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a b s t r a c t

The von Karman plate theory of large deformations is applied to express the strains, which are then

used in the constitutive equations for magnetoelectroelastic solids. The in-plane electric and magnetic

fields can be ignored for plates. A quadratic variation of electric and magnetic potentials along the

thickness direction of the plate is assumed. The number of unknown terms in the quadratic

approximation is reduced, satisfying the Maxwell equations. Bending moments and shear forces are

considered by the Reissner–Mindlin theory, and the original three-dimensional (3D) thick plate

problem is reduced to a two-dimensional (2D) one. A meshless local Petrov–Galerkin (MLPG) method

is applied to solve the governing equations derived based on the Reissner–Mindlin theory. Nodal points

are randomly distributed over the mean surface of the considered plate. Each node is the centre of a

circle surrounding it. The weak form on small subdomains with a Heaviside step function as the test

function is applied to derive the local integral equations. After performing the spatial MLS approxima-

tion, a system of algebraic equations for certain nodal unknowns is obtained. Both stationary and time-

harmonic loads are then analyzed numerically.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetoelectroelastic (MEE) materials have found much
application as sensors and actuators for the purpose of monitor-
ing and controlling the response of structures. The MEE layers are
frequently embedded into laminated composite plates to control
the shape of plates. The magneto-electric forces give raise to
strains that could reduce the effects of the applied mechanical
load. Hence, advanced structures can be designed using less
material and hence less weight. Pan [1] and Pan and Heyliger
[2] presented analytical solutions for the analysis of simply
supported MEE laminated rectangular plates, under static defor-
mation and free vibration. Recently, Wu et al. [3] extended the
Pagano solution for the three-dimensional (3D) plate problem to
the analysis of a simply supported, functionally graded rectan-
gular plate under MEE loads. Liu and Chang [4] studied the
vibration of a MEE rectangular plate. To the authors’ knowledge,
little work has been carried out on the geometrically nonlinear
problems occurred at large plate deformations. So far, only one
paper [5] is dealing with the nonlinear behaviour of a MEE plate,
where a simplified analytical solution was given for a thin simply
supported MEE plate under a large deformation. The Kirchhoff
plate bending theory with vanishing shear stresses was utilized.
ll rights reserved.

.

The conventional von Karman-type nonlinear field equations
for the finite deflection of plates are based on the Kirchhoff-Love
assumption and follow inevitable coupling between in-plane and
bending deformations, which makes analytical solutions difficult.
Therefore, a simplified governing field equation known as the
decoupled Berger equation [6] is also used for geometrically
nonlinear deformation of plates. The Berger equation could be a
fairly good approximation to the corresponding rigorous solution,
provided that the in-plane displacements are constrained at the
boundary [7]. Among the early proposals for analysing the final
deflection of thin plates is the work by Kamiya and Sawaki [8].
The first finite element analysis of geometrically nonlinear plate
behaviour using a Mindlin formulation was given by Pica et al. [9].
The boundary element method (BEM) was applied by Lei et al. [10]
in the geometrically nonlinear analysis of laterally loaded isotropic
plates, taking into account the effect of transverse shear deforma-
tion. A nonlinear analysis of Reissner plates by BEM was given by
Qin [11]. Wen et al. [12] analyzed the post-buckling of Reissner
plates. Recently, a strong formulation with multiquadric radial basis
function was applied to the isotropic Reissner–Mindlin plates with
geometrical nonlinearity [13].

The solution of the boundary or initial boundary value pro-
blems for MEE plates with large deformations requires advanced
numerical methods due to the high mathematical complexity.
Besides the well established finite element method (FEM) and the
BEM [14,15], the meshless methods provide an efficient and
popular alternative to these traditional computational methods.
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Fig. 1. Sign convention of bending moments and forces for a plate.
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Focusing only on nodes or points instead of elements used in the
conventional FEM, meshless approaches have certain advantages.
The elimination of shear locking in thin walled structures by FEM
is difficult and the developed techniques are less accurate. The
moving least-square (MLS) approximation ensures C1 continuity
which satisfies the Kirchhoff hypotheses. The continuity of the
MLS approximation is given by the minimum between the
continuity of the basis functions and that of the weight function.
So continuity can be tuned to a desired degree. Previous results
showed excellent convergence for linear problems [16–18], how-
ever, up to now the formulation has not been applied to large
deflection of MEE plate problems. Recently, new class of hybrid/
mixed finite elements, denoted as HMFEM-C, was developed for
modelling two-dimensional (2D) problems in MEE materials [19].
These elements were based on assuming first the independent
strain, electric and magnetic fields, and then collocating them
with the strain, electric and magnetic fields derived from the
primal variables (mechanical displacement, electric and magnetic
potentials) at certain selected points inside each element. The
newly developed elements showed significantly higher accuracy
than the primal elements for the electric, magnetic as well as the
mechanical variables, comparable to the accuracy from the
meshless approach [19]. Up to date, however, these hybrid finite
elements have not been applied to plate bending problems.

One of the most rapidly developed meshfree methods is the
meshless local Petrov–Galerkin (MLPG) method [20]. The MLPG
method has attracted much attention in the past decade and it
has been successfully applied also to plate problems [21–24]. The
modelling of piezoelectric plates has been done by the MLPG too
[25,26].

This paper proposes a nonlinear (or large-deformation) model
for the MEE thick plate under a static and time-harmonic
mechanical load and a stationary electromagnetic load. It is the
first effort to develop the meshless method based on the local
Petrov–Galerkin weak-form to solve dynamic problems for thick
MEE plates under a large deformation described by the Reissner–
Mindlin theory. The electric and magnetic field components are
assumed to be zero in the in-plane directions of the plate. A quadratic
power-expansion of the electric and magnetic potentials in the
thickness direction of the plate is considered. The bending moment,
normal and shear force expressions are obtained by integration
through the plate for the considered constitutive equations. The
Reissner–Mindlin governing equations of motion are subsequently
solved for a time-harmonic plate bending problem. The Reissner–
Mindlin theory reduces the original 3D thick plate problem to a 2D
problem. In our meshless method, nodal points are randomly
distributed over the neutral plane of the considered plate. Each node
is the centre of a circle surrounding this node. The weak form on the
small subdomains with a Heaviside step function as the test function
is applied to derive local integral equations. Applying the Gauss
divergence theorem to the weak form, the local boundary-domain
integral equations are derived. The nonlinear terms occurred in the
normal and shear forces are considered iteratively in the full-load
algorithm. After performing the spatial MLS approximation, a system
of algebraic equations for certain nodal unknowns is obtained.
Numerical examples are presented and discussed to show the
accuracy and the efficiency of the present method.
2. Local integral equations for magnetoelectroelastic plates

We consider a plate of total thickness h with homogeneous
MEE material properties with its mean surface occupying the
domain O in the plane (x1,x2). The axis x3�z is perpendicular to
the mid-plane (Fig. 1) with the origin at the bottom of the plate.
The Cartesian coordinate system is introduced such that the
bottom and top surfaces of plate is placed in the plane z¼0 and
z¼h, respectively. Using the von Karman theory of large deflec-
tion of plates described by the Reissner–Mindlin theory, the
Lagrangian strain displacement relations are given by Pica et al.
[9] and Azizian and Dawe [27]:

e11ðx,x3,tÞ ¼ u0,1þðz�z0Þw1,1ðx,tÞþ 1

2
ðw3,1ðx,tÞÞ2,

e22ðx,x3,tÞ ¼ v0,2þðz�z0Þw2,2ðx,tÞþ 1

2
ðw3,2ðx,tÞÞ2,

e12ðx,x3,tÞ ¼ 1

2
ðu0,2þv0,1Þþ

1

2
ðz�z0Þ w1,2ðx,tÞþw2,1ðx,tÞ

� �
þ

1

2
w3,1ðx,tÞw3,2ðx,tÞ,

e13ðx,tÞ ¼ ½w1ðx,tÞþw3,1ðx,tÞ�=2,

e23ðx,tÞ ¼ ½w2ðx,tÞþw3,2ðx,tÞ�=2: ð1Þ

where z0 indicates the position of the neutral plane. For a
homogeneous plate it is located in the geometrical mid-plane.
In-plane displacements in x1- and x2-directions are denoted by u0

and v0. Rotations around x2- and x1-axes are denoted by w1 and
w2, and w3 is the out-of-plane deflection.

The constitutive equations for the stress tensor, electrical
displacement and magnetic induction of the MEE materials are
given by Nan [28]:

sijðx,x3,tÞ ¼ cijkleklðx,x3,tÞ�ekijEkðx,x3,tÞ�dkijHkðx,x3,tÞ, ð2Þ

Djðx,x3,tÞ ¼ ejkleklðx,x3,tÞþhjkEkðx,x3,tÞþajkHkðx,x3,tÞ, ð3Þ

Bjðx,x3,tÞ ¼ djkleklðx,x3,tÞþakjEkðx,x3,tÞþgjkHkðx,x3,tÞ, ð4Þ

where {eij,Ei,Hi} is the set of the secondary field quantities (strain,
intensity of electric field, intensity of magnetic field) which are
expressed in terms of the gradients of the primary fields, i.e., the
elastic displacement vector, electric potential, and magnetic
potential {ui,f,c}. Finally, the elastic stress tensor, electric dis-
placement, and magnetic induction vectors {sij,Di,Bi} form the set
of the fields conjugated to the secondary fields {eij,Ei,Hi}. The
constitutive equations correlate these two sets of fields in con-
tinuum media including the multi-field interactions.

The plate thickness is assumed to be small as compared to its
in-plane dimensions. The normal stress s33 is then vanishing in
comparison with other normal stresses. Assuming also that the
MEE materials process certain material symmetry, one can
formulate the plane-deformation problems [29]. For instance,
for the poling direction along the positive x3-axis the constitutive



J. Sladek et al. / Engineering Analysis with Boundary Elements 37 (2013) 673–682 675
Eqs. (2)–(4) are reduced to the following matrix forms:

s11

s22

s12

s13

s23

2
6666664

3
7777775
¼

c11 c12 0 0 0

c12 c22 0 0 0

0 0 c66 0 0

0 0 0 c55 0

0 0 0 0 c44

2
6666664

3
7777775

e11

e22

2e12

2e13

2e23

2
6666664

3
7777775
�

0 0 e31

0 0 e32

0 0 0

e15 0 0

0 e15 0

2
6666664

3
7777775

�

E1

E2

E3

2
64

3
75�

0 0 d31

0 0 d32

0 0 0

d15 0 0

0 d15 0

2
6666664

3
7777775

H1

H2

H3

2
64

3
75

� C

e11

e22

2e12

2e13

2e23

2
6666664

3
7777775
�L

E1

E2

E3

2
64

3
75�K

H1

H2

H3

2
64

3
75, ð5Þ

D1

D2

D3

2
64

3
75¼

0 0 0 e15 0

0 0 0 0 e15

e31 e32 0 0 0

2
64

3
75

e11

e22

2e12

2e13

2e23

2
6666664

3
7777775
þ

h11 0 0

0 h22 0

0 0 h33

2
64

3
75

�

E1

E2

E3

2
64

3
75þ

a11 0 0

0 a22 0

0 0 a33

2
64

3
75

H1

H2

H3

2
64

3
75

�G

e11

e22

2e12

2e13

2e23

2
6666664

3
7777775
þH

E1

E2

E3

2
64

3
75þA

H1

H2

H3

2
64

3
75, ð6Þ

B1

B2

B3

2
64

3
75¼

0 0 0 d15 0

0 0 0 0 d15

d31 d32 0 0 0

2
64

3
75

e11

e22

2e12

2e13

2e23

2
6666664

3
7777775
þ

a11 0 0

0 a22 0

0 0 a33

2
64

3
75

�

E1

E2

E3

2
64

3
75þ

g11 0 0

0 g22 0

0 0 g33

2
64

3
75

H1

H2

H3

2
64

3
75

�R

e11

e22

2e12

2e13

2e23

2
6666664

3
7777775
þA

E1

E2

E3

2
64

3
75þM

H1

H2

H3

2
64

3
75: ð7Þ

The vector Maxwell’s equations in quasi-static approximation
are satisfied if the electric and magnetic fields are expressed as
gradients of the scalar electric and magnetic potentials f(x,t) and
c(x,t), respectively [29]:

Ej ¼�f,j, ð8Þ

Hj ¼�c,j: ð9Þ

Since the plate is relatively thin, the in-plane electric and
magnetic fields can be ignored, i.e., E1¼E2¼0 and H1¼H2¼0
according Liu and Chang [4]. It is reasonable to further assume
that ð D1,1

�� ��, D2,2

�� ��Þ{ D3,3

�� �� [30] and B1,1

�� ��,9B2,29
� �

5 B3,3

�� ��. Then, the
Maxwell equations are reduced to

D3,3 ¼ 0, ð10Þ
B3,3 ¼ 0: ð11Þ

The electric and magnetic potentials in the plate are assumed
to be varying quadratically in z direction:

fðx,z,tÞ ¼f0ðx,tÞþf1ðx,tÞ z�z0

h
þf2ðx,tÞ z�z0

h

� �2

, ð12Þ

cðx,z,tÞ ¼c0ðx,tÞþc1ðx,tÞ z�z0

h
þc2ðx,tÞ z�z0

h

� �2

: ð13Þ

Substituting potentials (12) and (13) into the electrical dis-
placement and magnetic induction expressions (6) and (7),
one gets

D3ðx,z,tÞ ¼ e31 u0,1þw1,1ðx,tÞðz�z0Þþ
1

2
ðw3,1Þ

2

	 


þe32 v0,2þw2,2ðx,tÞðz�z0Þþ
1

2
ðw3,2Þ

2

	 


�h33
f1ðx,tÞ

h
�2h33f2ðx,tÞ z�z0

h2
�a33

c1ðx,tÞ
h

�2a33c2ðx,tÞ z�z0

h2
, ð14Þ

B3ðx,z,tÞ ¼ d31 u0,1þw1,1ðx,tÞðz�z0Þþ
1

2
ðw3,1Þ

2

	 


þd32 v0,2þw2,2ðx,tÞðz�z0Þþ
1

2
ðw3,2Þ

2

	 


�a33
f1ðx,tÞ

h
�2a33f2ðx,tÞ z�z0

h2
�g33

c1ðx,tÞ
h

�2g33c2ðx,tÞ z�z0

h2
: ð15Þ

The remaining nonzero electric and magnetic field compo-
nents are obtained by substituting the potentials (12) and (13)
into Eqs. (8) and (9):

E3ðx,z,tÞ ¼�f1ðx,tÞ
h
�2f2ðx,tÞ z�z0

h2
,

H3ðx,z,tÞ ¼�c1ðx,tÞ
h
�2c2ðx,tÞ z�z0

h2
: ð16Þ

One can define the integral quantities such as the bending
moments Mab, normal forces Tab and the shear forces Qa [10] as

Mab ¼

Z h

0
sabðz�z0Þdz,

Tab ¼

Z h

0
sab dz,

Qa ¼ k
Z h

0
sa3dzþ

Z h

0
sabw3,b dz, ð17Þ

where the Greek indices take values 1,2 and k¼5/6 according to
the Reissner plate theory.

Substituting Eqs. (5) and (16) into the moment and force
resultants (17) allows the expression of the bending moments
Mab and shear forces Qa in terms of the rotations, deflection,
electric and magnetic potential coefficients:

M11ðx,tÞ ¼
Z h

0
c11 u0,1þðz�z0Þw1,1þ

1

2
w3,1w3,1

	 
�

þc12 v0,2þðz�z0Þw2,2þ
1

2
w3,2w3,2

	 

�e31E3�d31H3

�
ðz�z0Þdz

¼D11w1,1þD12w2,2þ
h

6
e31f2þ

h

6
d31c2,

M22ðx,tÞ ¼
Z h

0
c12 u0,1þðz�z0Þw1,1þ

1

2
w3,1w3,1

	 
�

þc22 v0,2þðz�z0Þw2,2þ
1

2
w3,2w3,2
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�e32E3�d32H3

�
ðz�z0Þdz

¼D12w1,1þD22w2,2þ
h

6
e32f2þ

h

6
d32c2,

M12ðx,tÞ ¼
Z h

0
fc66½u0,2þv0,1þðz�z0Þðw1,2þw2,1Þ

þw3,1w3,2�gðz�z0Þdz

¼D11ðw1,2þw2,1Þ, ð18Þ

T11ðx,tÞ ¼
Z h

0
c11 u0,1þðz�z0Þw1,1þ

1

2
w3,1w3,1

	 
�

þc12 v0,2þðz�z0Þw2,2þ
1

2
w3,2w3,2

	 

�e31E3�d31H3


dz

¼ c11hu0,1þc12hv0,2þc11h
1

2
w3,1w3,1þc12h

1

2
w3,2w3,2

þe31f1þd31c1,

T22ðx,tÞ ¼
Z h

0
c12 u0,1þðz�z0Þw1,1þ

1

2
w3,1w3,1

	 
�

þc22 v0,2þðz�z0Þw2,2þ
1

2
w3,2w3,2

	 

�e32E3�d32H3


dz

¼ c12hu0,1þc22hv0,2þc12h
1

2
w3,1w3,1þc22h

1

2
w3,2w3,2

þe32f1þd32c1,

T12ðx,tÞ ¼
Z h

0
fc66½u0,2þv0,1þðz�z0Þw1,1þw3,1w3,2�gdz

¼ c66hðu0,2þv0,1Þþc66hw3,1w3,2, ð19Þ

Q1ðx,tÞ ¼ k
Z h

0
c55ðw1þw3,1ÞdzþðT11w3,1þT12w3,2Þ

¼ C1kðw1þw3,1ÞþðT11w3,1þT12w3,2Þ,

Q2ðx,tÞ ¼ k
Z h

0
c44ðw2þw3,2ÞdzþðT21w3,1þT22w3,2Þ

¼ C2kðw2þw3,2ÞþðT21w3,1þT22w3,2Þ, ð20Þ

where

D11 ¼ c11
h3

12
, D12 ¼ c12

h3

12
,

D22 ¼ c22
h3

12
, D11 ¼ c66

h3

12
,

C1 ¼ c55h, C2 ¼ c44h: ð21Þ

Some terms in the normal and shear forces expressions (19)
and (20) are nonlinear since they are given as the products of the
deflection gradients and/or normal stresses with deflection gra-
dients. The governing equations have the following form [25,31]:

Mab,bðx,tÞ�Ql
aðx,tÞ ¼ IM €waðx,tÞ, ð22Þ

Ql
a,aðx,tÞþðTabw3,bÞ,aþqðx,tÞ ¼ IQ €w3ðx,tÞ, ð23Þ

Tab,bðx,tÞþqaðx,tÞ ¼ IQ €ua0ðx,tÞ, xAO, ð24Þ

where the linear part of the shear force is given as

Ql
a ¼ Cakðwaþw3,aÞ

and

IM ¼
rh3

12
, IQ ¼ rh,

The dots over a quantity indicate differentiations with respect
to time t. A transversal load is denoted by q(x,t), and qa(x,t)
represents the in-plane loads.

Time-harmonic load is a special case of the general dynamic
analysis. Time variation of physical fields is given by the fre-
quency of excitation o. Then the governing equations for the
amplitudes are given by

Mab,bðx,oÞ�Ql
aðx,oÞ ¼�IMo2waðx,oÞ, ð25Þ

Ql
a,aðx,oÞþðTabðx,oÞw3,bðx,oÞÞ,aþqðx,oÞ ¼ �IQo2w3ðx,oÞ, ð26Þ

Tab,bðx,oÞþqaðx,oÞ ¼�IQo2ua0ðx,oÞ, xAO, ð27Þ

and the additional set of two governing equations is given by
Maxwell equations (10) and (11):

e31w1,1ðx,oÞþe32w2,2ðx,oÞ�2h33
f2ðx,oÞ

h2
�2a33

c2ðx,oÞ
h2

¼ 0,

d31w1,1ðx,oÞþd32w2,2ðx,oÞ�2a33
f2ðx,oÞ

h2
�2g33

c2ðx,oÞ
h2

¼ 0:

ð28Þ

In the rest of the paper we are interesting in static or harmonic
load of the MEE plates. The governing Eqs. (25)–(28) represent seven
equations for 11 unknowns (u0,v0,w1,w2,w3,f0,c0,f1,c1,f2,c2). If a
problem is symmetric with respect to the neutral plane, the
unknowns f1 and c1 have to be zero and the final set of unknowns
is reduced to nine. Now, we need two or four additional equations
for a general or symmetric case, respectively. There are two
possibilities to prescribe electromagnetic conditions:
(a)
 The electric displacement D3 and magnetic induction B3 are
vanishing on both top and bottom surfaces, which gives

e31 u0,1þw1,1ðx,oÞðh�z0Þþ
1

2
ðw3,1Þ

2

	 


þe32 v0,2þw2,2ðx,oÞðh�z0Þþ
1

2
ðw3,2Þ

2

	 


�h33
f1ðx,oÞ

h
�2h33f2ðx,oÞh�z0

h2
�a33

c1ðx,oÞ
h

�2a33c2ðx,oÞh�z0

h2
¼ 0, ð29Þ

d31 u0,1þw1,1ðx,oÞðh�z0Þ
� �

þd32 v0,2þw2,2ðx,oÞðh�z0Þ
� �

�a33
f1ðx,oÞ

h
�2a33f2ðx,oÞh�z0

h2
�g33

c1ðx,oÞ
h

�2g33c2ðx,oÞh�z0

h2
¼ 0, ð30Þ

with f1 and c1 being vanishing in the symmetric case.
For the non-symmetric case the electric and magnetic
potentials can be vanishing on the bottom of the MEE plate.
Then, two additional equations are given as

f0ðx,oÞ�f1ðx,oÞ z0

h
þf2ðx,oÞ z0

h

� �2

¼ 0,

c0ðx,oÞ�c1ðx,oÞ z0

h
þc2ðx,oÞ z0

h

� �2

¼ 0: ð31Þ

In this case the MEE plate is under a mechanical load, and
the electromagnetic potentials are induced in the MEE plate.
Such plates are used as sensors.
(b)
 Finite values of potentials, ~f and ~c, are prescribed on both
surfaces of the plate or for the non-symmetric case on the
top surface with vanishing values on the bottom. Now, we
need again two or four additional equations. These equations
are obtained by collocating potentials on the plate surfaces:

fðx,hÞ ¼ ~f ¼f0ðxÞþf1ðxÞ
h�z0

h
þf2ðxÞ

h�z0

h

� �2

,

cðx,hÞ ¼ ~c ¼c0ðxÞþc1ðxÞ
h�z0

h
þc2ðxÞ

h�z0

h

� �2

, ð32Þ
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with f1 and c1 being vanishing in the symmetric case,
whilst additional equations on the bottom surface are
assumed for the non-symmetric case:
fðx,0Þ ¼ ~f ¼f0ðxÞ�f1ðxÞ
z0

h
þf2ðxÞ

z0

h

� �2

,

cðx,0Þ ¼ ~c ¼c0ðxÞ�c1ðxÞ
z0

h
þc2ðxÞ

z0

h

� �2

: ð33Þ

It should be noted that only stationary electromagnetic con-
ditions can be prescribed, since stationary Maxwell equations are
considered here. The plate under prescribed electromagnetic
potentials is deformed and it is used as an actuator. The electric
displacement and magnetic induction can be prescribed on both
plate surfaces too. Then, in Eqs. (29) and (30) on the right-hand
side, prescribed quantities ~D3 and ~B3 should be stated.

Instead of writing the global weak-form for the above govern-
ing equations, the MLPG methods construct the weak-form over
local subdomains such as Os, which is a small region taken for
each node inside the global domain [20]. The local subdomains
could be of any geometrical shape and size. In the current paper,
the local subdomains are taken to be of the circular shape. The
local weak-form of the governing Eqs. (25)–(27) for xiAOi

s can be
written asZ
Oi

s

½Mab,bðx,oÞ�Ql
aðx,oÞþ IMo2waðx,oÞ�wn

agðxÞdO¼ 0, ð34Þ

Z
Oi

s

½Ql
a,aðx,oÞþðTabðx,oÞw3,bðx,oÞÞ,aþqðx,oÞþ IQo2w3ðx,oÞ�wnðxÞdO¼ 0,

ð35Þ

Z
Oi

s

½Tab,bðx,oÞþqaðx,tÞþ IQo2ua0ðx,oÞ�wn

agðxÞdO¼ 0, ð36Þ

where wn

abðxÞ and wn(x) are the weight or test functions.
Applying the Gauss divergence theorem to Eqs. (34)–(36), one

obtainsZ
@Oi

s

Maðx,oÞwn

agðxÞdG�
Z
Oi

s

Mabðx,oÞwn

ag,bðxÞdO�
Z
Oi

s

Q l
aðx,oÞwn

agðxÞdO

þ

Z
Oi

s

IMo2waðx,oÞwn

agðxÞdO¼ 0, ð37Þ

Z
@Oi

s

Q l
aðx,oÞnaðxÞwnðxÞdG�

Z
Oi

s

Q l
aðx,oÞwn

,aðxÞdOþ
Z
Oi

s

IQo2w3ðx,oÞwnðxÞdO

þ

Z
@Oi

s

Tbðx,oÞw3,bðx,oÞwnðxÞdG�
Z
Oi

s

Tabðx,oÞw3,bðx,oÞwn

,aðxÞdO

þ

Z
Oi

s

qðx,oÞwnðxÞdO¼ 0, ð38Þ

Z
@Oi

s

Taðx,oÞwn

agðxÞdG�
Z
Oi

s

Tabðx,oÞwn

ag,bðxÞdOþ
Z
Oi

s

qaðx,oÞwn

agðxÞdO

þ

Z
Oi

s

IQo2ua0ðx,oÞwn

agðxÞdO¼ 0, ð39Þ

where @Oi
s is the boundary of the local subdomain and

Maðx,oÞ ¼Mabðx,oÞnbðxÞ

and

Taðx,oÞ ¼ Tabðx,oÞnbðxÞ

are the normal bending moment and the traction vector, respec-
tively, and na is the unit outward normal vector to the boundary
@Oi

s. The local weak-forms (37)–(39) are the starting point for
deriving local integral equations on the basis of appropriate test
functions. Unit step functions are chosen for the test functions
wn

abðxÞ and wn(x) in each subdomain:

wn

agðxÞ ¼
dag at xAðOs [ @OsÞ

0 at x=2ðOs [ @OsÞ
, wnðxÞ ¼

1 at xAðOs [ @OsÞ

0 at x=2ðOs [ @OsÞ
:

((

ð40Þ

Then, the local weak-forms (37)–(39) are transformed into the
following local integral equations (LIEs):Z
@Oi

s

Maðx,oÞdG�
Z
Oi

s

Q l
aðx,oÞdOþ

Z
Oi

s

IMo2waðx,oÞdO¼ 0, ð41Þ

Z
@Oi

s

Q l
aðx,oÞnaðxÞdGþ

Z
Oi

s

IQo2w3ðx,oÞdOþ
Z
@Oi

s

Taðx,oÞw3,aðx,oÞdG

þ

Z
Oi

s

qðx,oÞdO¼ 0, ð42Þ

Z
@Oi

s

Taðx,oÞdGþ
Z
Oi

s

qaðx,oÞdOþ
Z
Oi

s

IQo2ua0ðx,oÞdO¼ 0: ð43Þ

In the above local integral equations, the trial functions for
rotations wa(x,o), transversal displacements w3(x,o) and electro-
magnetic potential parameters, are chosen as the moving least-
squares (MLS) approximations over a number of nodes randomly
spreading within the domain of influence.
3. Numerical solution

In general, a meshless method uses a local interpolation to
represent the trial function with the values (or the fictitious
values) of the unknown variable at some randomly located nodes.
The moving least-squares (MLS) approximation [32,33] used in
the present analysis may be considered as one of such schemes.
According to the MLS method [20], the approximation of the field
variable uA{u0,v0,w1,w2,w3,f0,c0,f1,c1,f2,c2} can be given as

uhðxÞ ¼
Xm

i ¼ 1

piðxÞaiðxÞ ¼ pT ðxÞaðxÞ, ð44Þ

where pT(x)¼{p1(x),p2(x),ypm(x)} is a vector of complete basis
functions of order m and a(x)¼{a1(x),a2(x),yam(x)} is a vector of
unknown parameters that depends on x. For example, in 2D
problems

pT ðxÞ ¼ f1,x1,x2g for m¼ 3

and

pT ðxÞ ¼ 1,x1,x2,x2
1,x1x2,x2

2

� �
for m¼ 6

are linear and quadratic basis functions, respectively.
The approximation functions for the generalized mechanical

displacements, the electric and magnetic potentials can be written
as [20]

uhðx,oÞ ¼NT
ðxÞUû¼

Xn

a ¼ 1

Na
ðxÞûa

ðoÞ, ð45Þ

where the nodal values û
a
ðoÞ are fictitious parameters for the

approximated field variable and Na(x) is the shape function
associated with node a. The number of nodes n used in the
approximation is determined by the weight function wa(x). A 4th
order spline-type weight function is applied in the present work.

The directional derivatives of the approximated field u(x,o)
are expressed in terms of the same nodal values as

u,aðx,oÞ ¼
Xn

a ¼ 1

û
a
ðoÞNa

,aðxÞ: ð46Þ

The normal forces expressions (19) include the nonlinear
terms proportional to w3,aw3,b. To linearize the problem the
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nonlinear terms will be considered in the local integral equations
(LIE) iteratively. It means that nonlinear terms computed in the
(k�1)th iteration are considered in the LIE for kth iteration.
According to (46), one obtains the approximation for the bending
moments (18) as well as for Ma(x,t)¼Mab(x,t)nb(x) or
M(x,t)¼[M1(x,t),M2(x,t)]T in the kth iteration:

MðkÞðx,oÞ ¼N1

Xn

a ¼ 1

Ba
1ðxÞw

naðkÞðoÞþ
Xn

a ¼ 1

Fa
DðxÞf̂2

aðkÞ
ðoÞþ

Xn

a ¼ 1

Fa
BðxÞĉ2

aðkÞ
ðoÞ,

ð47Þ

where the vector wna(k)(o) is defined as a column vector

wnaðkÞðoÞ ¼ ŵ
aðkÞ
1 ðoÞ,ŵ

aðkÞ
2 ðoÞ

h iT
, the matrices N1(x) are related to

the normal vector n(x) on qOs by

N1ðxÞ ¼
n1 0 n2

0 n2 n1

" #
:

Other matrices and vectors in Eq. (47) are represented in terms
of the shape functions and their gradients as

Ba
1ðxÞ ¼

D11Na
,1

D12Na
,1

D11Na
,2

D12Na
,2

D22Na
,2

D11Na
,1

2
664

3
775,

Fa
DðxÞ ¼

h

6

e31n1Na

e32n2Na

" #
, Fa

BðxÞ ¼
h

6

d31n1Na

d32n2Na

" #
: ð48Þ

Similarly, one can obtain the approximation for the shear forces

Q lðkÞ
ðx,oÞ ¼ CðxÞk

Xn

a ¼ 1

½Na
ðxÞwnaðkÞðoÞþLa

ðxÞŵaðkÞ
3 ðoÞ�, ð49Þ

where

Q lðkÞ
ðx,oÞ ¼ QlðkÞ

1 ðx,oÞ,QlðkÞ
2 ðx,oÞ

h iT

and

CðxÞ ¼
C1ðxÞ 0

0 C2ðxÞ

" #
, La

ðxÞ ¼
Na

,1

Na
,2

" #
:

The traction vector TðkÞðx,oÞ ¼ TðkÞ1 ðx,oÞ,T ðkÞ2 ðx,oÞ
h iT

is approxi-
mated by

TðkÞðx,oÞ ¼ TlðkÞ
ðx,oÞþRðk�1Þ

ðx,oÞ

with

TlðkÞ
ðx,oÞ ¼N1

Xn

a ¼ 1

Pa
ðxÞu0

naðkÞðoÞþ
Xn

a ¼ 1

Sa
ðxÞf̂

aðkÞ

1 ðoÞþ
Xn

a ¼ 1

Ja
ðxÞĉ

aðkÞ

1 ðoÞ,

ð50Þ

where

Pa
ðxÞ ¼ h

c11Na
,1 c12Na

,2

c12Na
,1 c22Na

,2

c66Na
,2 c66Na

,1

2
664

3
775, Sa

ðxÞ ¼
e31n1Na

e32n2Na

" #
, Ja
ðxÞ ¼

d31n1Na

d32n2Na

" #
,

and

Rðk�1Þ
ðx,oÞ

¼ h
c11n1wðk�1Þ

3,1 wðk�1Þ
3,1 =2þc12n1wðk�1Þ

3,2 wðk�1Þ
3,2 =2þc66n2wðk�1Þ

3,1 wðk�1Þ
3,2

c66n1wðk�1Þ
3,1 wðk�1Þ

3,2 þc12n2wðk�1Þ
3,1 wðk�1Þ

3,1 =2þc22n2wðk�1Þ
3,2 wðk�1Þ

3,2

2
4

3
5:

Finally,

ðTaðx,oÞw3,aðx,oÞÞðkÞ ¼ fTlðk�1Þ
ðx,oÞþRðk�1Þ

ðx,oÞg
T

�
Xn

a ¼ 1

La
ðxÞŵaðk�1Þ

3 ðoÞ:
Then, insertion of the MLS-discretized moment, traction and
shear force fields (47), (49) and (50) into the local integral
Eqs. (41)–(43) yields the discretized local integral equations:

Xn

a ¼ 1

Z
@ ~O

i

s

N1ðxÞB
a
1ðxÞdG�k

Z
Oi

s

CðxÞNa
ðxÞdOþEIMo2

Z
Oi

s

Na
ðxÞdO

" #
wnaðkÞðoÞ

�
Xn

a ¼ 1

ŵ
aðkÞ
3 ðoÞ k

Z
Oi

s

CðxÞLa
ðxÞdO

 !
þ
Xn

a ¼ 1

f̂
aðkÞ

2 ðoÞ
Z
@ ~O

i

s

Fa
DðxÞdG

þ
Xn

a ¼ 1

ĉ
aðkÞ

2 ðoÞ
Z
@ ~O

i

s

Fa
BðxÞdG¼�

Z
~G

i

sM

~Mðx,oÞdG, ð51Þ

Xn

a ¼ 1

k
Z
@Oi

s

CnðxÞN
a
ðxÞdG

 !
wnaðkÞðoÞþ

Xn

a ¼ 1

ŵ
aðkÞ
3 ðoÞ

k
Z
@Oi

s

CnðxÞL
a
ðxÞdGþ IQo2

Z
Oi

s

Na
ðxÞdO

 !

¼�

Z
Oi

s

qðx,oÞdO�
Xn

a ¼ 1

ŵ
aðk�1Þ
3 ðoÞ

Z
@Oi

s

fTlðk�1Þ
ðx,oÞ

þRðk�1Þ
ðx,oÞgT La

ðxÞdG, ð52Þ

Xn

a ¼ 1

Z
@ ~O

i

s

N1ðxÞP
a
ðxÞdGþEIQo2

Z
Oi

s

Na
ðxÞdO

" #
unaðkÞ

0 ðoÞ

þ
Xn

a ¼ 1

f̂
aðkÞ

1 ðoÞ
Z
@ ~O

i

s

Sa
ðxÞdGþ

Xn

a ¼ 1

ĉ
aðkÞ

1 ðoÞ
Z
@ ~O

i

s

Ja
ðxÞdG

¼�

Z
@ ~O

i

s

Rðk�1Þ
ðx,oÞdG�

Z
~G

i

sT

~Tðx,oÞdG�
Z
Oi

s

qðx,oÞdO, ð53Þ

in which

E¼
1 0

0 1

	 

,

~Mðx,tÞ represents the prescribed bending moments on Gi
sM ,

~Tðx,oÞ is the prescribed traction vector on Gi
sT , and

CnðxÞ ¼ ðn1,n2Þ
C1 0

0 C2

 !
¼ ðC1n1,C2n2Þ,

Eqs. (51)–(53) are considered on the subdomains adjacent to
the interior nodes xi as well as for the source point xi located on
the global boundary G. We point out that

@ ~O
i

s ¼ @O
i
s and ~G

i

sM ¼ f|g,
~G

i

sT ¼ f|g; if xiAO

whilst for the boundary point xiAG we define

@ ~O
i

s ¼ Li
s ¼ @O

i
s \O, ~G

i

sM ¼Gi
sM ¼ @O

i
s \ GM , ~G

i

sT ¼Gi
sT ¼ @O

i
s \GT

with @Oi
s ¼ Li

s [G
i
sM [ G

i
sT and GM or GT being the part of the global

boundary with prescribed bending moment or in-plane tractions,
respectively. If the MEE plate is used as a sensor, the plate is
under a mechanical load. Then, the system of the LIE (51)–(53)
has to be supplemented by Eqs. (28)–(31). In the kth iteration step
the linearized boundary value problem is resolved. Nodal gradi-
ents of deflections are computed from Eq. (46), which are used for
the evaluation of R(k) applied in the next iteration step. The
iteration process is stopped if the differences between the
deflections in two consecutive steps are less than the prescribed
tolerance.

It should be noted here that there are neither Lagrange multi-
pliers nor penalty parameters introduced into the local weak-
forms (34)–(36) because the essential boundary conditions on Gi

sw

(part of the global boundary with prescribed rotations or defle-
ction) and Gi

su (part of the global boundary with prescribed
in-plane displacements) can be imposed directly, using the
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interpolation approximation (45):

Xn

a ¼ 1

Na
ðxiÞû

a
ðoÞ ¼ ~uðxi,oÞ for xiA Gi

sw or Gi
su, ð54Þ

where ~uðxi,oÞ is the prescribed value on the boundary Gi
sw or Gi

su.
For a clamped plate the rotations and deflection are vanishing on
the fixed edge, and Eq. (54) is used at all the boundary nodes in
such a case. However, for a simply supported plate only the
deflection ~w3ðxi,tÞand bending moments are prescribed, while the
rotations are unknowns. Then, the discretized LIE (51) is
employed at xiAGi

sM .
If the plate is applied as actuator we use the same Eqs. (51)–

(53) and (28) as in the previous case, where the MEE plate is
considered as sensor. It should be noted that inertial terms are
vanishing in Eqs. (51)–(53), since stationary prescribed potentials
are considered here. Eqs. (32) and (33) are applied as additional
equations to get a unique formulation of the problem. Collecting the
discretized local boundary-domain integral equations together with
the discretized boundary conditions for the generalized displace-
ments, bending moment and potentials, one obtains a complete
system of algebraic equations.
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Fig. 3. Variation of the electric potential along the x1-coordinate for the simply

supported plate under the intensity load ~q ¼ 9:42.
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Fig. 4. Variation of the electric potential along the plate thickness for the simply

supported plate under the intensity load ~q ¼ 9:42.
4. Numerical examples

In the numerical analysis, the coupled MEE plate is assumed to
be made of phases BaTiO3 and CoFe2O4 with 50% volume fraction
for each constituent. The following MEE coefficients are consid-
ered using the micromechanical theory [34,35]

c11 ¼ c22 ¼ 21:3� 1010 N m�2, c12 ¼ 11:3� 1010 N m�2,

c33 ¼ 20:7� 1010 N m�2, c66 ¼ 5:0� 1010 N m�2,

c44 ¼ c55 ¼ 4:99� 1010 N m�2, e31 ¼ e32 ¼�2:71 C m�2,

e33 ¼ 8:86 C m�2, e15 ¼ 0:15 C m�2, d31 ¼ d32 ¼ 222 N=A m,

d33 ¼ 292 N=A m, d15 ¼ 185 N=A m,

h11 ¼ 0:24� 10�9 CðV mÞ�1, h33 ¼ 6:37� 10�9 CðV mÞ�1,

g11 ¼ 2:01� 10�4 N s2=C2, g33 ¼ 0:839� 10�4 N s2=C2,

a11 ¼�5:23� 10�12 N s=V C, a33 ¼ 2750� 10�12 N s=V C,

r¼ 5550 kg=m3

˙

A square MEE plate with a side-length a¼0.254 m is analyzed
to verify the proposed computational method. The total thickness
of the plate is h¼0.012 m. On the top surface a uniform mechan-
ical load is applied. Vanishing electric and magnetic potentials are
prescribed on both the bottom and top surfaces of the MEE plate.
Lateral sides of the plate have vanishing potentials too. In our
numerical calculations, 441 nodes with a regular distribution
were used for the approximation of the rotations, deflection, in-
plane displacements, electric and magnetic potentials in the
neutral plane. The origin of the coordinate system is located at
the centre of the plate. Simply supported boundary conditions are
considered. The COMSOL computer code is used for the linear
FEM analyses with 3364 quadratic elements for one quarter of the
plate. FEM results are given only for the linear theory analysis.
The variation of the central plate deflection (x1¼x2¼0) with the
intensity load is presented in Fig. 2. The intensity load is given by
a nondimensional parameter ~q ¼ qa4=c11h4. One can observe a
good agreement between the FEM and MLPG results for a linear
plate bending of the MEE plates. Two different plate thicknesses
are considered here. The plate deflection w3 is normalized by the
plate thickness. It can be seen that the plate thickness has only a
slight influence on the normalized deflections.

Variations of the electric potential along the x1-coordinate and
along the plate thickness are presented in Figs. 3 and 4 at the
nondimensional intensity load ~q ¼ 9:42. At this load intensity one
can see clearly that nonlinear effect is apparent. Furthermore the
difference of the induced electrical potentials based on the linear
and nonlinear theory is more than 20%. Under the linear theory of
MEE plates, a good agreement of the FEM and MLPG results is also
observed. The maximum electric potential for the simply sup-
ported plate reaches at the centre of the plate. The magnetic
potential at the plate centre is proportional to the electric
potential with c/f¼0.61 � 10�2 and this value corresponds to
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the material parameters ratio d31h33/e31g33. Therefore, due to this
proportional relation, numerical results for magnetic potential are
not drawn here.

Next, we analyze the corresponding clamped plate case under
the same electromagnetic boundary conditions as for the simply
supported plate. The variation of the nondimensional plate
deflection at the centre with the nondimensional load intensity
is shown in Fig. 5. Compared to the simply supported case (Fig. 2),
a significantly large intensity load is required for the clamped
plate to get the same deflection value as in the simply supported
case.

Variations of the electric potential along the x1-coordinate as
well as along the plate thickness for the clamped plate are
presented in Figs. 6 and 7. The induced electrical potential is
larger in this case than for the simply supported plate, since the
mechanical load intensity is about six times larger for the
clamped plate. Both electric potential variations are given at
the nondimensional intensity load ~q ¼ 56:5. The nonlinearity of
the plate deflection has a small influence on the variation of the
electric potential. The negative potential in the vicinity of the plate
bonding is due to the convex-concave changes of the plate
deflection there.

Next, we consider the plate with vanishing electric displace-
ment and magnetic induction, D3¼0 and B3¼0 on both the top
and bottom surfaces. The plate deflection in this case is very
similar to that corresponding to prescribed vanishing potentials
on both plate surfaces.
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Fig. 6. Variation of the electric potential along the x1-coordinate for the clamped

plate under the intensity load ~q ¼ 56:5.

-15

-10

-5

0 0.2 0.4 0.6 0.8 1
x3/h

linear: FEM 

linear: MLPG 

nonlinear: MLPG 

Fig. 8. Variation of the electric intensity along the plate thickness for the clamped

plate under intensity load ~q ¼ 56:5: Other boundary conditions are D3¼0 and
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Fig. 5. Variation of the central plate deflection with the load intensity for the

clamped plate.
The variations of the electric intensity vector along the plate
thickness are presented in Figs. 8 and 9 for clamped and simply
supported plates, respectively. The electric intensity vector E3 for
the case with vanishing electric displacement on the top and
bottom plate surfaces is very similar to the electric intensity
vector where vanishing potentials are applied on both surfaces.
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It means that the difference between both electric potentials is
only a constant term corresponding to a potential on both plate
surfaces for the case with prescribed electrical displacements. The
electromagnetic boundary conditions have a small influence on
plate deflection and electric intensity vector.

In the next example we analyze the influence of the harmonic
load on the plate deflection. In previous examples, we have seen
that the nonlinearity does not change the spatial variation of
deflection and potentials; only their maximal values are influ-
enced. Therefore, it is enough to analyze only the linear case.
We have selected a small intensity load ~q ¼ 0:942 corresponding
to a linear case. The nondimensional frequency is defined as,
oa/cs, where cs¼(c66/r)1/2 is the velocity of the shear wave. The
variation of the deflection with nondimensional frequency for
simply supported MEE plate is presented in Fig. 10. Two different
plate thicknesses are considered in numerical analyses. One can
see that the plate thickness has no influence on the eigenvalue
frequency. The comparison of eigenvalue frequencies for simply
supported and clamped MEE plates is given in Fig. 11.

In the last numerical example the MEE plate is considered as
an actuator with prescribed potentials on both plate surfaces.
A nonzero value of the electric potential qe is prescribed on the
top surface, and at the bottom and lateral sides vanishing electric
potentials are assumed. The magnetic potentials on all surfaces
are vanishing. The variation of the central deflection of the plate
(x1¼x2¼0) with the electric potential is presented in Fig. 12.
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intensity load ~q ¼ 0:942 (linear theory). Other boundary conditions are the same

as in Fig. 2.
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supported plate under the intensity load ~q ¼ 0:942 (linear theory). Other boundary

conditions are the same as in Fig. 2.
The intensity of the electric potential is given by a nondimen-
sional parameter ~qe ¼ qeh33a=e33h2.

Variation of the deflection along the x1-coordinate is presented
in Fig. 13. Deflections are given at the nondimensional intensity of
electrical potential ~qe ¼ 21:55. At this load intensity one can see
from Fig. 12 that nonlinear effect is apparent. Therefore, a
comparison of linear and nonlinear solutions is interesting. The
influence of nonlinearity on the plate deflection at a pure electric
load is similar to the case with a pure mechanical load.
5. Conclusions

A meshless local Petrov–Galerkin method is proposed for
nonlinear large-deflections of MEE plates under mechanical and
magneto-electrical loads. Both the static and time-harmonic
boundary value problems are analyzed. von Karman’s theory of
large deflections is applied for Reissner–Mindlin plates with MEE
properties. If a quadratic variation of the electric and magnetic
potentials along the plate thickness is assumed, the original 3D
thick plate problem is reduced to a 2D problem. Nodal points are
randomly distributed over the mean plane of the considered
plate. Each node is the centre of a circle surrounding it. The weak
form on small subdomains with the Heaviside step function as the
test function is applied to derive local integral equations. After
performing the spatial MLS approximation, a system of algebraic
equations for certain nodal unknowns is obtained.
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The proposed method is a truly meshless method, which
requires neither domain elements nor background cells in either
the interpolation or the integration. It is demonstrated numeri-
cally that the quality of the results obtained by the proposed
MLPG method is very good. Numerical results are compared with
the results obtained by the 3D FEM analyses for linear deflections
of MEE plates. The agreement of our numerical results with those
obtained by the COMSOL computer code is very good. However,
the 3D FEM analysis needs significantly higher number of nodes
than in the present formulation.

Numerical results showed that coupling material parameters
have a vanishing influence on the plate deflection under a pure
mechanical load. Also their influence on the eigen-frequencies is
vanishing. Induced electric and magnetic potentials are lower
based on the nonlinear large-deformation theory than those in
the corresponding linear case; however, their spatial variations in
both cases are similar.
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