How to use it

Environment

To run the program, Visual C++ 6.0 or upper version is needed.
How to use it
Step 1: Start a project
a. Start from a new project

Open a new project
b. Start from an existed project

Step 2: Input parameters

Step 3: Save the project

Save the project

Step 4: Execute calculation

Execute calculation

Step 5: Find your output file
Results are written into a .txt file automatically. You can find output file named output under the same directory where your project saved.

Illustration of input parameters

There are totally 10 parameters required for running the program.
Material and growth direction: isotropic and anisotropic (GaAs) materials are all included in this program. For anisotropic material, three different growth directions can be chosen. They are $\mathrm{GaAs}(001), \mathrm{GaAs}(111)$, and GaAs(113).
Coverage (0-1): total coverage of atoms, expected coverage.
$L x, L y: x$ dimension and y dimension.
Flux rate (Ml/s): flux rate wanted to apply.
Temperature (K): simulation temperature wanted to apply.
Simulation time (t): time used for atoms diffusing.
Bonding energy to surface \& Bonding energy to neighbor: here we assume these two parameters are all constant. Es=1.3 (eV), and En=0.3(eV).

Illustration of the out put file

Original atoms' coordinates are given.
It shows us atoms' coordinates immediately after randomly deposition. The first column is the atom number; the second column is the x-coordinate of the atom; the third column is the y-coordinate of the atom.

Coordinates which change within required simulation time will be export to the output file every 10 minutes simulate time.
In this part, the format is a little bit different from the original coordinates. The first column is the x-coordinates of the atoms; the second column is the y-coordinates; the third column indicates the strain pattern.

For each output step, total simulation time, total moving steps are revealed at the beginning of each output step. For example,
"Simulation Time $=10$
Total Steps $=2818297$
Atom Coordinate
COORDINATE and STRAIN PATTERN
......"

Final coordinates
In this section, final coordinates according to required simulation time are presented. Similarly, the first column is the x-coordinates of the atoms; the second column is the y-coordinates; the third column indicates the strain pattern.

Post-process

You can use any tool (such as excel, Matlab) you prefer to draw the figures which indicate the location of atoms according to the coordinates in the output file.

