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Abstract
Strained silicon is becoming a new technology in silicon industry where the
novel strain-induced features are utilized. In this paper we present a
molecular dynamic prediction for the elastic stiffnesses C11, C12 and C44 in
strained silicon as functions of the volumetric strain level. Our approach
combines basic continuum mechanics with the classical molecular dynamic
approach, supplemented with the Stillinger–Weber potential. Using our
approach, the bulk modulus, effective elastic stiffnesses C11, C12 and C44 of
the strained silicon, including also the effective Young’s modulus and
Poisson’s ratio, are all calculated and presented in terms of figures and
formulae. In general, our simulation indicates that the bulk moduli, C11 and
C12, increase with increasing volumetric strain whilst C44 is almost
independent of the volumetric strain. The difference between strained
moduli and those at zero strain can be very large, and therefore use of
standard free-strained moduli should be cautious.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Strained quantum nanostructures have led to intensive studies
in recent years due to their improved electronic and optical
properties arising from quantum confinements [1]. The
importance of strain in semiconductors has been widely
recognized, and its influence on the electronic and optical
properties was also carried out. Specifically, the distortion of
the crystalline structure changes the properties of the charge
carriers in silicon, allowing the carriers to move more quickly
in response to an applied voltage. These charge carriers,
electrons (negative charge carriers) and holes (positive charge
carriers), are reported to have a higher mobility when silicon
is strained [2–5]. In 2003, IBM and AMD reported the most
exciting news on the application of strained silicon where they
successfully integrated the strained silicon into their design
[6]. This new advance improves transistor performance by 10–
25% whilst the corresponding increase in manufacturing costs

is only about 2%. While the performance of strained silicon
in terms of its electronic and optical properties is an active
topic, the corresponding mechanical behaviour has rarely been
studied. Yet, understanding the mechanical properties of
strained silicon is very important with regard to its long-term
performance and structure reliability.

Silicon can be strained in compression (i.e., the atoms
are being squeezed together) or in tension (i.e., the atoms
are being stretched apart). The most established and proven
method of straining silicon involves the deposition of a silicon–
germanium (SiGe) film on the top of a traditional silicon
wafer, which then acts as an atomic template for deposition
of a subsequent thin film of silicon. The thin film of silicon
conforms to the atomic spacing of the underlying SiGe layer
and assumes a state of biaxial tension (i.e., silicon is stretched
in two orthogonal directions, as shown in figure 1).

While variation of the elastic moduli was studied
previously when silicon was under pressure [7, 8], no literature
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Si Si

SiGe SiGe

Figure 1. Stretched silicon for silicon over a silicon–germanium
substrate.

is available on the stress and strain behaviour when silicon
is under strain. Furthermore, due to the technical difficulty,
it is hard to observe experimentally the elastic properties as
functions of the applied strain.

In this paper, therefore, we present a molecular dynamic
simulation for the elastic stiffnesses in strained silicon as
functions of the volumetric strain level (corresponding to the
misfit strain due to the lattice constant difference between
silicon and its substrate). Our method combines the basic
continuum mechanics with the classical molecular dynamic
simulation, supplemented with the interatomic Stillinger–
Weber potential [9]. The S–W potential has gained popularity
due to its ability to describe fairly well the diamond structure
(e.g., [10–12]). In order to use our method for the
estimation of the three independent elastic stiffnesses C11,
C12 and C44 in strained silicon, we apply three independent
distortions as described by Mehl [13, 14] and utilized more
recently by Ellaway and Faux [15] for InAs. The elastic
stiffnesses, effective Young’s modulus and Poisson’s ratio are
all calculated and presented in terms of figures and formulae.
In general, our simulation indicates that the bulk moduli, C11

and C12, increase with increasing volumetric strain whilst C44

is almost independent of volumetric strain. The difference
between strained moduli and those at zero strain can be very
large, and therefore use of standard free-strained moduli in the
strained silicon could result in the wrong mechanical response
in silicon. Using strained moduli could also predict different
electronic and optical properties in the strained silicon.

2. Elastic stiffness calculation

The IV and III–V semiconductors, in their cubic structure,
have three independent elastic stiffnesses C11, C12 and C44.
It was shown that when the crystal is strained, its elastic
stiffnesses can be substantially changed (e.g., [15]). To predict
the accurate change of the material stiffness due to straining,
the so-called direct and traditional method can be followed
where a tension/compression is applied to the material. The
system energy is then calculated, which is utilized finally to
predict the stress–strain relationship [14–16].

For a cubic crystal, the elastic moduli can be divided into
two classes: the bulk modulus B = (C11 + 2C12)/3 and two
‘shear’ moduli C11–C12 and C44. In the actual calculation, a
small incremental distortion, which is usually less than 1%, is

applied to the crystal with the latter being already subjected to
a uniform volumetric strain (i.e., [15]).

Let us assume that the original cubic lengths and the
distortions in the (x, y, z)-directions are (�x, �y, �z) and
(εx, εy, εz), respectively. After deformation, the new volume
becomes

V = �x(1 + εx)�y(1 + εy)�z(1 + εz)

= �x�y�z(1 + εx + εy + εz + εxεy

+ εyεz + εzεx + εxεyεz). (1)

It is clear that for small deformation, we have the well-known
volumetric strain

e = V − V0

V0
= εx + εy + εz, (2)

where V0 = �x�y�z is the original volume of the unit cell.
The constitutive relation for the cubic material is
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(3)

with the corresponding strain energy per unit volume being

U = 1
2 (σxxεxx + σyyεyy + σzzεzz + τyzγyz + τzxγzx + τxyγxy).

(4)

In the following, we briefly list the relevant formulae
needed to obtain the elastic coefficients for the cubic crystal.

2.1. Bulk modulus B

The bulk modulus, B, is related to the curvature of the energy
function E(V) as [17]

B(V ) = −V P ′(V ) = V E′′(V ), (5)

where V is again the deformed volume of unit cell as mentioned
before, E(V) is the corresponding energy per unit cell, E′′(V )

is the second derivative of E(V) with respect to the volume
and P(V) = – E′(V) is the pressure. Since the calculation only
provides a set of energies E(Vi) for a limited number of volumes
Vi, the second derivative E′′(V ) must be approximated [14].
Birch [17] proposed the following equation to calculate E(V)
by fitting the curve:

E(V ) = E0 +
9

8
B0V0

[(
V0

V

)2/3

− 1

]2

+
9

16
B0V0(B

′
0 − 4)

×
[(

V0

V

)2/3

− 1

]3

+
N∑

n=4

γn

[(
V0

V

)2/3

− 1

]n

, (6)

where E0, V0, B0 and B ′
0 are, respectively, the equilibrium

energy, volume, bulk modulus and pressure derivative of
the bulk modulus, whilst N is the fitting order. We remark
that equation (6) is a special case of the following general
expression:

E(V ) =
N∑

n=0

anV
−2n/3, (7)

where an are the fitting parameters.
Therefore, the bulk modulus can be predicted on the basis

of equation (7). In our atomistic MD simulation, the distortion
used for calculating the bulk modulus consists of a uniform
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compression (or expansion) of magnitude δ in each of the x-,
y- and z-directions as in a conventional pressure experiment.

2.2. Modulus C11–C12

The ‘shear’ modulus C11–C12 is evaluated by applying an
orthorhombic volume-conserving (up to the first order of δ)
strain which can be represented in the strain tensor form as

δ 0 0
0 −δ 0
0 0 δ2

1−δ2


 . (8)

Making use of the stress and strain relation, we found that the
nonzero stresses are

σxx = (C11 − C12)δ + C12
δ2

1 − δ2

σyy = (C12 − C11)δ + C12
δ2

1 − δ2

σzz = C11
δ2

1 − δ2
.

(9)

From the strains and stresses, the corresponding system energy
as a function of δ can be found as

E(δ) = E(0) + (C11 − C12)V δ2 + 0(δ4) + · · · , (10)

where the terms of order δ4 or higher can be safely neglected.
Therefore, the energy E(δ) can be expressed as a function of
δ2 and a linear fitting of the curve yields C11–C12.

2.3. Elastic stiffness C44

Finally, the elastic stiffness C44 is evaluated by a monoclinic
volume-conserving (again, up to the first order of δ) strain,
expressed in terms of the strain tensor as


0 1

2δ 0
1
2δ 0 0

0 0 δ2

(4−δ2)


 . (11)

Again, substituting this strain tensor into the stress and strain
relation gives the only nonzero stress component (shear stress)
as τxy = C44δ, and the corresponding total energy

E(δ) = E(0) + 1
2C44V δ2 + 0(δ4) + · · · . (12)

Similarly, the energy E(δ) can be expressed as a function of δ2

and a linear fitting of the curve yields C44.

3. Molecular dynamics programming

In order to use the molecular dynamics (MD) to simulate
and predict the energy for a given distortion, we have to
define the rules which govern the interaction among the atoms
in the system. In the classical MD simulation, these rules
are often expressed in terms of the potential function. The
potential function U(ri) describes how the potential energy
of a system of N atoms depends on the coordinates of the
atoms. In the past, various empirical potentials have been
proposed to describe the different phases of silicon [9, 18–20]
and results have been tested and compared [21–23]. Among
these, the Stillinger and Weber (SW) potential [9] has gained
popularity due to its ability to describe fairly well the diamond
structure [10–12, 16, 21]. The main advantage of this potential

θjik 

i

j k
θijk θikj 

rij rik 

rjk 

Figure 2. Geometric illustration of a triplet of atoms used in the
definition of the three-body potential.

is its simplicity and fairly realistic description of the crystal.
The potential consists of a two-body term and a three-body
term as angular interaction:

U =
∑
i<j

v2(rij ) +
∑

i<j<k

v3(ri , ri , rk)

v2(rij ) = εf2(rij /σ ), (13)

v3(ri , rj , rk) = εf3(ri/σ, rj /σ, rk/σ )

where v2 is the pair potential and v3 is the three-body part.
The functions f2 and f3 are defined as

f2(r) =
{
A(Br−p − r−q) exp[(r − a)−1], r < a

0, r � a

f3(ri , rj , rk) =



h(rij , rik, θjik) + h(rji, rjk, θijk)

+ h(rki , rkj , θikj ), r < a,

0, r � a

(14)

where r is the distance between any two atoms; rij is the
distance between the two atoms with indices i and j; ri, rj, rk

are the positions of atoms i, j and k, respectively; and θjik is
the bond angle between vectors rij and rik (figure 2). Finally,
the function h is the three-body potential part given as

h(rij , rik, θjik) = λ exp[γ (rij − a)−1 + γ (rik − a)−1]

× (
cos θjik + 1

3

)2
. (15)

The parameters A,B, p, q, a, λ, γ , ε and σ are all
positive and are determined by ensuring that the diamond
structure is the most stable periodic arrangement of particles
at low pressure. For silicon, these parameters were given by
Stillinger and Weber [9]: a = 1.8, γ = 1.20, p = 4, q = 0,
A = 7.049 556 277, B = 0.602 224 5584, λ = 21.0, ε =
50 kcal mol–1 = 3.4723 × 10−19 J, σ = 2.0951 Å.

In our MD program, we first prepare a sample: we select
a model system (a cubic structure) consisting of N = 8 ×
33 = 216 atoms under the periodic boundary condition, and
we solve Newton’s equation of motion for this system until
the properties of the system no longer change with time (i.e.,
the equilibrium state). We then predict the system energy
by applying a distortion to the system and solving Newton’s
equation of motion. In the simulation process, time step is one
of the key factors. If the time step is too large, accurate results
cannot be obtained; on the other hand, if it is too small, the
MD simulation becomes too expensive to be carried out. In
our program, we assume that the biggest one-step movement
of any atom is about 0.05% of the equilibrium distance among
the atoms, which is used to derive the time step in the paper. A
number of examples have been run and results show that this
criterion is accurate with reasonable CPU time. Furthermore,
we have also run the MD program for a large size system
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Figure 3. Lattice energy (per atom) versus single silicon cubic
lattice length.

2.8 3.2 3.6 4 4.4 4.8
Volume (x1017 m-2/3)

-1.55

-1.50

-1.45

-1.40

-1.35

-1.30

-1.25

E
ne

rg
y 

(x
10

-1
6
 J

ou
le

s)

E~V
-2/3

Figure 4. Lattice energy E (216 atom system) versus system
volume (V −2/3).

(N = 8 × 53) and found that the MD result for this system was
close to that for the small size system (N = 8 × 33); however,
the large system required much more CPU time than the small
system.

4. Results and discussion

4.1. Potential and cubic volume

In applying the MD to the bulk modulus calculation, we
compress the model system uniformly in the x-, y-, and z-
directions step by step and determine the system energy at
the same time. Figure 3 shows the corresponding binding
energy per atom U/Nε (in reduced unit) versus unit cubic
lattice length. It is clear that if the volumetric strain is
zero (corresponding to free-strain lattice constant 0.5431 nm),
the system in the equilibrium state has the lowest potential.
Figure 4 shows the MD-simulated system potential versus
system volume (V −2/3). We further remark that the
system potential as a function of the volume (V −2/3) can
also be accurately represented by a cubic function using
equation (6) or (7), with the following coefficients obtained
via curve fitting:

a0 = 5.99 × 10−16, a1 = −4.66 × 10−33,

a2 = 8.89 × 10−51, a3 = −4.79 × 10−69.
(16)
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Figure 5. Bulk modulus B and other elastic moduli C11, C12 and C44

as functions of the applied volumetric strain in the strained silicon.

4.2. C11, C12 and C44

Now, making use of equation (5) with the coefficients in
equation (16), the relation between the bulk modulus B =
(C11 + 2C12)/3 and volumetric strain of silicon can be obtained.
Similarly, applying the deformation in equation (8) to the MD
program, the atomistic simulation yields the energy (10), from
which the ‘shear’ modulus C11–C12 can be determined as a
function of the applied strain δ. The results for the bulk
modulus (C11 + 2C12)/3 and the ‘shear’ modulus C11–C12

enable us to determine the elastic coefficients C11 and C12.
Finally, the pure shear coefficient C44 is directly obtained from
(11) using the MD-simulated energy (12). The results for
the stiffness coefficients as functions of the applied strain are
presented in figure 5.

It is observed from figure 5 that at zero volumetric strain,
our atomistic simulation predicts that C11 = 151.6 GPa and
C12 = 76.5 GPa and C44 = 84.8 GPa. These coefficients are in
close agreement with the experimental values of 166.0 GPa,
64.0 GPa and 79.6 GPa [24]. It is also interesting that while all
the moduli increase with increasing strain, the shear modulus
C44 increases only slightly. Furthermore, all the moduli, except
C44, have nearly the same slope (corresponding to the linear
term). These features can be observed clearly from the third-
order polynomials given below, which can be conveniently
applied in the future to find the strained silicon moduli at
a given strain level (corresponding to the lattice difference
between silicon and its substrate):

B = 101.5 + 312.2

(
δV

V0

)
+ 218.6

(
δV

V0

)2

+ 856.5

(
δV

V0

)3

(17)

C11 = 151.6 + 303.1

(
δV

V0

)
+ 204.1

(
δV

V0

)2

+ 845.3

(
δV

V0

)3

(18)

C12 = 76.5 + 316.7

(
δV

V0

)
+ 225.8

(
δV

V0

)2

+ 862.1

(
δV

V0

)3

(19)

C44 = 84.8 + 97.9

(
δV

V0

)
+ 102.6

(
δV

V0

)2

+ 341.2

(
δV

V0

)3

.

(20)
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Figure 6. Young’s modulus in isotropic silicon and in the
(1 0 0)-direction of cubic silicon as functions of the applied
volumetric strain in strained silicon.

4.3. Effective Young’s modulus and Poisson’s ratio

Once we obtain the stiffness coefficients as functions of the
applied strain, variation of the effective Young’s modulus E
and Poisson’s ratio ν can be also determined. These two
parameters are particularly useful in continuum calculations
of the mechanical fields within the strained semiconductors
under the isotropic approximation. However, as silicon is a
cubic material, the elastic properties E and ν will be different
in different directions. As an example, we present only E
and ν along the (1 0 0)-direction of the crystal. The results of
E and ν under the isotropic assumption (C11–C12–2C44 = 0)
are also calculated for comparison. Actually, for given elastic
stiffnesses Cij , the elastic coefficients E and ν can be obtained
as (we use superscripts ‘1 0 0’ and ‘iso’ for those along the
(1 0 0)-direction and those corresponding to the isotropic case)

ν1 0 0 = C12

C11 + C12
, E1 0 0 = (C11 − C12)(C11 + 2C12)

C11 + C12
,

(21)

ν iso = C12

2(C12 + C44)
, Eiso = C44(2C44 + 3C12)

C11 + C44
.

(22)

Substituting the expressions for Cij (equations (17)–(20)) into
(21) and (22), we obtain the variation of the elastic coefficients
E and ν as functions of the applied strain. The results are shown
in figures 6 and 7.

It is very interesting that E1 0 0 is nearly constant over
the whole range of the volumetric strain whilst Eiso increases
nearly linearly with increasing volumetric strain (figure 6).
Furthermore, we also observe from figure 7 that both Poisson’s
ratios ν1 0 0 and ν iso increase with increasing volumetric strain,
although Poisson’s ratio along the (1 0 0)-direction of the
crystal is always larger than the isotropic one (at the given
strain level).

5. Discussions and conclusions

A simple MD formulation is derived for the material property
prediction of strained cubic semiconductors. It combines the
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Figure 7. Poisson’s ratio in isotropic silicon and in the
(1 0 0)-direction of cubic silicon as functions of the applied
volumetric strain in strained silicon.

simple MD simulation with the basic continuum mechanics.
The MD potential used is the Stillinger and Weber potential.
We then applied our formulation to the strained silicon and
calculated the effective elastic stiffnesses at different levels of
volumetric strain. It is found that while C11 and C12 increase
significantly with increasing strain, the shear modulus C44

is approximately constant. The MD-simulated values of the
stiffnesses at zero volumetric strain agree with those measured
experimentally. On the basis of the Cij values, we have also
calculated the effective Young’s modulus and Poisson’s ratio.
While Young’s modulus along the 1 0 0-direction is almost
constant, the ‘isotropic’ Young’s modulus increases with
increasing volumetric strain. As for the two Poisson ratios
(the ‘isotropic’ one and the one along the 1 0 0-direction), their
values increase with increasing volumetric strain, although
Poisson’s ratio along the (1 0 0)-direction is always larger than
the isotropic one.

We further remark that our results are based on the
assumption that silicon is under hydrostatic strain (volumetric
strain), with its magnitude being as large as 15%. While
this magnitude is moderate for other cubic semiconductors
such as InAs/GaAs (i.e., [15]), it could be slightly high
for Si/Si1–xGex. However, the volumetric strain is strongly
dependent on the fraction ratio between Si and Ge. For
instance, while x = 0.1 in Si/Si1–xGex would result in a small
volumetric strain of 2.28%, x = 0.3 could give a volumetric
strain as high as 7.2% (i.e., [25]). We also point out that the
simple assumption of volumetric strain is closely associated
with the quantum wire and quantum dot growth modes in cubic
semiconductors (i.e., [1]). Other complicated cases, such as
layer-by-layer growth, where the two in-plane strains are the
same whilst the out-of-plane strain is different, can also be
simulated. In that case, one would need to assume different
MD initial conditions to the model system.
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