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 Crystal (QDs) Growth Back Ground
— Simulation Method
— Application of QDs Growth
— QDs Epitaxial Growth




Simulation Methods

« Kinetic Monte Carlo (KMC)
0 Stochastic techniques
o Random numbers and probability statistics

 Molecular Dynamics (MD)
o0 Newton’s second law
0 Interactions between molecules

Time
s & Continuum Theory
{Navier-Stokes)
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Different laws of physics used to describe materials at different scales




Crystal (QDs) Growth - Examples

AMD, IBM announce
breakthrough in strained silicon
transistor

December 13, 2004

Very Large Diamonds Produced
Very Fast

AMD and IBM today announced that they have developed
a new and unique strained silicon transistor technology
aimed at improving processor performance and power
efficiency. The breakthrough process results in up to a 24
percent transistor speed increase, at the same power
levels, compared to similar transistors produced without
the technology.

May 16, 2005 Carnegie Institution

Washington, D.C. -- Researchers at the Carnegie
Institution’s Geophysical Laboratory have produced 10-
carat, half-inch thick single-crystal diamonds at rapid
growth rates (100 micrometers per hour) using a
chemical vapor deposition (CVD) process.
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52 Mbit SRAM Chips on 300 mm Wafer
120 billion transistors on ona wafer




QDs for Light Emitting Dicdes

First white LED using quantum
dots created :

July 15, 2003 Sandia National
Laboratories

“Highly efficient, low-cost quantum dot-based lighting

would represent a revolution in lighting technology
through nanoscience.”

Comparing with traditional light devices:
. v Energy saving
v" Longer life time
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;  Comparing with traditional LEDs:
i v Color adjustable

i v Nontoxic

v' Cheaper
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QDs Epitaxial Growth

Physical Vapor Deposition =~ Chemical Vapor Deposition Epitaxial Growth Modes:
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 Kinetic Monte Carlo (KMC) Two-dimensional (2D) QDs Growth
— KMC 2D Growth Model




KMC 2D Growth Model

Hopping probability

Es + En B Estr(x’ y)
KgT

P = v, exp| —

>

v, — Attempt frequency
E, E, — Bonding energies to the surface and to the neighboring atoms

E.,(X,y) — Strain energy field
T — Temperature

kg — Boltzmann’s constant First box, including nearest
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£, — Bonding energies of a single nearest neighbor

o, g — Reduction factor for next nearest neighbors

n, m — # of nearest and next nearest atoms in original positions (n<4, m<4)
n, m'— # of nearest and next nearest atoms in new positions (n'<4, m'<4)




Flow Chart of 2D KMC QDs Growth Model

imulatiog time t =0
Hopping steps n=0

KMC algorithm --- three main
parts

1) Calculate the probability P
(u—v) for the transition
from the current state p
to a new state v;

2) Calculate the time increment At
by using the value P;

3) Increase the simulation time t
b?/ At to mimic the
elapsed step.
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— Randomly grow seeds (Flux rate)
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Form a probability list of each atom I, = P .. [i]
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Form cumulative function R; = > r; (I=1,2....N)
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Update simulation time t=t+At (At= 1/R)
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Update hopping steps n=n+1
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— Growth Parameters Dependence of QDs Shape and Distribution
e Temperature —— T
e Surface coverage —— ¢
e Flux rate —— F
e Interruption time —t,
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Growth Parameters — Temperature 7

Four Growth Parameters:

Temperature — T
Surface coverage —¢c
Flux rate —F
Interruption time  —t,
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Growth Parameters — Temperature 7
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Growth of InAs/GaAs. Flux rate F=1.0Ml/s, coverage c=20% and interruption time t=200s
on a 200x200 grid.

mmm)>  Optimal T centered at 750-800K

Pan, Zhu, and Chung, JNN, 2004 ;
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Growth Parameters — Surface Coverage ¢

Four Growth Parameters:

Temperature — T
Surface coverage —=c
Flux rate —F
Interruption time  —t,

Growth of InAs/GaAs. Temperature T=700K, flux rate F=1.0Ml/s, interruption time
t=200s on a 200x200 grid .

mmmm) Optimal ¢ centered at 20%

Pan, Zhu, and Chung, JNN, 2004 ;
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Growth Parameters — Flux Rate F

Increasing island size

Four Growth Parameters:
Growth of InAs/GaAs. Temperature T=700K,

coverage c=20% and interruption time t=200s
on a 200x200 grid. Temperature — T

Surface coverage —c

Deposition stops after 0.2s on the left, 2s in the
P P Flux rate —F

middle, and 20s on the right. Strain energy field _ _
is not included for simplicity. Interruption time. — ;

Pan, Zhu, and Chung, JNN, 2004 ;
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Growth Parameters — Interruption Time ¢

Four Growth Parameters:

Temperature — T
Surface coverage —¢c
Flux rate —F
Interruption time  — t;

Growth of InAs/GaAs. Temperature T=750K, flux rate F=1.0Ml/s, coverage c=20% on a 200x200 grid

O o | = Equilibrium

Pan, Zhu, and Chung, JNN, 2004 ;
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— Substrate Orientation Dependence of QDs Ordering
« Strain Energy Distribution
* QDs Patterns with Different Substrate Directions
* QDs Patterns with Different Growth Parameters
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Strained Semiconductors

AMD, IBM announce
breakthrough in strained silicon
transistor

December 13, 2004
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AMD and IBM today announced that they have developed —_— WA
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a new and unique strained silicon transistor technology

aimed at improving processor performance and power 6.058 A 5.653 A
efficiency. The breakthrough process results in up to a 24 < 5 h

percent transistor speed increase, at the same power INAS GaAs
levels, compared to similar transistors produced without INAS

the technology.

R

52 Mbit SRAM Chips on 300 mm Wafer
120 billion transistors on one wafer

InAs growth on GaAs substrate

Maximum mistfit strain: 7% o{%@
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Strain Energy Distribution

E+E

p=v, exp(

)

Estr ( y) =5

Cia [ 75 (v )7 (3 X)AA(X)

Elastic moduli of GaAs (001)
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Cijkl — elastic moduli ‘I Elastic moduli of GaAs (111)
145 45 36 0] 12.73 0
45 145 36 0 -12.73 0
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o o o 4 o -1273GPa
1273 -12.73 O 0 41 0
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Elastic moduli of GaAs (113)
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Elastic moduli of Iso (001)
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Isotropic condition 538 538 1726 0 0 0 |cpg
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Strain Energy Distribution

x(100) Grid

x(100) Grid

1.2

3.6
3.2
2.8
2.4

x(11-2) Grid
X(33-2) Grid

1.6
B 1.2

r 0.8
r 0.4

5 3 1 1 3 5
y(-110) Grid

y(-110) Grid

Pan, Zhu, and Chung, JAP, 2006
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X(100) Grid

x(11-2) Grid

QDs Patterns with Different Substrate Directions
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QDs patterns

T=750K, F=1.0Ml/s, c=20%, and t=200s, on a
200x200 grid.

(Pan, Zhu, and Chung, JAP, 2006) o{%‘@




Compare of Experimental and Simulated QDs Patterns

GaAs(001) D @ @ ' GaAs (111) l. @
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(Pan, Zhu, and Chung, JAP, 2006) (Pan, Zhu, and Chung, JAP, 2006) (Pan, Zhu, and Chung, JAP, 2006)
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GaAs (111) GaAs (113)

GaAs (001)

GaAs (Iso)

200s on a 200x200 grid

20% and interruption time t;

1.0Ml/s, coverage c=

Flux rate F

oGy

(Pan, Zhu, and Chung, JAP, 2006)
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QDs Patterns vs. Coverage ¢

c=20% c=30% c=50%

GaAs (Iso)

GaAs (001)

GaAs (111)

GaAs (113)

Temperature T=750K, flux rate F=1.0Ml/s, interruption time t=200s on a 200x200 grid
23 (Pan, Zhu, and Chung, JAP, 2006) 0{%""’




QDs Patterns vs. Interruption Time £

GaAs (Iso) GaAs (001) GaAs (111) GaAs (113)

t=0s

t=10s

Temperature T=750K, flux rate F=1.0Ml/s, coverage c=20% on a 200x200 grid

24 (Pan, Zhu, and Chung, JAP, 2006) o{%@




The End
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