation and traction over
the circle. Namely

⎡⎢⎢⎢⎢⎢⎢⎣
d̃dd(η, θ)

T̃TT (η, θ)

⎤⎥⎥⎥⎥⎥⎥⎦ =
2π∫

0

∞∫
0

⎡⎢⎢⎢⎢⎢⎣ ddd

TTT

⎤⎥⎥⎥⎥⎥⎦ eiηr cos(ϕ−θ)rdrdφ. (17)

In addition, the condition (7) at in nity in the Fourier-
transformed domain becomes

lim
|x|→∞

|ũuu| = 0,

lim
|x|→∞

∣∣∣t̃tt∣∣∣ = 0.
(18)

As in Ref. [12], we now assume that the solution in the
upper half space contains two parts—the full-space solution
and the complimentary part, whilst the solution in the lower
half space contains only the complimentary part. In other
words, the solutions in the three Fourier-transformed subdo-
mains can be expressed as follows.

For x3 > h (in Material 1)

ũuu(1)(k1, k2, x3) = ±iη−1ĀAA(1)〈e−ip̄(1)
∗ η(x3−h)〉q̄qq∞

−iη−1ĀAA(1)〈e−ip̄(1)
∗ ηx3〉q̄qq(1),

t̃tt(1)(k1, k2, x3) = ±B̄BB(1)〈e−ip̄(1)
∗ η(x3−h)〉q̄qq∞

−B̄BB(1)〈e−ip̄(1)
∗ ηx3〉q̄qq(1),

s̃ss(1)(k1, k2, x3) = ±C̄CC(1)〈e−ip̄(1)
∗ η(x3−h)〉q̄qq∞

−C̄CC(1)〈e−ip̄(1)
∗ ηx3〉q̄qq(1).

(19)

For 0 � x3 < h (in Material 1)

ũuu(1)(k1, k2, x3) = iη−1AAA(1)〈e−ip(1)
∗ η(x3−h)〉qqq∞

−iη−1ĀAA(1)〈e−ip̄(1)
∗ ηx3〉q̄qq(1),

t̃tt(1)(k1, k2, x3) = BBB(1)〈e−ip(1)
∗ η(x3−h)〉qqq∞

−B̄BB(1)〈e−ip̄(1)
∗ ηx3〉q̄qq(1),

s̃ss(1)(k1, k2, x3) = CCC(1)〈e−ip(1)
∗ η(x3−h)〉qqq∞

−C̄CC(1)〈e−ip̄(1)
∗ ηx3〉q̄qq(1).

(20)
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For x3 < 0 (in Material 2)

ũuu(2)(k1, k2, x3) = iη−1AAA(2)〈e−ip(2)
∗ ηx3〉qqq(2),

t̃tt(2)(k1, k2, x3) = BBB(2)〈e−ip(2)
∗ ηx3〉qqq(2),

s̃ss(2)(k1, k2, x3) = CCC(2)〈e−ip(2)
∗ ηx3〉qqq(2).

(21)

The superscripts “1” and “2” denote, respectively, the quan-
tities in Materials 1 and 2, and q̄qq(1), qqq(2) and qqq∞ are the three
unknown vectors to be determined by conditions (15)–(18).
It should be noted that the positive “+” and negative “−”
signs in Eq. (19) are for the dislocation and traction cases,
respectively.

3.3 Determination of unknown vectors in the solutions

First, the complex vector qqq∞ can be determined by the dis-
continuity condition (16) at x3 = h. By means of the orthog-
onal normalization identity [13] we can verify that the dis-
continuity condition (16) is satis ed if the unknown vector
qqq∞ in solutions (19) and (20) takes the following expression

qqq∞ =

⎧⎪⎪⎨⎪⎪⎩
−iη(BBB(1))Td̃dd(η, θ), for dislocation,

(AAA(1))TT̃TT (η, θ), for traction.
(22)

Then, substituting solutions (20) and (21) into continu-
ity conditions (15) on the interface x3 = 0 yields

AAA(2)qqq(2) + ĀAA
(1)

q̄qq(1) = AAA(1)〈eip(1)
∗ ηh〉qqq∞,

BBB(2)qqq(2) + B̄BB
(1)

q̄qq(1) = BBB(1)〈eip(1)
∗ ηh〉qqq∞.

(23)

To solve the unknown vectors q̄qq(1) and qqq(2) from
Eq. (23), we introduce the matrices

MMM(α) = −iBBB(α)(AAA(α))−1, α = 1, 2. (24)

Substituting BBB(α) = iMMM(α)AAA(α) (α = 1, 2) into Eq. (23)
results in a simple expression of the unknown vectors

q̄qq(1) =GGG1〈eip(1)
∗ ηh〉qqq∞,

qqq(2) =GGG2〈eip(1)
∗ ηh〉qqq∞,

(25)

where the matrices GGG1 and GGG2 are given by

GGG1 = −(ĀAA(1)
)−1(M̄MM(1)

+MMM(2))−1(MMM(1) −MMM(2))AAA(1),

GGG2 = (AAA(2))−1(M̄MM(1)
+MMM(2))−1(MMM(1) + M̄MM

(1)
)AAA(1).

(26)

3.4 General solution in the physical domain

The Fourier inverse transform of the function F̃(k1, k2, x3) is

F(x1, x2, x3)

=
1

4π2

+∞∫
−∞

+∞∫
−∞

F̃(k1, k2, x3)e
−i(k1x1+k2x2)dk1dk2. (27)

We introduce the cylindrical polar coordinates in the
physical domain

x1 = r cosϕ, x2 = r sinϕ, x3 = z.

Then, Eq. (27) becomes

F(r, ϕ, z) =
1

4π2

2π∫
0

+∞∫
0

F̃(η, θ, z)e−iηr cos(ϕ−θ)ηdηdθ. (28)

Applying the Fourier inverse transform to Eqs. (19)–
(21), we obtain the extended displacements and stresses in
the three physical subdomains as follows.

For z > h (in Material 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(1)(r, ϕ, z)

ttt(1)(r, ϕ, z)

sss(1)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1

4π2

∫ 2π

0

∫ ∞

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
±

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iη−1ĀAA(1)

B̄BB
(1)

C̄CC
(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
KKK∞+ q̄qq∞

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iη−1ĀAA(1)

B̄BB
(1)

C̄CC
(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
KKK1qqq∞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ηdηdθ. (29)

For 0 � z < h (in Material 1)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(1)(r, ϕ, z)

ttt(1)(r, ϕ, z)

sss(1)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1

4π2

∫ 2π

0

∫ ∞

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iη−1AAA(1)

BBB(1)

CCC(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦KKK∞− qqq∞

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iη−1ĀAA(1)

B̄BB
(1)

C̄CC
(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
KKK1qqq∞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ηdηdθ. (30)

For z < 0 (in Material 2)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(2)(r, ϕ, z)

ttt(2)(r, ϕ, z)

sss(2)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1

4π2

∫ 2π

0

∫ ∞

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iη−1AAA(2)

BBB(2)

CCC(2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦KKK2qqq
∞ηdηdθ. (31)

The sign “+” and “−” in solution (29) again is, respectively,
for the dislocation and traction case, and the involved matri-
ces are de ned as(
KKK∞+

)
IJ = e−iη[r cos(ϕ−θ)+ p̄(1)

I (z−h)]δIJ ,(
KKK∞−

)
IJ = e−iη[r cos(ϕ−θ)+p(1)

I (z−h)]δIJ ,

(KKK1)IJ = e−iη[r cos(ϕ−θ)+ p̄(1)
I z−p(1)

J h] (GGG1)IJ ,

(KKK2)IJ = e−iη[r cos(ϕ−θ)+p(2)
I z−p(1)

J h] (GGG2)IJ .

(32)

Up to now, in the three physical domains, we have
found the general solutions (29)–(31) which are expressed
by double integrals of the known functions of two vari-
ables θ and η. In those solutions, for each material domain
(α = 1, 2), the eigenvalues p(α)

I (I = 1, 2, 3, 4, 5) and eigen-
matrix AAA(α) can be solved from the eigenequation (12) and
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the de nition (11), the matrices BBB(α) and CCC(α) are from rela-
tion (14), and the matrices AAAα can be calculated from expres-
sions (24) and (26). They are all functions of the variable θ
only. The vector qqq∞ is given by expressions (22) and (17),
and thus, in general, is associated with both θ and η; how-
ever, for the uniform traction and dislocation loading case,
the involved in nite integral with respect to η can be carried
out. This is discussed below.

4 Solutions for uniform dislocation and traction cases

For the case of applied uniform dislocation or traction within
a circle of radius r = R, we have⎡⎢⎢⎢⎢⎢⎣ ddd

TTT

⎤⎥⎥⎥⎥⎥⎦ = H(R − r)

⎡⎢⎢⎢⎢⎢⎣ ddd0

TTT 0

⎤⎥⎥⎥⎥⎥⎦ , (33)

where ddd0 and TTT 0 are constant vectors.

H(R − r) =

⎧⎪⎪⎨⎪⎪⎩
1, r � R

0, r > R
is the Heaviside function. Then,

the integration with respect to in nity in Eq. (17) can be
changed to the integration with respect to R.

Making use of the following expressions [14]

2π∫
0

eiηr cos(ϕ−θ)dθ =2πJ0(ηr),

∫ R

0
J0(ηr)rdr =

RJ1(ηR)
η

,

and from Eq. (17), we nd that the Fourier transformation of
the uniform load is⎡⎢⎢⎢⎢⎢⎢⎣
d̃dd

T̃TT

⎤⎥⎥⎥⎥⎥⎥⎦ = 2πR
J1(ηR)
η

⎡⎢⎢⎢⎢⎢⎣ ddd0

TTT 0

⎤⎥⎥⎥⎥⎥⎦ . (34)

Thus, using the in nite integral formulae [14]

∫ ∞

0
e−at J1(bt)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t−1

1

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ dt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
b

(√
a2 + b2 − a

)

1
b

(
1 − a√

a2 + b2

)

b
(a2 + b2)3/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

the in nite integral with respect to η in solutions (29)–(31)
can be further carried out, as discussed below.

4.1 Solutions for uniform extended dislocation case

Under a uniform extended dislocation ddd0 within the circle,
we nd, from Eqs. (22) and (33)

qqq∞ = −2πiRJ1(ηR)(BBB(1))Tddd0.

Thus, we have the following analytical solutions in the three
subdomains.

For z > h (in Material 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(1)(r, ϕ, z)

ttt(1)(r, ϕ, z)

sss(1)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2π

∫ 2π

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĀAA
(1)

GGGh+
u

B̄BB
(1)

GGGh+
σ

C̄CC
(1)

GGGh+
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B̄BB

(1)
)T

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĀAA
(1)

GGG(1)
u

B̄BB
(1)

GGG(1)
σ

C̄CC
(1)

GGG(1)
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(BBB(1))T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dθ · ddd0, (35)

For 0 � z < h (in Material 1)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(1)(r, ϕ, z)

ttt(1)(r, ϕ, z)

sss(1)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
2π

∫ 2π

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AAA(1)GGGh−
u − ĀAA

(1)
GGG(1)

u

BBB(1)GGGh−
σ − B̄BB

(1)
GGG(1)
σ

CCC(1)GGGh−
σ − C̄CC

(1)
GGG(1)
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(BBB(1))Tdθ · ddd0, (36)

For z < 0 (in Material 2)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(2)(r, ϕ, z)

ttt(2)(r, ϕ, z)

sss(2)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2π

∫ 2π

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AAA(2)GGG(2)
u

BBB(2)GGG(2)
σ

CCC(2)GGG(2)
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
BBB(1)

)T
dθ · ddd0, (37)

where

(
GGGh±

u

)
IJ
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 −
i[r cos(ϕ − θ) + p±I (z − h)]√

R2 − [r cos(ϕ − θ) + p±I (z − h)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠δδδIJ ,

(
GGG(α)

u

)
IJ

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 −
i[r cos(ϕ − θ) + p̂(α)

I z − p(1)
J h]√

R2 − [r cos(ϕ − θ) + p̂(α)
I z − p(1)

J h]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (GGGα)IJ ,

(38)

(
GGGh±
σ

)
IJ
=

−iR2

(R2 − [r cos(ϕ − θ) + p±I (z − h)]2)3/2
δδδIJ ,

(
GGG(α)
σ

)
IJ

=
−iR2

(R2 − [r cos(ϕ − θ) + p̂(α)
I z − p(1)

J h]2)3/2
(GGGα)IJ .

In Eq. (38) and below we introduce p̂(1)
I = p̄(1)

I , p̂(2)
I =

p(2)
I , p+I = p̄(1)

I , p−I = p(1)
I , α = 1, 2.

It is noted that when the loading circle plane and the
eld point are both located on the interface (h = z = 0),

the displacement kernel (with subscript “u” in Eq. (38)) is
weakly singular (order of 1/

√
r) and it is integrable in the
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Cauchy principal sense; however, the stress kernel (with
subscript “σ” in Eq. (38)) has a high order of singularity
(1/r3/2), which is not integrable even in the Cauchy principal
sense. This stress kernel due to the circular dislocation on the
interface would result in the Dirac delta function singularity
in the extended stress eld expression [15–18].

4.2 Solutions for extended uniform traction case

Under a uniform extended traction TTT 0 within the circle,
Eqs. (22) and (33) give us

qqq∞ = 2πRη−1J1(ηR)(AAA(1))TTTT 0.

Therefore, for this case, we have the following analytical so-
lutions in the three physical domains.

For z > h (in Material 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(1)(r, ϕ, z)

ttt(1)(r, ϕ, z)

sss(1)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2π

∫ 2π

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĀAA
(1)

GGGh+
u

B̄BB
(1)

GGGh+
σ

C̄CC
(1)

GGGh+
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(ĀAA

(1)
)T

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĀAA
(1)

GGG(1)
u

B̄BB
(1)

GGG(1)
σ

C̄CC
(1)

GGG(1)
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(AAA(1))T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dθ · TTT 0. (39)

For 0 � z < h (in Material 1)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(1)(r, ϕ, z)

ttt(1)(r, ϕ, z)

sss(1)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
2π

∫ 2π

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AAA(1)GGGh−
u − ĀAA

(1)
GGG(1)

u

BBB(1)GGGh−
σ − B̄BB

(1)
GGG(1)
σ

CCC(1)GGGh−
σ − C̄CC

(1)
GGG(1)
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(AAA(1))Tdθ · TTT 0. (40)

For z < 0 (in Material 2)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uuu(2)(r, ϕ, z)

ttt(2)(r, ϕ, z)

sss(2)(r, ϕ, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2π

∫ 2π

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AAA(2)GGG(2)
u

BBB(2)GGG(2)
σ

CCC(2)GGG(2)
σ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(AAA(1))Tdθ · TTT 0, (41)

where(
GGGh±

u

)
IJ
=

(
[r cos(ϕ − θ) + p±I (z − h)]

+i
√

R2 − [r cos(ϕ − θ) + p±I (z − h)]2
)
δδδIJ

(
GGG(α)

u

)
IJ
=

(
[r cos(ϕ − θ) + p̂(α)

I z − p(1)
J h]

+i
√

R2 − [r cos(ϕ − θ) + p̂(α)
I z − p(1)

J h]2
)
(GGGα)IJ ,

(
GGGh±
σ

)
IJ

(42)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 −
i[r cos(ϕ − θ) + p±I (z − h)]√

R2 − [r cos(ϕ − θ) + p±I (z − h)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠δδδIJ,

(
GGG(α)
σ

)
IJ

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝1 −
i[r cos(ϕ − θ) + p̂(α)

I z − p(1)
J h]√

R2 − [r cos(ϕ − θ) + p̂(α)
I z − p(1)

J h]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (GGGα)IJ .

Similarly, it is observed that when the loading circle
plane and the eld point are both located on the interface
(h = z = 0), the displacement kernel (with subscript “u” in
Eq. (42)) is integrable; however, the stress kernel (with sub-
script “σ” in Eq. (42)) is weakly singular (order of 1/

√
r) and

thus it is integrable in the Cauchy principal sense. The lat-
ter behavior is just the same as in the extended displacement
expression due to the interfacial dislocation (Eq. (38) for the
displacement kernel). Furthermore, the singular behavior for
both extended displacements and stresses on the interface is
the same as that on the surface of a half space [19].

5 Numerical examples and discussion

Before applying our analytical solutions to numerical exam-
ples, we have rst checked various reduced cases for veri -
cation. For instance, we checked that, for the reduced purely
elastic isotropic half space under a uniform surface loading
over a circle, the induced elastic displacements and stresses
from our solutions were the same as the well-known solu-
tions [20].

In our numerical studies, the MEE bimaterial space is
made of two transversely isotropic materials: The upper half
space (Material 1) is made of the pseudo BaTiO3 [21] and the
lower half space (Material 2) made of 50% BaTiO3 and 50%
CoFe2O4 MEE composite [22], with their properties given
in Appendix. We consider both the extended traction and
extended dislocation loadings with the circular loading area
being assumed to be in the upper material half space.

5.1 Effect of different loading locations

Figure 2 shows the variation of the dimensionless displace-
ment component uz (normalized with respect to uzmax) on
the interface at point (x, y, z)= (0, 0, 0) with respect to the
normalized center distance h/R (varying from 1 to 5) of
the circular loading area (for xed radius R= 1 m), induced
by the uniform extended traction/dislocation. For the trac-
tion loading case, the vertical traction, electric displacement
and magnetic induction (with densities of 1 Pa, 1 C/m2 and
1T, respectively) are, respectively, applied, and the results
are shown in Fig. 2a. For the dislocation loading case, the
vertical Burgers component, electrical potential jump and
magnetic potential jump (with densities of 10 nm, 1 V and
1 A, respectively) are, respectively, applied, and the results
are shown in Fig. 2b. The six maximum values uz max are
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5.65 pm, 6.13mm, 56.4 μm, 5.01 nm, 18.5 pm, 2.41 nm, cor-
responding to the vertical traction, electric displacement,
magnetic induction, vertical Burgers component, electrical
potential jump, and magnetic potential jump, respectively.

It is interesting to observe from Fig. 2a that under both
mechanical and electric traction loadings, the displacement
component uz at the interface point (0, 0, 0) decreases mono-
tonically as the loading area moves away from the interface.
However, under the magnetic induction, the elastic displace-
ment uz at (0, 0, 0) rst increases sharply to a maximum value
when h/R increases from 0 to a point near 1. It then de-
creases with increasing h/R. Under the uniform extended

dislocation, the results are quite different. It shows clearly in
Fig. 2b that under the electric potential jump, uz at (0, 0, 0)
rst increases to a maximum value when h/R increases from

0 to a point near 1, and then decreases with increasing h/R.
Under the vertical Burgers component, uz at the interface
point (0, 0, 0) decreases monotonically with increasing h/R.
Under the magnetic potential jump, however, the value of
uz continuously decrease from its maximum at h/R = 0 to
a negative value when h/R equals to 2.5. Similar to other
two loading cases shown in Fig. 2b, the elastic displacement
uz due to the magnetic potential jump eventually approaches
zero when h/R is far away from the interface.

Fig. 2 Variation of the normalized elastic displacement uz on the interface point (x, y, z)= (0, 0, 0) vs. the normalized vertical distance h/R
of the circle, with xed radius R= 1 m, induced a by uniform extended traction (elastic traction tz = 1 Pa, electric displacement D3 = 1C/m2,
and magnetic induction B3 = 1T), and b by uniform extended dislocations (elastic dislocation bz = 10 nm, electric potential discontinuity
Δϕ= 1V, and magnetic potential discontinuity Δψ= 1A)

5.2 Response on the two sides of the interface, z = 0+ and
z = 0−

Figures 3–5 show, respectively, contours of the dimension-

less stress component σxx (normalized by its maximum
0.231 Pa), electric displacement Dx (normalized by its max-
imum 65.9 pC/m2) and magnetic induction Bx (normalized
by its maximum 2.79 nN /Am) on the interface z = 0+ (a)

Fig. 3 Dimensionless stress component σxx on the interface induced by a uniform mechanical traction in x-direction (tx = 1 Pa) within the
circle of radius R= 1m centered at (x, y, z)/R= (0, 0, 0.5). a z = 0+ in Material 1; b z = 0− in Material 2
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Fig. 4 Dimensionless electric displacement component Dx on the interface induced by a uniform mechanical traction in x-direction
(tx = 1 Pa) within the circle of radius R= 1m centered at (x, y, z)/R= (0, 0, 0.5). a z = 0+ in Material 1; b z = 0− in Material 2

Fig. 5 Dimensionless magnetic induction component Bx on the interface induced by a uniform mechanical traction in x-direction (tx = 1 Pa)
within the circle of radius R= 1m centered at (x, y, z)/R= (0, 0, 0.5). a z = 0+ in Material 1; b z = 0− in Material 2

and z = 0− (b) due to a uniform horizontal mechanical trac-
tion tx (with a density of 1 Pa) within the circular area of
radius R=1 centered at (x, y, z)/R= (0, 0, 0.5). For σxx in
Fig. 3, it can be observed that its magnitudes on the upper
interface z = 0+ are different to the ones on the lower inter-
face z = 0−, although the contours are both anti-symmetric
with respect to the y-axis, and symmetric with respect to the
x-axis. The dimensionless maximum of σxx are 0.82 and 1,
respectively, on the side z = 0+ and z = 0−, with the concen-
tration being located at point (x, y)/R= (−1.3, 0) (where σxx

is positive) and (x, y)/R= (1.3, 0) (where σxx is negative).
The contour shapes for Dx are also similar on both sides of
the interface, whilst their dimensionless maximum magni-
tudes, located at the center (x, y)/R= (0, 0), are 1 and 0.49
on the side of z = 0+ and z = 0−, respectively (Fig. 4). Fig-
ure 5 shows the contours of the corresponding dimensionless
magnetic induction Bx, which are strikingly different to each
other on both sides of the interface. For example, Bx has only
one concentration at the center on the upper interface z = 0+

with the maximum value of 1, whilst on the lower interface
z = 0−, it has four concentrations located symmetrically with
respect to the x- and y-axes: (x, y)/R= (±1.5,0) where Bx has
a maximum value of 0.45, and (x, y)/R= (0,±1.4) whereBx

has a minimum value of −0.14.
Figures 6–8 show, respectively, contours of the dimen-

sionless stress component σxx (normalized by its maximum
241 Pa), electric displacement Dx (normalized by its max-
imum 32.3 nC/m2) and magnetic induction Bx (normalized
by its maximum 1.82 μN/Am) on the upper interface z = 0+

(a) and lower z = 0− (b) due to a uniform mechanical dis-
location bx (with a density of 10 nm) applied to the circle of
radius R = 1 centered at (x, y, z)/R= (0, 0, 0.5). As in the
uniform traction case, the material property mismatches in
the two half spaces cause the difference of the eld quanti-
ties on both sides of the interface. For instance, while the
contour shapes of the stress component σxx and electric dis-
placement Dx are, respectively, similar on both sides of the
interface (Figs. 6 and 7), their magnitudes are different. For
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Fig. 6 Dimensionless stress component σxx on the interface induced by a uniform mechanical dislocation in x-direction (bx = 10 nm) within
the circle of radius R= 1m centered at (x, y, z)/R= (0, 0, 0.5). a z = 0+ in Material 1; b z = 0− in Material 2

Fig. 7 Dimensionless electric displacement component Dx on the interface induced by a uniform mechanical dislocation in x-direction
(bx = 10 nm) within the circle of radius R= 1m centered at (x, y, z)/R= (0, 0, 0.5). a z = 0+ in Material 1; b z = 0− in Material 2

Fig. 8 Dimensionless magnetic induction component Bx on the interface induced by a uniform mechanical dislocation in x-direction
(bx = 10 nm) within the circle of radius R= 1m centered at (x, y, z)/R= (0, 0, 0.5). a z = 0+ in Material 1; b z = 0− in Material 2
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σxx (Fig. 6), the eld concentrations on both upper and lower
interfaces are located anti-symmetrically at (x, y)/R= (
±1.3, 0) with a dimensionless maximum magnitude of 0.75
(on the side z = 0+) and 1 (on the side z = 0−). From
Figs. 7 and 8, we observe that the eld distribution of Dx

and Bx are complicated with more concentrations, although
they are all symmetric with respect to both the x- and y-
axes. The dimensionless maximum values of Dx are 1 and
0.488, respectively, on the upper and lower interfaces (near
(x, y)/R= (±1.3, 0)). The dimensionless maximum values of
Bx are 0.85 and 1, respectively, on the upper and lower inter-
face (also near (x, y)/R= (±1.3, 0)).

6 Conclusions

In this paper, we derived the analytical solutions in a 3D
anisotropic MEE bimaterial space subject to uniform ex-
tended dislocations and tractions within a horizontal circu-
lar area. In the numerical examples, the effect of different
loading locations on the response at the interface was ana-
lyzed. It is interesting to observe that the physical quantities
on the interface do not decrease monotonically as the load-
ing area moves away from the interface when the magnetic
traction or electric dislocation is applied. The distributions
of different in-plane physical quantities on the upper inter-
face z = 0+ and the lower interface z = 0− under different
horizontal extended loadings were compared and the differ-
ences were discussed. This work could not only serve as a
benchmark for future numerical studies in related research
elds, but also be employed as the special Green’s functions

in the boundary integral equations based on the tractions or
dislocations kernel functions.
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Appendix

The material coefficients of pseudo BaTiO3 for upper half space
(Material 1) (z > 0).

(1) Elastic constants

ccc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

166 77 78 0 0 0

77 166 124 0 0 0

78 124 162 0 0 0

0 0 0 43 0 0

0 0 0 0 43 0

0 0 0 0 0 44.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

GPa

(2) Piezoelectric constants

eee =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 11.6 0

0 0 0 11.6 0 0

−4.4 −4.4 9.3 18.6 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C/m2

(3) Dielectric permeability coefficients

εεε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11.2 0 0

0 11.2 0

0 0 12.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
nC/Vm

(4) Piezomagnetic constants

qqq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 550 0

0 0 0 550 0 0

580.3 580.3 699.7 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N/Am

(5) Magnetoelectric coefficients αi j = 0 (i, j= 1, 3) (in Ns/VC)

(6) Magnetic permeability coefficients

μμμ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0

0 5 0

0 0 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
μNs2/C2

The material coefficients of the MEE BaTiO3-CoFe2O4 com-
posite (50% BaTiO3 and 50% CoFe2O4) for lower half space (Ma-
terial 2) (z < 0) .

(1) Elastic constants

ccc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

225 125 124 0 0 0

125 225 124 0 0 0

124 124 216 0 0 0

0 0 0 44 0 0

0 0 0 0 44 0

0 0 0 0 0 50

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

GPa

(2) Piezoelectric constants

eee =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 5.8 0

0 0 0 5.8 0 0

−2.2 −2.2 9.3 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C/m2

(3) Dielectric permeability coefficients

εεε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.64 0 0

0 5.64 0

0 0 6.35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
nC/Vm

(4) Piezomagnetic constants

qqq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 275 0

0 0 0 275 0 0

290.2 290.2 350 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N/Am
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(5) Magnetoelectric coefficients αi j = 0 (for i, j= 1, 3) (in
Ns/VC).

(6) Magnetic permeability coefficients

μμμ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

297 0 0

0 297 0

0 0 83.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
μNs2/C2
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