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Abstract
We derive, in this paper, the analytical solution for a three-dimensional transversely isotropic
axisymmetric multilayered magneto-electro-elastic (MEE) circular plate under simply
supported boundary conditions. The state space vector, the finite Hankel transform and
propagating matrix methods are utilized together to obtain the full-field solutions for the MEE
plate made of piezoelectric (PE) and piezomagnetic (PM) layers. Numerical examples for
three-layered and five-layered PE/PM composites with different stacking sequences and under
different loading conditions are presented and discussed. These results can serve as benchmark
solutions for future numerical analyses of layered MEE plates.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magneto-electro-elastic (MEE) coupling effect exists in
multiphase materials which possess the ability to convert
energy from one form to another (among elastic, electric
and magnetic forms). Intensive studies on the physical and
mechanical properties of the MEE structures were carried
out by means of analytical, numerical and experimental
methods. Among those MEE structures, the composites
made of piezoelectric (PE) and piezomagnetic (PM) layers
were frequently considered and some full-field exact solutions
of these structures under certain boundary conditions were
obtained. Pan and colleagues (Pan 2001, Pan and Heyliger
2002) derived the static and free vibration solutions for
multilayered MEE rectangular plates under simply supported
boundary conditions by using the Stroh formalism and
propagating matrix method. By applying the state vector
approach and propagating matrix method, Wang et al (2003)
derived the exact solution of the multilayered MEE plate
under static deformation, Chen et al (2005) extended the static

solution to the vibration case, and Chen et al (2007) carried out
the modal analysis of multilayered MEE plates. Combining
the discrete layer approach and Ritz method, Ramirez et al
(2006) derived an approximate solution for the free vibration of
two-dimensional MEE laminate under both simply supported
and fixed boundary conditions. Pan and Heyliger (2003) also
derived exact solutions for MEE laminates under cylindrical
bending. It can be seen that these solutions for the MEE
coupling structures are all derived for the rectangular plates
using the Cartesian coordinates.

The problem of a simply supported circular and
homogeneous MEE plate under a uniform load was solved by
Chen et al (2003) using four harmonic displacement functions.
Chen et al (2006) also solved the free vibration problem
of multilayered MEE composites where the dependence of
natural frequencies on the thickness ratio was investigated.
However there is no existing literature on the full-field
solutions, especially on the field distribution along the
thickness direction of multilayered MEE circular composites.
For the reduced cases (elastic, piezoelectric or thin plate),
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Deresiewicz and Mindlin (1955) and Deresiewicz (1956)
obtained the analytical solution for axisymmetric elastic
circular plates with free and clamped boundary conditions.
Wang et al (2001) discussed the vibration problem of a
piezoelectric circular laminate under simply supported and
clamped boundary conditions based on the Kirchhoff thin
plate theory. Ding et al (1999a, 1999b, 1999c) derived
the exact solution for a piezoelectric circular plate under
static and vibration conditions employing the state vector
approach, finite Hankel transformation and propagating matrix
method.

In this paper, Ding’s approach is extended from the
piezoelectric coupled plate to the MEE coupling one. Starting
from the equilibrium equations for each homogeneous layer
and making use of the geometric and constitutive equations,
we first obtain a system of differential equations with
separated derivatives with respect to the horizontal and vertical
coordinates. Then, by employing the finite Hankel transform
to suppress the horizontal coordinates, we arrive at a system of
first-order differential equations which are easily solved. The
solution for the layered MEE plate is expressed in terms of
the propagating matrix and the inverse Hankel transformation
is then applied to transform the solution from the Hankel
domain back to the physical domain. Numerical examples are
carried to show the effect of multiphase coupling and stacking
sequence on the field distributions, which can be also served as
benchmarks.

2. Basic equations

For a transversely isotropic MEE coupling solid with its
material axis parallel to z-axis, the general constitutive
equation can be expressed as:

{
σ

D
B

}
=

[ C −e −q
eT ε α

qT αT μ

]{
γ

E
H

}
(1)

where σ , D and B are the vectors of the elastic stress, electric
displacement and magnetic induction; γ , E and H are the
vectors of the elastic strain, electric field and magnetic field.
These vectors are defined as

σ =

⎧⎪⎨
⎪⎩
σr

σθ
σz

σrz

⎫⎪⎬
⎪⎭ , D =

{
Dr

Dz

}
, B =

{
Br

Bz

}
,

γ =

⎧⎪⎨
⎪⎩
γr

γθ
γz

γrz

⎫⎪⎬
⎪⎭ , E =

{
Er

Ez

}
, H =

{
Hr

Hz

}
.

(2)

Also in equation (1), C , e, q , ε, μ and α are, respectively,
the matrices of the elastic stiffness, PE coefficients, PM
coefficients, permittivity coefficients, permeability coefficients
and magneto-electric (ME) coefficients. The elements of these

Figure 1. An n-layered circular plate with each layer being either PE
or PM material.

matrices are

C =
⎡
⎢⎣

c11 c12 c13 0
c11 c13 0

c33 0
sym c44

⎤
⎥⎦ , e =

⎡
⎢⎣

0 e13

0 e23

0 e33

e51 0

⎤
⎥⎦ ,

q =
⎡
⎢⎣

0 q13

0 q23

0 q33

q51 0

⎤
⎥⎦

(3a)

ε =
[
ε11 0
0 ε33

]
, μ =

[
μ11 0
0 μ22

]
,

α =
[
α11 0
0 α33

]
.

(3b)

Note that for the PE/PM layered structure α matrix is always
zero; and for the PE layer q matrix is zero and for the PM layer
e matrix is zero.

The three-dimensional multilayered MEE circular plate
model is shown in figure 1 in terms of the polar coordinates
(r, θ, z). Since the problem is axisymmetric, the solution is θ -
independent. The general geometric equation for the non-zero
quantities can be expressed as

γr = ∂u

∂r
γθ = u

r
γz = ∂w

∂z
γrz = ∂u

∂z
+ ∂w

∂r
,

Er = −∂φ
∂r

Ez = −∂φ
∂z

Hr = −∂ψ
∂r

Hz = −∂ψ
∂z

(4)
where u, w, φ and ψ are, respectively, the displacement in r -
and z-directions, and the electric and magnetic potentials.

The equilibrium equations without body force, electric and
magnetic charges can be expressed as

∂σr

∂r
+ σrz

∂z
+ σr − σθ

r
= 0

∂σrz

∂r
+ ∂σz

∂z
+ σrz

r
= 0

∂Dr

∂r
+ ∂Dz

∂z
+ Dr

r
= 0

∂Br

∂r
+ ∂Bz

∂z
+ Br

r
= 0.

(5)
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3. General solutions

Following Ding et al (1999a, 1999c), we define the following
dimensionless variables:

ξ = r/a, ζ = z/h, ū = u/h,

w̄ = w/h, φ̄ = φ

√
ε
(1)
33 /c

(1)
11 /h,

ψ̄ = ψ

√
μ
(1)
33 /c

(1)
11 /h σ̄r = σr/c

(1)
11 , σ̄z = σz/c

(1)
11 ,

σ̄θ = σθ/c
(1)
11 , σ̄rz = σrz/c

(1)
11 ,

D̄r = Dr

/√
ε
(1)
33 c(1)11 D̄z = Dz

/√
ε
(1)
33 c(1)11 ,

B̄r = Br

/√
μ
(1)
33 c(1)11 , B̄z = Bz

/√
μ
(1)
33 c(1)11

(6)
where h and a are, respectively, the total thickness and radius
of the plate; c(1)11 , ε(1)11 and μ(1)11 are, respectively, the elastic
stiffness, electric permittivity and magnetic permeability
constants of the first layer material.

By choosing the primary variables as the state space vector
and rearranging equations (1), (4) and (5), we arrive at the
following state equation

∂R̄(ξ, ζ )

∂ζ
= AR̄(ξ, ζ ) (7)

where

R̄(ξ, ζ ) ≡ [ ū(ξ, ζ ) σ̄z(ξ, ζ ) D̄z(ξ, ζ ) B̄z(ξ, ζ )

σ̄rz(ξ, ζ ) w̄(ξ, ζ ) φ̄(ξ, ζ ) ψ̄(ξ, ζ ) ]T (8)

and A is a 8 × 8 operator matrix shown below.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

g1
(
∂2

∂ξ 2 + 1
ξ
∂
∂ξ

− 1
ξ 2

)
g2

∂
∂ξ

g3
∂
∂ξ

g4
∂
∂ξ

g2
(
∂
∂ξ

+ 1
ξ

)
g5 g6 g7

g3
(
∂
∂ξ

+ 1
ξ

)
g8 g9 g10

g4
(
∂
∂ξ

+ 1
ξ

)
g7 g10 g11

f1 −s ∂
∂ξ

f2
∂
∂ξ

f3
∂
∂ξ

−s
(

1
ξ

+ ∂
∂ξ

)
0 0 0

f2
(

1
ξ

+ ∂
∂ξ

)
0 f4

(
1
ξ
∂
∂ξ

+ ∂2

∂ξ 2

)
f5

(
1
ξ
∂
∂ξ

+ ∂2

∂ξ 2

)
f3

(
1
ξ

+ ∂
∂ξ

)
0 f5

(
1
ξ
∂
∂ξ

+ ∂2

∂ξ 2

)
f6

(
1
ξ
∂
∂ξ

+ ∂2

∂ξ 2

)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(9)

The secondary (or deduced) variables are expressed as

D̄r (ξ, ζ )

= −1

s

(
f2σ̄rz(ξ, ζ )+ f4

∂φ̄(ξ, ζ )

∂ξ
+ f5

∂ψ̄(ξ, ζ )

∂ξ

)

B̄r (ξ, ζ )

= −1

s

(
f3σ̄rz(ξ, ζ )+ f5

∂φ̄(ξ, ζ )

∂ξ
+ f6

∂ψ̄(ξ, ζ )

∂ξ

)

σ̄r (ξ, ζ )

= −1

s

(
g2σ̄z + g3 D̄z + g4 B̄z + g1

∂ ūr (ξ, ζ )

∂ξ
+ l1

ūr (ξ, ζ )

ξ

)

σ̄θ (ξ, ζ )

= −1

s

(
g2σ̄z + g3 D̄z + g4 B̄z + l1

∂ ūr (ξ, ζ )

∂ξ
+ g1

ūr (ξ, ζ )

ξ

)

(10)

where ξ ∈ [0, 1], ζ ∈ [0, h j/h] and h j is the thickness of j th
layer. Note that ζ is the local coordinate for each layer. The
parameters in equations (9) and (10) are listed in the appendix.

Define the following finite Hankel transform of f (ξ , ζ )
with respect to variable ξ as

f (k, ζ ) =
∫ 1

0
ξ f (ξ, ζ )Jμ(kξ) dξ (11)

where Jμ(kξ) is the first kind of Bessel function of μth order.
Then, the space vector in Hankel transform domain can be
written as

R(k, ζ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(k, ζ )
S(k, ζ )
D(k, ζ )
B(k, ζ )
T (k, ζ )
W (k, ζ )
F(k, ζ )
P(k, ζ )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1(ūr (ξ, ζ ))

J0(σ̄z(ξ, ζ ))

J0(D̄z(ξ, ζ ))

J0(B̄z(ξ, ζ ))

J1(σ̄rz(ξ, ζ ))

J0(ūz(ξ, ζ ))

J0(φ̄(ξ, ζ ))

J0(ψ̄(ξ, ζ ))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (12)

Applying the Hankel transform to both sides of
equation (7), we obtain

∂R(k, ζ )

∂ζ
= K(k)R(k, ζ )+ Q(k, ζ ) (13)

where

K(k)

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 f1 sk − f2k − f3k
0 0 0 0 −sk 0 0 0
0 0 0 0 f2k 0 − f4k2 − f5k2

0 0 0 0 f3k 0 − f5k2 − f6k2

−g1k2 −g2k −g3k −g4k 0 0 0 0
g2k g5 g6 g7 0 0 0 0
g3k g8 g9 g10 0 0 0 0
g4k g7 g10 g11 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(14)

3
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and

Q(k) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−sw̄(1, ζ)J1(k)+ f2 φ̄(1, ζ)J1(k)+ f3ψ̄(1, ζ)J1(k)−sσ̄rz (1, ζ)J0(k)
(k f4 φ̄(1, ζ) + k f6 ψ̄(1, ζ))J1(k)+ ( f2σ̄rz (1, ζ)− f4 Ēr (1, ζ) − f5 H̄r (1, ζ))J0(k)
(k f5 φ̄(1, ζ) + k f6 ψ̄(1, ζ))J1(k)+ ( f3σ̄rz (1, ζ)− f5 Ēr (1, ζ) − f6 H̄r (1, ζ))J0(k)

(g1ū(1, ζ)+ g1 ε̄r (1, ζ)+ g2 σ̄z(1, ζ) + g3 D̄z (1, ζ) + g4 B̄z (1, ζ))J1(k) − kg1 ū(1, ζ)J0(k)
g2 ū(1, ζ)J0(k)
g3 ū(1, ζ)J0(k)
g4 ū(1, ζ)J0(k)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

with both K and Q depending also on the material properties.
From equation (10), we note that

s D̄r (1, ζ ) = − f2σ̄rz(ξ, ζ )+ f4 Ēr (1, ζ )+ f5 H̄r(1, ζ )

s B̄r (ξ, ζ ) = − f3σ̄rz(ξ, ζ )+ f5 Ēr (1, ζ )+ f6 H̄r(1, ζ )

sσ̄r (1, ζ )=−(g2σ̄z +g3 D̄z +g4 B̄z + g1ε̄r (1, ζ )+ l1ūr (1, ζ )).
(16)

Substituting equation (16) into (15) gives

Q(k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−sw̄(1, ζ )J1(k)+ f2φ̄(1, ζ )J1(k)+ f3ψ̄(1, ζ )J1(k)−sσ̄rz (1, ζ )J0(k)
(k f4φ̄(1, ζ )+ k f6ψ̄(1, ζ ))J1(k)− s D̄r (1, ζ )J0(k)
(k f5ϕ̄(1, ζ )+ k f6ψ̄(1, ζ ))J1(k)− s B̄r (1, ζ )J0(k)

(−sσ̄r (1, ζ )+ c11−c12

c(1)11

s2ū(1, ζ ))J1(k)− kg1ū(1, ζ )J0(k)

g2ū(1, ζ )J0(k)
g3ū(1, ζ )J0(k)
g4ū(1, ζ )J0(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
.

(17)

We now consider the simply supported lateral boundary
condition at ξ = 1 (Ding et al 1999a, 1999c), i.e.,

w̄(1, ζ ) = 0, φ̄(1, ζ ) = 0, ψ̄(1, ζ ) = 0,

J0(k) = 0
c11 − c12

c(1)11

sū(1, ζ )+ σ̄r (1, ζ ) = 0.
(18)

Then the column matrix Q(k) vanishes and equation (13)
becomes a homogeneous set of equations and its solution can
be assumed in the following exponential form

R(k, ζ ) = T (k, ζ )R(k, 0) (19)

where

T (k, ζ ) = exp(K(k)ζ ) (20)

is called the propagator, or propagating matrix and varies along
the vertical coordinate. It relates the values of space vector at
arbitrary height ζ to that at the top surface of the layer.

Considering the continuity on the layer interface of two
adjacent layers, say at z = z j between layers j and j + 1, then
the space vectors satisfy the following relation:

R j+1(k, 0) = R j (k, z j/h), j = 1, 2, . . . , N. (21)

Making use of the boundary conditions on the top and bottom
surfaces of the layered plate, the space vectors can be related

by

Rn(k, hn/h) = F (k)R1(k, 0) (22)

where

F (k) =
N∏

j=1

T j (k, h j/h). (23)

4. Loading conditions on the boundary

The general loading condition can be applied on the top and
bottom surfaces in terms of the combination of prescribed
elastic traction (σz and σrz) or elastic displacement (u and
w), electric potential (φ) or electric displacement (Dz ), and
magnetic potential (ψ) or magnetic induction (Bz). There
are totally eight prescribed quantities on both the top and
bottom surfaces, and the remaining eight unknown quantities
on these two surfaces can be determined. We assume that
the dimensionless boundary conditions at the top and bottom
surfaces are, respectively, as

⎧⎪⎨
⎪⎩
σ̄z(ξ, 0)
σ̄rz(ξ, 0)
φ̄(ξ, 0)
ψ̄(ξ, 0)

⎫⎪⎬
⎪⎭

j=1

=

⎧⎪⎨
⎪⎩

p0(ξ)

q0(ξ)

φ0(ξ)

ψ0(ξ)

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩
σ̄z(ξ, 1)
σ̄rz(ξ, 1)
φ̄(ξ, 1)
ψ̄(ξ, 1)

⎫⎪⎬
⎪⎭

j=N

=

⎧⎪⎨
⎪⎩

p1(ξ)

q1(ξ)

φ1(ξ)

ψ1(ξ)

⎫⎪⎬
⎪⎭ .

(24)

By applying the Hankel transform (11) to the above prescribed
loads, we obtain the loading conditions in Hankel domain

S(k, 0) =
∫ 1

0
ξp0(ξ)J0(kξ) dξ

T (k, 0) =
∫ 1

0
ξq0(ξ)J0(kξ) dξ

F(k, 0) =
∫ 1

0
ξφ0(ξ)J0(kξ) dξ

P(k, 0) =
∫ 1

0
ξψ0(ξ)J0(kξ) dξ

(25a)

and

S(k, 1) =
∫ 1

0
ξp1(ξ)J0(kξ) dξ

T (k, 1) =
∫ 1

0
ξq1(ξ)J0(kξ) dξ

F(k, 1) =
∫ 1

0
ξφ1(ξ)J0(kξ) dξ

P(k, 1) =
∫ 1

0
ξψ1(ξ)J0(kξ) dξ.

(25b)

4
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From equation (22), the four unknowns on the top surface in
Hankel domain can be determined as⎧⎪⎨
⎪⎩

U(k, 0)
D(k, 0)
B(k, 0)
W (k, 0)

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

F21 F23 F24 F26

F51 F53 F54 F56

F71 F73 F74 F76

F81 F83 F84 F86

⎤
⎥⎦

−1 ⎧⎪⎨
⎪⎩

S(k, 1)
T (k, 1)
F(k, 1)
P(k, 1)

⎫⎪⎬
⎪⎭

−
⎡
⎢⎣

F21 F23 F24 F26

F51 F53 F54 F56

F71 F73 F74 F76

F81 F83 F84 F86

⎤
⎥⎦

−1 ⎡
⎢⎣

F22 F25 F27 F28

F52 F55 F57 F58

F72 F75 F77 F78

F82 F85 F87 F88

⎤
⎥⎦

×

⎧⎪⎨
⎪⎩

S(k, 0)
T (k, 0)
F(k, 0)
P(k, 0)

⎫⎪⎬
⎪⎭ . (26)

Thus, R1(k, 0) is completely determined. Then equation (19)
can be applied to determine R j(k, ζ ) in any given layer j
by the propagating relation, including those unknowns on the
bottom surface.

Therefore, we have solved the layered MEE plate problem
in the Hankel transformed domain. In order to find the
solutions in the physical domain, we apply the inverse Hankel
transform (Sneddon 1995):

ū(ξ, ζ ) = 2
∑

i

U(ki , ζ )
J1(kiξ)

[J1(ki)]2
,

σ̄z(ξ, ζ ) = 2
∑

i

S(ki , ζ )
J0(kiξ)

[J1(ki)]2
,

D̄z(ξ, ζ ) = 2
∑

i

D(ki , ζ )
J0(kiξ)

[J1(ki)]2
,

B̄z(ξ, ζ ) = 2
∑

i

B(ki , ζ )
J0(kiξ)

[J1(ki)]2
,

σ̄rz(ξ, ζ ) = 2
∑

i

T (ki , ζ )
J1(kiξ)

[J1(ki)]2
,

w̄(ξ, ζ ) = 2
∑

i

W (ki , ζ )
J0(kiξ)

[J1(ki)]2
,

φ̄(ξ, ζ ) = 2
∑

i

F(ki , ζ )
J0(kiξ)

[J1(ki)]2
,

ψ̄(ξ, ζ ) = 2
∑

i

P(ki , ζ )
J0(kiξ)

[J1(ki)]2
.

(27)

The secondary variables in the physical domain are determined
as

D̄r (ξ, ζ ) = − f2

s
σ̄rz(ξ, ζ )+ 2 f4

s

∑
i

ki F(ki , ζ )
J1(kiξ)

[J1(ki)]2

+ 2 f5

s

∑
i

ki P(ki , ζ )
J1(kiξ)

[J1(ki)]2

B̄r (ξ, ζ ) = − f3

s
σ̄rz(ξ, ζ )+ 2 f5

s

∑
i

ki F(ki , ζ )
J1(kiξ)

[J1(ki)]2

+ 2 f6

s

∑
i

ki P(ki , ζ )
J1(kiξ)

[J1(ki)]2

Table 1. Material properties of BaTiO3 and CoFe2O4 (Pan 2001)
(Cij : elastic constants in GPa; ei j : piezoelectric coefficients in
N V−1 m−1; qi j : piezomagnetic coefficients in N A−1 m−1; εi j :
permittivity coefficients in 10−9 C V−1 m−1; and μi j : permeability
coefficients in 10−6 Wb A−1 m−1).

BaTiO3 CoFe2O4 BaTiO3 CoFe2O4

C11 166 286 q13 0 580.3
C12 77 173 q23 0 580.3
C13 78 170.5 q33 0 699.7
C22 166 286 q42 0 550
C23 78 170.5 q51 0 550
C33 162 269.5 ε11 11.2 0.08
C44 43 45.3 ε22 11.2 0.08
C55 43 45.3 ε33 12.6 0.093
C66 44.5 56.5 μ11 5 590
e13 −4.4 0 μ22 5 590
e23 −4.4 0 μ33 10 157
e33 18.6 0
e42 11.6 0
e51 11.6 0

σ̄r (ξ, ζ ) = − g2

s
σ̄z(ξ, ζ )− g3

s
D̄z(ξ, ζ )− g4

s
B̄z(ξ, ζ )

− 2g1

s

∑
i

kiU(ki , ζ )
J0(kiξ)

[J1(ki)]2
+ (c11 − c12)s

c(1)11

ūr (ξ, ζ )

ξ

σ̄θ (ξ, ζ ) = − g2

s
σ̄z(ξ, ζ )− g3

s
D̄z(ξ, ζ )− g4

s
B̄z(ξ, ζ )

− 2l1

s

∑
i

kiU(ki , ζ )
J0(kiξ)

[J1(ki )]2
− (c11 − c12)s

c(1)11

ūr (ξ, ζ )

ξ
.

(28)

5. Numerical examples

5.1. Three-layered sandwich MEE composite

We first consider a sandwich structure composed of PE
material BaTiO3 and PM material CoFe2O4. Following the
convention of Pan (2001) (i.e., B = BaTiO3, and F =
CoFe2O4), we use BFB for the BaTiO3/CoFe2O4/BaTiO3

sandwich plate and FBF for the CoFe2O4/BaTiO3/CoFe2O4

sandwich plate. The material properties are listed in table 1.
The total thickness and radius of the plate are, respectively,
12 mm and 30 mm, with each layer having the same thickness.
The normal pressure σz = −1 N m−2 and σz = 1 N m−2 are,
respectively, applied on the top (z = 0) and bottom (z = h)
surfaces whilst σrz = Dz = Bz = 0 on both the top and
bottom surfaces (LC1). Figures 2–5 show the distributions of
the primary variables along the thickness direction (via vertical
coordinate ζ ) at fixed horizontal location ξ = 0.3. Since the
boundary condition and the layered material structure are both
symmetric, we present the field distribution only in the top
half or the bottom half of the plate. It is observed that while
different stacking sequences (BFB and FBF) have no obvious
effect on the stress distribution (figure 3), their effect on the
other field quantities, particularly on the electric and magnetic
fields is significant (figures 4 and 5).

5.2. Five-layered MEE composite

In the second example, we extend the sandwich structure
to five-layered plates with two different symmetric stacking

5
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Figure 2. Variations of displacements along the thickness direction
in three-layered BFB and FBF composites caused by the uniform
mechanical pressures on the top and bottom surfaces under load
condition LC1. Symmetric vertical displacement w in the top half
and anti-symmetric radial displacement u in the bottom half of the
plate.

Figure 3. Variations of stress components along the thickness
direction in three-layered BFB and FBF composites caused by the
uniform mechanical pressures on the top and bottom surfaces under
load condition LC1. Symmetric shear stress σrz in the top half and
anti-symmetric normal stress σz in the bottom half of the plate.

sequences: FBFBF and BFBFB. In this case, the total thickness
is assumed to be 10 mm with each layer at 2 mm and the
radius of the plate is still 30 mm. Similarly, the normal
pressure is applied, with σz = −1 N m−2 at the top surface
(z = 0) and σz = 1 N m−2 at the bottom surface (z =
h). However, different to the first example, other boundary
conditions at the top and bottom surfaces are σrz = φ =

Figure 4. Variations of electric and magnetic potentials along the
thickness direction in three-layered BFB and FBF composites caused
by the uniform mechanical pressures on the top and bottom surfaces
under load condition LC1. Symmetric electric potential φ in the
bottom half and symmetric magnetic potential ψ in the top half of
the plate.

Figure 5. Variations of electric displacement and magnetic induction
along the thickness direction in three-layered BFB and FBF
composites caused by the uniform mechanical pressures on the top
and bottom surfaces under load condition LC1. Anti-symmetric Dz

in the bottom half and anti-symmetric Bz in the top half of the plate.

ψ = 0 (LC2). Figures 6–9 show the distributions of the
primary variables along the thickness direction (via vertical
coordinate ζ ) at fixed horizontal location ξ = 0.3. Compared
to figures 2–5, we observe that the added layups and the altered
boundary conditions influence only slightly the elastic field
variations along the thickness direction (figures 2 and 3 versus
figures 6 and 7). However, the layering and electric boundary
condition can substantially affect the electric and magnetic
field distributions (figures 4 and 5 versus figures 8 and 9).

6
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Figure 6. Variations of displacements along the thickness direction
in five-layered BFBFB and FBFBF composites caused by the
uniform mechanical pressures on the top and bottom surfaces under
load condition LC2. Symmetric vertical displacement w in the top
half and anti-symmetric radial displacement u in the bottom half of
the plate.

Figure 7. Variations of stress components along the thickness
direction in five-layered BFBFB and FBFBF composites caused by
the uniform mechanical pressures on the top and bottom surfaces
under load condition LC2. Symmetric shear stress σrz in the top half
and anti-symmetric normal stress σz in the bottom half of the plate.

6. Conclusions

We derived an analytical solution for three-dimensional
transversely isotropic axisymmetric multilayered magneto-
electro-elastic (MEE) circular plates under simply supported
lateral boundary conditions. The state space vector, finite
Hankel transform and propagating matrix method are utilized
to find the full-field solution for the MEE plate made of
piezoelectric (PE) and piezomagnetic (PM) layers. Numerical
examples for three-layered and five-layered PE/PM composites

Figure 8. Variations of electric and magnetic potentials along the
thickness direction in five-layered BFBFB and FBFBF composites
caused by the uniform mechanical pressures on the top and bottom
surfaces under load condition LC2. Symmetric electric potential φ in
the bottom half and symmetric magnetic potential ψ in the top half
of the plate.

Figure 9. Variations of electric displacement and magnetic induction
along the thickness direction in five-layered BFBFB and FBFBF
composites caused by the uniform mechanical pressures on the top
and bottom surfaces under load condition LC2. Anti-symmetric Dz

in the bottom half and anti-symmetric Bz in the top half of the plate.

with different stacking sequences and under different boundary
conditions are presented and discussed. Two different
boundary conditions are applied on the top and bottom
surfaces which show that the MEE layered composites
with the electric/magnetic boundary conditions (i.e., the so-
called electrodes/magnetrodes) can dramatically affect the field
distribution of the electric (or magnetic) quantities. These
results could be useful for the design of multilayered MEE
composites and can be further served as benchmarks for future
numerical analyses of layered MEE plates.
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Appendix

s = h/a f1 = c(1)11 /c44 f2 = − se15

c44

√
ε
(1)
33 /c

(1)
11

f3 = − sq15

c44

√
μ
(1)
33 /c

(1)
11

f4 = s2(e2
15/c44 + ε11)/ε

(1)
33

f5 = s2(e15q15/c44 + α11)/

√
μ
(1)
33 ε

(1)
33

f6 = s2(q15q15/c44 + μ11)/μ
(1)
33

g0 = c33ε33μ33 + e33e33μ33 + q33ε33q33

g1 = s2

c(a)11 g0

(e2
33(q

2
13 + c11μ33)− e13e33(q13q33 + c13μ33)

+ e2
13(q

2
33 + c33μ33)+ ε33(c33q2

13 − 2c13q13q33

+ c11q2
33 − c2

13μ33 + c11c33μ33))

g2 = s(−c13ε33μ33 − e31e33μ33 − q31q33ε33)/g0

g3 = s(c33e31μ33 − c13e33μ33 − e33q31q33 + e31q2
33)

×
√
ε
(1)
33 /c

(1)
11 /g0

g4 = −s(−e2
33q31 − c33ε33q31 + e31e33q33 + c13ε33q33)

×
√
μ
(1)
33 /c

(1)
11 /g0

g5 = c(1)11 ε33μ33/g0 g6 = e33μ33

√
c(1)11 ε

(1)
33 /g0

g7 = ε33q33

√
c(1)11 μ

(1)
33 /g0 g8 = e33μ33

√
c(1)11 ε

(1)
33 /g0

g9 = −(c33μ33 + q2
33)ε

(1)
33 /g0 g10 = e33q33

√
μ
(1)
33 ε

(1)
33 /g0

g11 = −(e2
33 + c33ε33)μ

(1)
33 /g0

l1 = s2

c(a)11 g0

(e2
33(q

2
13 + c12μ33)− e13e33(q13q33 + c13μ33)

+ e2
13(q

2
33 + c33μ33)+ ε33(c33q2

13 − 2c13q13q33

+ c12q2
33 − c2

13μ33 + c12c33μ33)).
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