

Kinetic Monte Carlo Simulation of Two-dimensional Semiconductor Quantum Dots Growth

by

Ernie Pan Richard Zhu Melissa Sun Peter Chung Computer Modeling and Simulation Group The University of Akron

Outline

Crystal (QDs) Growth Back Ground

- Simulation Method
- Application of QDs Growth
- QDs Epitaxial Growth
- Kinetic Monte Carlo (KMC) Two-dimensional (2D) QDs Growth
 - KMC 2D Growth Model
 - Growth Parameters Dependence of QDs Shape and Distribution
 - Temperature *T*
 - Surface coverage c
 - Flux rate F
 - Interruption time t_i
 - Substrate Orientation Dependence of QDs Ordering
 - Strain Energy Distribution
 - QDs Patterns with Different Substrate Directions
 - QDs Patterns with Different Growth Parameters

Kinetic Monte Carlo (KMC)

- o Stochastic techniques
- o Random numbers and probability statistics

• Molecular Dynamics (MD)

- o Newton's second law
- o Interactions between molecules

Different laws of physics used to describe materials at different scales

Crystal (QDs) Growth - Examples

Very Large Diamonds Produced Very Fast

May 16, 2005 Carnegie Institution

Washington, D.C. -- Researchers at the Carnegie Institution's Geophysical Laboratory have produced 10carat, half-inch thick single-crystal <u>diamonds</u> at rapid growth rates (100 micrometers per hour) using a chemical vapor deposition (CVD) process.

AMD, IBM announce breakthrough in strained silicon transistor

December 13, 2004

AMD and IBM today announced that they have developed a new and unique strained silicon transistor technology aimed at improving processor performance and power efficiency. The breakthrough process results in up to a 24 percent transistor speed increase, at the same power levels, compared to similar transistors produced without the technology.

52 Mbit SRAM Chips on 300 mm Wafer 120 billion transistors on one wafer

QDs for Light Emitting Diodes

First white LED using quantum dots created

July 15, 2003 Sandia National Laboratories

"Highly efficient, low-cost quantum dot-based lighting would represent a revolution in lighting technology through nanoscience."

<u>Economy</u>

Energy

Comparing with traditional light devices:

- ✓ Energy saving
- ✓ Longer life time

Comparing with traditional LEDs:

- ✓ Color adjustable
- ✓ Nontoxic
- Cheaper

QDs Epitaxial Growth

SK Mode QDs Pictures

Outline

- Crystal (QDs) Growth Back Ground
 - Simulation Method
 - Application of QDs Growth
 - QDs Epitaxial Growth

• Kinetic Monte Carlo (KMC) Two-dimensional (2D) QDs Growth

- KMC 2D Growth Model
- Growth Parameters Dependence of QDs Shape and Distribution
 - Temperature T
 - Surface coverage c
 - Flux rate F
 - Interruption time t_i
- Substrate Orientation Dependence of QDs Ordering
 - Strain Energy Distribution
 - QDs Patterns with Different Substrate Directions
 - QDs Patterns with Different Growth Parameters

KMC 2D Growth Model

Hopping probability

$$p = v_0 \exp\left(-\frac{E_{\rm s} + E_{\rm n} - E_{\rm str}(x, y)}{k_{\rm B}T}\right)$$

- ν_0 Attempt frequency
- $E_{s_{s}} E_{n}$ Bonding energies to the surface and to the neighboring atoms
- $E_{\rm str}(x,y)$ Strain energy field
- T Temperature
- $k_{\rm B}$ Boltzmann's constant

$$E_{\rm n} = (n - gn')E_{\rm b} + (m - gm')\alpha E_{\rm b}$$

 $E_{\rm b}$ — Bonding energies of a single nearest neighbor

- α , *g* Reduction factor for next nearest neighbors
- n, m # of nearest and next nearest atoms in original positions (n \leq 4, m \leq 4)
- $n'_{n'}$ m' # of nearest and next nearest atoms in new positions (n' ≤ 4, m' ≤ 4)

Flow Chart of 2D KMC QDs Growth Model

Outline

- Crystal (QDs) Growth Back Ground
 - Simulation Method
 - Application of QDs Growth
 - QDs Epitaxial Growth
- Kinetic Monte Carlo (KMC) Two-dimensional (2D) QDs Growth
 - KMC 2D Growth Model
 - Growth Parameters Dependence of QDs Shape and Distribution
 - Temperature T
 - Surface coverage c
 - Flux rate F
 - Interruption time t_i
 - Substrate Orientation Dependence of QDs Ordering
 - Strain Energy Distribution
 - QDs Patterns with Different Substrate Directions
 - QDs Patterns with Different Growth Parameters

Four Growth Parameters:

Temperature	<u> </u>
Surface coverage	— C
Flux rate	— F
Interruption time	— <i>t</i> _i

Growth Parameters — Temperature T

Growth of InAs/GaAs. Flux rate F=1.0 MI/s, coverage c=20% and interruption time $t_i=200$ s on a 200×200 grid.

Optimal *T* centered at 750-800K

Growth Parameters — Surface Coverage *c*

Growth of InAs/GaAs. Temperature *T*=700K, flux rate *F*=1.0MI/s, interruption time t_i =200s on a 200×200 grid .

Optimal *c* centered at 20%

Growth Parameters — Flux Rate F

Growth Parameters — Interruption Time t_i

Four Growth Parameters:

Temperature- TSurface coverage- cFlux rate- FInterruption time $- t_i$

Growth of InAs/GaAs. Temperature T=750K, flux rate F=1.0MI/s, coverage c=20% on a 200×200 grid

Outline

- Crystal (QDs) Growth Back Ground
 - Simulation Method
 - Application of QDs Growth
 - QDs Epitaxial Growth
- Kinetic Monte Carlo (KMC) Two-dimensional (2D) QDs Growth
 - KMC 2D Growth Model
 - Growth Parameters Dependence of QDs Shape and Distribution
 - Temperature T
 - Surface coverage —— c
 - Flux rate F
 - Interruption time —— ti
 - Substrate Orientation Dependence of QDs Ordering
 - Strain Energy Distribution
 - QDs Patterns with Different Substrate Directions
 - QDs Patterns with Different Growth Parameters

Strained Semiconductors

AMD, IBM announce breakthrough in strained silicon transistor

December 13, 2004

AMD and IBM today announced that they have developed a new and unique strained silicon transistor technology aimed at improving processor performance and power efficiency. The breakthrough process results in up to a 24 percent transistor speed increase, at the same power levels, compared to similar transistors produced without the technology.

120 billion transistors on one wafer

Maximum mistfit strain: 7%

Strain Energy Distribution

	Elastic moduli of GaAs (001)
$p = v_0 \exp\left(-\frac{E_{\rm s} + E_{\rm n} - E_{\rm str}}{k_{\rm B}T}\right)$	$C = \begin{bmatrix} 118.8 & 53.8 & 53.8 & 0 & 0 & 0 \\ 53.8 & 118.8 & 53.8 & 0 & 0 & 0 \\ 53.8 & 53.8 & 118.8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 59.4 & 0 & 0 \end{bmatrix} \mathbf{GPa}$
$E_{\rm str}(\mathbf{y}) = \frac{1}{2} C_{ijkl} \iint_{A} \gamma_{ij}(\mathbf{y}; \mathbf{x}) \gamma_{kl}(\mathbf{y}; \mathbf{x}) dA(\mathbf{x})$	$\begin{bmatrix} 0 & 0 & 0 & 59.4 & 0 \\ 0 & 0 & 0 & 0 & 59.4 \end{bmatrix}$
C_{m} — elastic moduli	Elastic moduli of GaAs (111)
	$\begin{bmatrix} 145 & 45 & 36 & 0 & 12.73 & 0 \\ 45 & 145 & 36 & 0 & -12.73 & 0 \end{bmatrix}$
	$C = \begin{vmatrix} 36 & 36 & 154 & 0 & 0 \\ C \mathbf{P}_{2} & C \mathbf{P}_{2} \end{vmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 41 & 0 & -12.73 \\ 12.72 & 12.72 & 0 & 0 & 41 & 0 \end{bmatrix}$
	$\begin{bmatrix} 12.73 & -12.73 & 0 & 0 & 41 & 0 \\ 0 & 0 & 0 & -12.73 & 0 & 50 \end{bmatrix}$
	Elastic moduli of GaAs (113)
	$\begin{bmatrix} 152.81 & 31.79 & 41.79 & 0 & -4.72 & 0 \end{bmatrix}$
	31.79 145.7 48.91 0 -10.38 0
	$C = \begin{bmatrix} 41.79 & 48.91 & 135.70 & 0 & 15.09 & 0 \end{bmatrix}$
	0 0 0 54.51 0 -10.38
y y	$\begin{bmatrix} -4.72 & -10.38 & 15.09 & 0 & 47.39 & 0 \\ 0 & 0 & 0 & 10.28 & 0 & 27.20 \end{bmatrix}$
x	
Unit crystal of GaAs x	Elastic moduli of Iso (001)
J	
	53.8 172.6 53.8 0 0 0
Isotropic condition	53.8 53.8 172.6 0 0 0 GP ₂
$(C_{11}-C_{12})/2=C_{44} \longrightarrow C_{11}=172.6$ GPa	$\rangle C = 0 0 0 59.4 0 0 $
C ₁₂ =53.8GPa	0 0 0 0 59.4 0
C ₄₄ =59.4GPa	0 0 0 0 0 59.4 Minutersite
18	0 A kron

Strain Energy Distribution

QDs Patterns with Different Substrate Directions

QDs patterns

T=750K, *F*=1.0Ml/s, *c*=20%, and *t*_i=200s, on a 200×200 grid.

Compare of Experimental and Simulated QDs Patterns

(Zhong and Bauer, APL 2004)

(Pan, Zhu, and Chung, JAP, 2006)

(Brune et al., Phys. Rev. B 1995)

(Pan, Zhu, and Chung, JAP, 2006)

(Seyedmohammadi website)

QDs Patterns vs. Temperatures

Flux rate F=1.0 Ml/s, coverage c=20% and interruption time $t_i=200$ s on a 200×200 grid

QDs Patterns vs. Coverage *c*

QDs Patterns vs. Interruption Time t_i

Temperature T=750K, flux rate F=1.0MI/s, coverage c=20% on a 200×200 grid

. Aniversity

